System Description
This TI Design demonstrates a proven design for the Multi-Gigabit Transceiver (MGT) power supply rails on the Xilinx Virtex UltraScale platform. It features +1.0V/20A output for the MGTAVCC, +1.2V/30A output for the MGTAVTT, and +1.8V/4A output for the MGTVCCAUX rails. This design is powered from a +5V input voltage and also provides power-up and power-down sequencing. The 20A and 30A rails feature integrated MOSFETs and lossless FET current sensing.

Featured Applications
• FPGA

Design Resources
• Block Diagram and Schematic
• Test Data
• Gerber Files
• Design Files
• Bill of Materials

Design Features
• 5V Input Voltage
• Full power solution for MGT rails
 o +1.0V/20A MGTAVCC
 o +1.2V/30A MGTAVTT
 o +1.8V/4A MGTVCCAUX
• Internal FET lossless current sensing
• Power-up and power-down sequencing
• PMBUS compatible interface
• Selectable PMBUS address
Jump start system design and speed time to market

Comprehensive designs include schematics or block diagrams, BOMs, design files and test reports by experts with deep system and product knowledge. Designs span TI’s portfolio of analog, embedded processor and connectivity products and supports a board range of applications including industrial, automotive, medical, consumer, and more. To explore the designs, go to http://www.ti.com/tidesigns

Design Considerations:
This design goal is to provide a power supply module to power MGT rails (MGTAVCC, MGTAVTT, MGTVCXAUX) on a Xilinx Virtex UltraScale platform and meet the current and voltage requirements. The solution is meant to fit into a 1.95” x 3.00” form factor and include all MGT rails and plug into a customer host characterization platform through mating connectors on the bottom layer. PMBUS, telemetry, sequencing, and low noise were all a requirement for this application.

MGTAVCC – The MGTAVCC rail required +1.0V/20A with +/-10mV output ripple and 3% tolerance on load transients.
1) TPS544B20 was chosen since it’s a 20A integrated MOSFET step down converter with internal current sense. This eliminated the need to use an external sense resistor to monitor current which in turn reduces loss since the resistor is not there to dissipate extra power. TPS544B20 also has telemetry through PMBUS which give it the necessary flexibility for this application.

MGTAVTT – The MGTAVTT rail required +1.2V/30A with +/-10mV output ripple and 3% tolerance on load transients.
1) TPS544C20 was chosen since it’s a 30A integrated MOSFET step down converter with internal current sense. This eliminated the need to use an external sense resistor to monitor current which in turn reduces loss since the resistor is not there to dissipate extra power. TPS544C20 also has telemetry through PMBUS which give it the necessary flexibility for this application.

Associated Part Numbers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Part Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS544C20</td>
<td>Non-isolated DC-DC SWIFT converter that is PMBus compatible and capable of high-frequency operation. Input voltage ranges from 4.5 to 18V and has an output current of 30A.</td>
</tr>
<tr>
<td>TPS544B20</td>
<td>Non-isolated DC-DC SWIFT converter that is PMBus compatible and capable of high-frequency operation. Input voltage ranges from 4.5 to 18V and has an output current of 20A.</td>
</tr>
<tr>
<td>TPS40400</td>
<td>Synchronous buck controller that operates from a nominal 3V to 20V supply. It is an analog PWM controller that allows programming and monitoring via the PMBus interface.</td>
</tr>
<tr>
<td>CSD86330Q3D</td>
<td>Synchronous buck NexFET power block MOSFET pair designed for applications offering high current, efficiency, and frequency capability with a 5V gate drive.</td>
</tr>
<tr>
<td>LM3880</td>
<td>Power sequencer that can control power up and power down of multiple power supplies using a precision enable pin and three output flags.</td>
</tr>
<tr>
<td>TS3A5017RGY</td>
<td>Dual single-pole quadruple-throw (4:1) analog switch designed to operate from 2.3 to 3.6V. This device can handle both digital and analog signals.</td>
</tr>
</tbody>
</table>
TI Designs

Xilinx Virtex UltraScale MGT Power Supplies (PMP10520)

MGTVCCAUX – The MGTVCCAUX rail required +1.8V/4A with +/-10mV output ripple and 3% tolerance on load transients.

1) TPS40400 controller along with a CSD86330 MOSFET was chosen since it provides all the necessary PMBUS telemetry and can meet all the necessary specifications along with providing a lower cost. An external sense resistor is still needed with this option but since it’s only running 4A, the losses are much smaller than the other two rails.

Sequencing – Power-up and power-down sequencing was a requirement for this design.

1) A LM3880 was selected to provide 1-2-3 power-up and 3-2-1 power down sequencing.

PMBUS Address Selection – The TSA3A501RGY is a SP4T switch that gives four different options for PMBUS address for each of the rails. By configuring ALT_PMBUS_ADDR0 and ALT_PMBUS_ADDR1, the user can select between each of the four addresses.

Jump start system design and speed time to market

Comprehensive designs include schematics or block diagrams, BOMs, design files and test reports by experts with deep system and product knowledge. Designs span TI’s portfolio of analog, embedded processor and connectivity products and supports a board range of applications including industrial, automotive, medical, consumer, and more. To explore the designs, go to http://www.ti.com/tidesigns
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated