The **PMP7246** is a 350W High Speed Full Bridge Phase Shift ZVT – Galvanic Isolated Full Bridge Synchronous Rectification DC/DC reference design. It is built for telecom applications to supply a RF PA stage. On board is additional 12V/5A power stage made in half bridge topology.

The main converter is a two quadrant converter, working forward in voltage mode control and working backward in average current mode limitation. This limitation is adjustable. Control input has a slope limitation, adjustable as well.

Picture of the board – Top side

Picture of the board – Bottom side

Dimensions: 217mm × 96mm
This board has been tested, according to the test report, at 36V, 48V, 55Vin, full load, with a cooling fan with 32 cfm placed at 10cm distance. Connected load described in the specification document (100nH + 20×10μF X7R ceramic capacitors).

1 Power supply description

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Description</th>
<th>Capability</th>
<th>Remarks</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum Input voltage</td>
<td>36V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maximum Input voltage</td>
<td>60V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Output voltage</td>
<td>20V to 32V</td>
<td>Adjustable</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Isolation Primary - secondary</td>
<td>500Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DC accuracy/tolerance for the output voltage</td>
<td>+/- 2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Output voltage ripple</td>
<td>100mVpp (20MHz BW)</td>
<td>Transformer need another isolation for higher temperatures</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Maximum continuous output current</td>
<td>12A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Efficiency</td>
<td>>90%</td>
<td>for currents 6A -11A</td>
<td>see the measurements</td>
</tr>
<tr>
<td>9</td>
<td>Efficiency</td>
<td>>85%</td>
<td>for currents 1A -2A</td>
<td>see the measurements</td>
</tr>
<tr>
<td>10</td>
<td>Transient performance</td>
<td></td>
<td></td>
<td>see the measurements</td>
</tr>
<tr>
<td>11</td>
<td>Overshoot</td>
<td><1.5V</td>
<td>output current 0A-11A</td>
<td>see the measurements</td>
</tr>
<tr>
<td>12</td>
<td>Undershoot</td>
<td><1.5V</td>
<td>output current 0A-11A</td>
<td>see the measurements</td>
</tr>
<tr>
<td>13</td>
<td>Settling time of the output voltage to +/-2%</td>
<td><200us</td>
<td>@ constant output current 1A</td>
<td>see the measurements</td>
</tr>
<tr>
<td>14</td>
<td>Analog control input</td>
<td>≥10k Ohm input impedance</td>
<td>3.3Vpp maximum</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Output voltage overshoot or undershoot when tuning the output voltage</td>
<td><1.5%</td>
<td></td>
<td>see the measurements</td>
</tr>
<tr>
<td>16</td>
<td>ON/OFF function</td>
<td>active low/active high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Power good (PGOOD)</td>
<td>No function available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Board size</td>
<td>217mm x 96mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Absolute maximum components height - top side</td>
<td>15mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Absolute maximum components height - bottom side</td>
<td>3mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Component placement</td>
<td>Top & Bottom side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Power MOSFETs package</td>
<td>PowerPAK SO8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Operating temperature range</td>
<td>-40 to +90 deg C.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Efficiency

The efficiency data are shown in the graph below. The load consisted of an electronic load, manually adjusted; the power supply is able to deliver a maximum current of 55A.

Efficiency curve measured at 36V, 48Vin, 55Vin and 32Vout; the graph shows the efficiency versus output current (maximum 32V*11A)
Efficiency curve measured at 36V, 48V, 55Vin and 20V out; the graph shows the efficiency versus output current (maximum 20V * 7A).
3 Output voltage regulation

The output voltage regulation versus output current
4 Output ripple voltage

Output ripple voltage – measured directly on the converters output – 100mVpp

Output ripple voltage – measured directly on the 200uF (RF Amplifier) – 15mVpp
5 Transient response (load current switched)

The fast transient load step current was produced with a 2.9Ohm. Switching time ON & OFF is in the range of 100ns.

Yellow – Output voltage AC coupled 200MHz band with – 1.2V
Blue – Current on the converters output

The same with markers for overshoot – 620mV
6 Slow Drain Modulation (SDM)

For this test, a waveform function generator was set to provide the rectangular waveform, shown in the graphs below. The input voltage was set to 48V and the output swings between 20V and 32V. The load was set to 1A constant current (worse case). Repetition rate 50Hz.

Load = 1A, 32Vout to 20Vout (maximal down slope limited internally to 500us)
Channel 1: Output Voltage, 5V/div, DC coupled, 200usec/div
Channel 2: Control Voltage, 500mV/div
Channel 3: Current on the converters output 2A/div
Load = 1A, 20Vout to 32Vout (maximal up slope limited internally ~ 100us)
Channel 1: Output Voltage, 5V/div, DC coupled, 200usec/div
Channel 2: Control Voltage, 500mV/div
Channel 3: Current on the converters output 5A/div

Settling time – no settling time issues. Negligible over shoot/undershoot.
7 Switching Node Waveform

The images below show the voltages behavior of the right (TP6) and left (TP7) full bridge legs, the 48Vin operation, full load conditions.

Load = 11A, 32Vout
Channel 1: Drain voltage 10V/div, DC coupled, 500nsec/div
Channel 2: Drain voltage 10V/div, DC coupled, 500nsec/div

The same, in addition CH1-CH2 (Voltage across the transformer)
8 Loop response

Vin = 48V, Vout = 32V, load = 6.8A.

Frequency loop response of the converter – no capacitive load
The measured crossover frequency was around 47 KHz with a phase margin 88deg.

Frequency loop response of the converter – 200uF capacitive load
The measured crossover frequency was around 17 KHz with a phase margin 66deg.
9 AUX Power supply

9.1 Loop response

Frequency loop response resistive load

Cross over frequency: >12kHz
Phase margin: >60Deg
Gain margin: >15dB
Measured @ 48Vin and 5Ohm resistive load
9.2 Load step response:

Load step response rising age
CH2 (red): Output AC voltage 100mV/div, ΔU=133mV
CH4 (green): Output load current 2A/div, ΔI=4.25A

Load step response falling age
CH2 (red): Output AC voltage 100mV/div, ΔU=51mV
CH4 (green): Output load current 2A/div, ΔI=4.25A
9.3 Output ripple voltage

- CH1 (yellow): switch node after diode rectifier
- CH2 (red): Output voltage AC coupled, 100mV/div, ΔU<20mVpp
- CH4 (green): Output DC current 2A/div

9.4 Efficiency

Efficiency = f (Iout)
9.5 **Thermal analysis**

The thermal analysis has been accomplished by an infrared camera at the following conditions:
Vin = 48V, Vout = 32V @ 4A, Vaux = 12V @ 4A. Force air flow.

R10 – **need a bigger package or several connected in parallel**
U3, U4, gate driver ICs – **need to be in MSOP PowerPAD-8**
EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMER

For Feasibility Evaluation Only, in Laboratory/Development Environments. The EVM is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

Certain Instructions. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be indentified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale. However, no other license, express or implied, by estoppel or otherwise, to any TI intellectual property right, is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated