TI Designs Synchronization of JESD204B Giga-Sample ADCs using Xilinx[®] Platform for Phased-Array Radar Systems Design Guide

TI High-Speed Designs

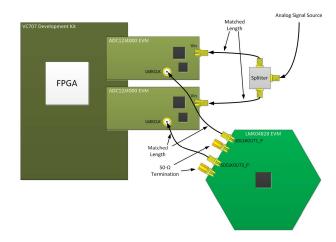
TI High-Speed Designs are analog solutions created by TI's analog experts. High-Speed Designs offer the theory, component selection, simulation, a complete PCB schematic and layout, bill of materials, and measured performance of useful circuits. Circuit modifications that help to meet alternate design goals are also discussed.

Design Resources

TIDA-00432 ADC12J4000 LMK04828

A

Tool Folder Containing Design Files Product Folder Product Folder



Featured Applications

- Phased-Array Radar
- Radio Telescope
- Beamforming Antenna
- Test and Measurement: Oscilloscope

TEXAS INSTRUMENTS

• Software-Defined Radios (SDRs)

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

MATLAB is a trademark of The MathWorks, Inc. ChipScope is a trademark of Xilinx, Inc. All other trademarks are the property of their respective owners.

Synchronization of JESD204B Giga-Sample ADCs using Xilinx[®] Platform for Phased-Array Radar Systems Design Guide Copyright © 2015, Texas Instruments Incorporated

General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines

Always follow TI's setup and application instructions, including use of all interface components within their recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure your personal safety and those working around you. Contact TI's Product Information Center http://support/ti./com for further information.

Save all warnings and instructions for future reference.

Failure to follow warnings and instructions may result in personal injury, property damage, or death due to electrical shock and burn hazards.

The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is **intended strictly for use in development laboratory environments**, solely for qualified professional users having training, expertise and knowledge of electrical safety risks in development and application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments. If you are not suitable qualified, you should immediately stop from further use of the HV EVM.

- 1. Work Area Safety
 - (a) Keep work area clean and orderly.
 - (b) Qualified observer(s) must be present anytime circuits are energized.
 - (c) Effective barriers and signage must be present in the area where the TI HV EVM and its interface electronics are energized, indicating operation of accessible high voltages may be present, for the purpose of protecting inadvertent access.
 - (d) All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located within a protected Emergency Power Off EPO protected power strip.
 - (e) Use stable and nonconductive work surface.
 - (f) Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible.
- 2. Electrical Safety

As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may have fully accessible and active high voltages.

- (a) De-energize the TI HV EVM and all its inputs, outputs and electrical loads before performing any electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely deenergized.
- (b) With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment connection, and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live.
- (c) After EVM readiness is complete, energize the EVM as intended.

WARNING: WHILE THE EVM IS ENERGIZED, NEVER TOUCH THE EVM OR ITS ELECTRICAL CIRCUITS AS THEY COULD BE AT HIGH VOLTAGES CAPABLE OF CAUSING ELECTRICAL SHOCK HAZARD.

3. Personal Safety

2

(a) Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch.

Limitation for safe use:

EVMs are not to be used as all or part of a production unit.

1 Design Introduction

NOTE: The ADC12J4000 EVM for this design is labeled ADC12JXXXXEVM A or alternatively, ADC12J4000. Previous versions of the ADC12J4000 EVM are unable to be modified to work in this configuration.

The basic test setup includes the following (see Figure 1):

- A Xilinx VC707 development kit
- Two ADC12J4000 evaluation modules (EVMs)
- An LMK04828 EVM

The VC707 platform interfaces to both ADC12J4000 EVMs through two onboard FMC connectors. The FMC connectors are for the JESD204B data lines and SYNC signals. The FMC connectors also provide the clocks for the field-programmable gate array (FPGA) from the ADC12J4000 EVMs. Through a 0-degree power splitter and matched-length cables, a common phase-matched analog signal is provided to both ADC12J4000 EVMs.

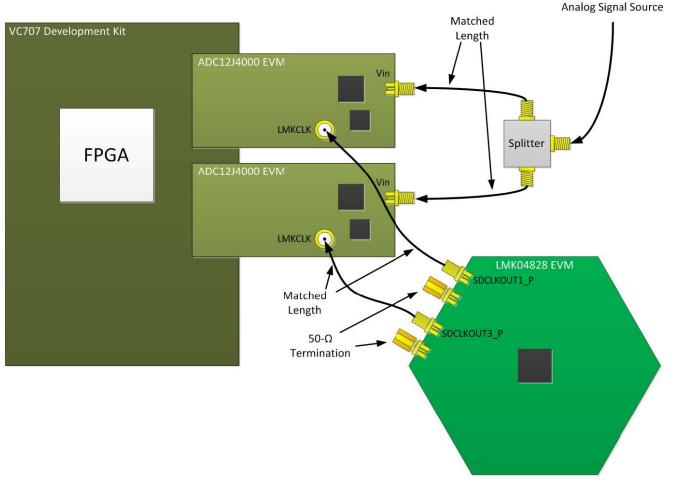


Figure 1. Hardware Block Diagram

3

Design Introduction

www.ti.com

Figure 2 shows the overall clocking scheme. The LMK04828 EVM creates two phase-aligned SYSREF signals that are sent to each ADC12J4000 EVM through matched-length cables to maintain phase alignment at the input of the LMK04828 on each ADC EVM. The LMK04828 clock chip onboard each analog-to-digital converter (ADC) EVM is set up in single-loop 0-delay mode to create a SYSREF signal for each ADC, which is phase-aligned to the SYSREF input (see Section 3.1 for details). This setting also generates phase-aligned device clocks for each ADC. The LMK04828 EVM acts as a frequency and phase reference for each ADC12J4000 EVM. Each ADC12J4000 EVM generates its own clocks from this reference.

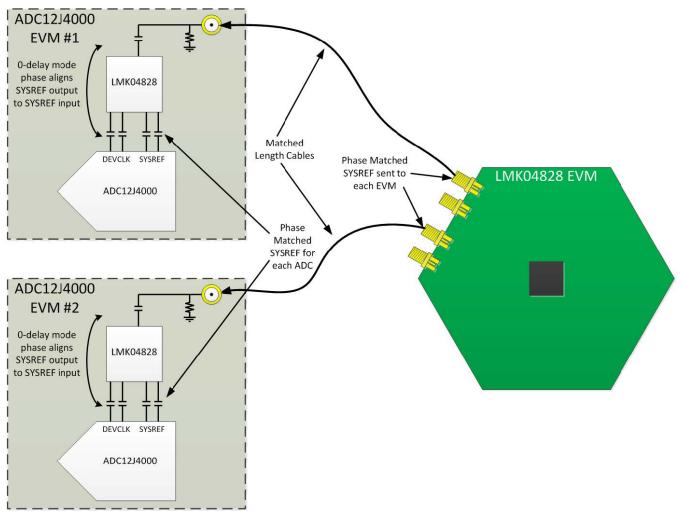


Figure 2. Block Diagram of Clocking Scheme

The following ADC12J4000 setup is for testing:

- JESD mode: Decimate-by-10, DDR = 1, P54 = 0, LMF = 2,2,2
- K = 16

4

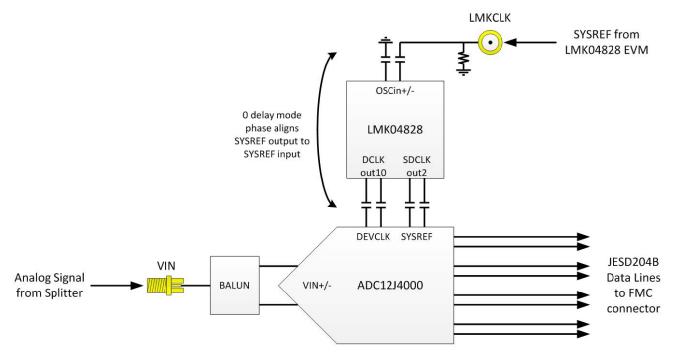
• Fs = 2949.12 Msps

NOTE: The design can be modified for all of the other available ADC12J4000 modes or for other sampling rates.

2 Circuit Description

This system-level design shows how two ADC12J4000 EVMs can be synchronized together using a Xilinx VC707 platform. The design document describes the required hardware modifications and device configurations, including the clocking scheme. The design document also shows example configuration files for each EVM, describes FPGA firmware, and shows the relevant Xilinx IP block configuration parameters. Data on the actual hardware is displayed and analyzed. This data displays synchronization within 50 ps without characterized cables or calibrated propagation delays.

3 Hardware Configuration


The VC707 and LMK04828 EVMs must remain configured as defaults, but the ADC12J4000 EVM must be modified to accommodate the clocking solution.

3.1 ADC12J4000 EVM Setup

Figure 3 shows a block diagram for the setup of the ADC12J4000 EVM. The LMK04828 provides both the device clock and SYSREF signals to the ADC12J4000. The LMK04828 EVM is set up in single PLL 0-delay mode, which phase-locks the SYSREF signal of the the ADCs with the SYSREF reference signal provided to the SMA connector (labeled LMKCLK). This mode creates a phase-locked SYSREF and device clocks for each ADC on the separate ADC12J4000 EVMs.

For this clocking mode, modify the ADC12J4000 EVM so the onboard LMK04828 EVM can provide the device clock to the ADC12J4000. Modify the ADC12J4000 EVM by removing C32 and C33 and installing C262 and C263. For single-loop 0-delay mode, install C85 and C86 to apply the reference SYSREF signal to the OSCin+ pin of the LMK04828 EVM.

Due to the low-PFD frequency in this mode, modify the loop filter for PLL2 to stabilize the loop. Remove the installed components for LF1, LF2, and LF3. Install 12 nF, 0.22 nF, and 1 k Ω , respectively.

Figure 3. ADC12J4000 EVM Block Diagram

3.2 LMK04828 EVM Setup

The LMK04828 EVM must remain unmodified.

Hardware Configuration

3.3 VC707 Development Kit

The VC707 Development Kit must remain unmodified.

4 Device Configurations

The specific device configurations for each board are presented in the following subsections.

4.1 ADC12J4000 EVM

The following devices must be configured on the ADC12J4000:

The ADC

6

• The LMK04828

NOTE: The TRF3765 is unused in this clocking scheme and can be powered down.

For the test, the ADC12J4000 EVM was set up for decimate-by-10 using two SerDes lanes (Decimate-by-10, DDR = 1, P54 = 0, LMF = 2,2,2). For synchronization, the SYSREF receiver was enabled. The SYSREF timing was adjusted using the dirty SYSREF capture bit to detect timing errors and then using the programmable delays to meet setup and hold times. Both ADC12J4000s were loaded with the same configuration. An example configuration file for the ADC12J4000 GUI is in Section A.1.

The LMK04828 must be set up for single-loop 0-delay mode. Figure 4 shows a block diagram of the configuration. In this mode, only PLL2 is used (PLL1 can be disabled). The reference signal provided to the OSCin pin is the SYSREF signal from the LMK04828 EVM. Both R and N dividers are set to 1. By tracing the signal from the phase detector through the N divider, the VCO frequency is the reference frequency multiplied by the SYSREF divider. Because the output of the SYSREF divider is the feedback signal and both R and N dividers are set to 1, the phase detector forces the phase of the SYSREF divider output to match the phase of the reference signal.

The onboard LMK04828EVM also generates the device clock for the ADC12J4000. In this case, the device clock runs at 2949.12 MHz (the same frequency as the VCO). The LMK04828 from one of the boards also sends a device clock and SYSREF signal back to the FPGA through the FMC connector and each ADC board sends a reference clock to the related FPGA transceiver blocks (see Section 3.3). Figure 4 shows the output dividers.

Using the part in the nested 0-delay dual-loop mode with an external VCXO, improved phase-noise performance can be achieved. The higher-PFD frequency offered by the dual-loop mode improves the phase-noise performance but an external VCXO cannot be used based on the EVM hardware.

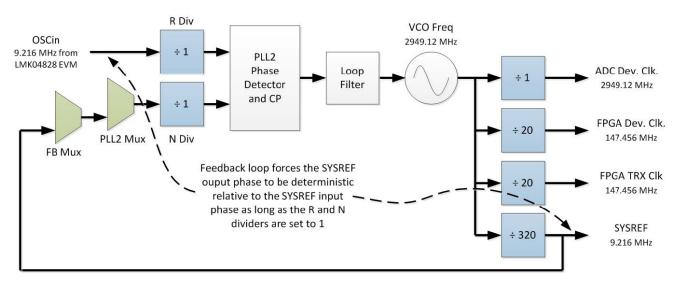


Figure 4. LMK04828 in Single-Loop 0-Delay Mode

The phases of the local multiframe clocks (LMFCs) between the ADCs and the FPGAs were not matched. Strict phase-matching of the LMFCs between the data converter and logic element is not required in many cases. When the digital downconverter (DDC) is used, the timing of the SYNC signal becomes critical because the start of the transmission of the initial lane-alignment sequence (ILAS) is for synchronization. In this case, all ADCs must transmit the ILAS on the same LMFC edge. This transmission is dependent on the SYNC signals meeting the required setup time with respect to the LMFC in the ADC. Because the SYNC signal is launched from the FPGA on an LMFC edge, the timing of the respective LMFCs is critical. The timing of the LMFCs is sufficient to synchronize the DDCs without adjusting the LMFC cycles.

4.2 LMK04828 EVM

The LMK04828 EVM is configured for dual-loop mode. The only clocks required for this setup are two phase-matched SYSREF clocks used as references for the ADC12J4000 EVMs. Alternatively, a signal generator could provide these clocks through a phase-matched power splitter. Any phase error between these clocks results in skewed-sampling instances in the ADCs. See an example configuration file for the LMK04828 EVM in Section A.2.

4.3 VC707

The firmware for the VC707 platform is a modified version of the design firmware of the hardware demonstration provided by Xilinx for the VC709 platform. Figure 5 shows a simplified block diagram of the firmware.

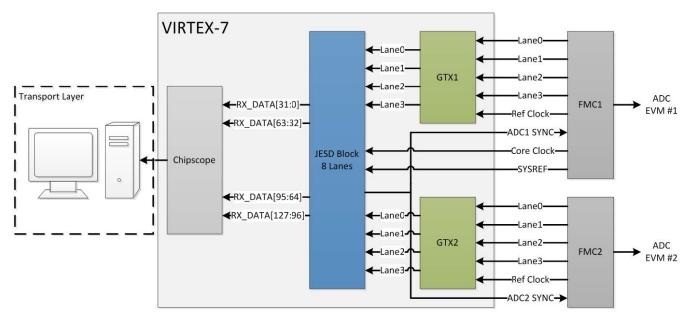


Figure 5. Block Diagram of the VC707 Firmware

7

4.3.1 Pin Assignments

Because this design uses of two FMC connectors, the appropriate signals for the second FMC connector require mapping. Each FMC connector has separate GT transceiver blocks. Each transceiver block receives its reference clock from the related FMC connector. The JESD-core clock and SYSREF signals come from the first FMC connector. See Table 1 and Table 2 for the signal mappings between the ADC EVM and the VC707 platform for FMC1 and FMC2, respectively. The serial lanes have inverted polarity that must be accounted for in the FPGA.

Signal Name	ADC12J4000 Pins	LMK04828 Pins	FMC Pins	Virtex 7 Pins
Lane0+	DS0+		C7	D7
Lane0–	DS0-		C6	D8
Lane1+	DS1+		A3	C5
Lane1–	DS1-		A2	C6
SYNC	SYNC~		H31	L29
GT Ref Clk 1+		DCLKout4+	D4	A10
GT Ref Clk 1-		DCLKout4-	D5	A9
Core Clock+		DCLKout0+	G6	K39
Core Clock-		DCLKout0-	G7	K40
SYSREF+		SDCLKout3+	G9	M42
SYSREF-		SDCLKout3-	G10	L42

Table 1. FMC1 Signals for ADC EVM 1

Table 2. FMC2 Signals for ADC EVM 2

Signal Name	ADC12J4000 Pins	LMK04828 Pins	FMC Pins	Virtex 7 Pins
Lane0+	DS0+		C7	P7
Lane0–	DS0-		C6	P8
Lane1+	DS1+		A3	N5
Lane1–	DS1-		A2	N6
SYNC	SYNC [~]		H31	V35
GT Ref Clk 2+		DCLKout4+	D4	K8
GT Ref Clk 2-		DCLKout4-	D5	K7

4.3.2 JESD Core Implementation

8

This design uses a single-JESD core implementation that must be modified for the appropriate LMFS configuration. The JESD core is set up for eight lanes (L = 8), although only two lanes from each ADC are used. In this case, the additional four lanes of the FPGA block output zeroes. Table 3 lists the JESD core parameters.

Table 3. Xilinx JESD Core Parameters

Parameter	· Value	
L	8 (extra 4 lanes ignored)	
М	Unimportant, because transport layer is done in software	
F	2	
К	16	
Scrambling	Enabled	

Alternatively, the core can be set up for four lanes or as separate 2-lane cores. If using the DDC, the two SYNC signals from the separate JESD blocks must be ANDed together to create a single SYNC signal for distribution to both ADCs to synchronize the NCOs.

The transport layer is implemented in software, rather than firmware, to allow simple changes without recompiling. The data coming out of the JESD block is captured using an integrated logic analyzer (ILA) block and captured using the Xilinx ChipScope[™]software. The raw lane data was downloaded to the computer and remapped into samples using MATLAB. The example program is shown in Section A.3.

4.3.3 Transceiver Setup

The eight transceivers (only four used) are set up as two separate GT transceiver blocks, each with its own reference clock. The line rate is 5.89824 Gbps and the reference clock is 147.456 MHz. Each transceiver block is dedicated to an FMC connector with the reference clock for each block coming from its own FCM connector. Table 4 shows the transceiver properties for this setup.

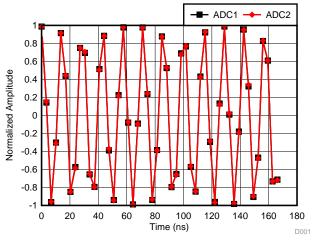
PARAMETER	SETTING	
Protocol File	JESD204	
RX Line Rate (Gbps)	5.89824	
RX Reference Clock (MHz)	147.456	
Decoding	8B/10B	
RX Internal Data Width	40	
RX External Data Width	32	
RXUSRCLK(MHz)	147.456	
RXUSRCLK2(MHz)	147.456	
RX Buffer Enabled	TRUE	

5 Verification and Measured Performance

The performance of the system? sine waves? was/were measured by providing the same analog signal to each ADC using a phase-matched power splitter. Only sine waves were tested. The performance of the system was evaluated by calculating the phase difference between signals captured from each ADC. Because sine waves were used, the phase difference was measured by comparing the phases of the signals using an FFT and converting to a time value. The complex mixer was enabled at different frequencies to show that the NCOs were also synchronized. The data was captured by ChipScope and exported to a spreadsheet using the following TCL command:

write_hw_ila_data my_hw_ila_data_file.zip [upload_hw_ila_data hw_ila_1] –force

This command saves the data in a zip file which contains a file (waveform.csv). This CSV file was opened in MATLAB[™] and the data streams representing the I data from each ADC was extracted. The data from this CSV file represents the output directly from the JESD block. Figure 5 shows these frames of data as RX_DATA streams. A MATLAB script, which acted as the transport layer, reassembled the data into samples. By taking a FFT of each signal, finding the largest bin, and comparing the phase, the phase shift was analyzed. An example of the MATLAB script is included in the appendices.


Table 5 reports the measured skews between the two ADCs and Figure 6, Figure 7, and Figure 8 show the time domain view of the captured samples. Skews can come from phase differences between either the sampling clock or the analog input. The cables in the setup were neither characterized or phase matched. The phase matching of the splitters remains unverified. Sampling clock skews can come from the cables between the LMK04828EVM and the ADC12J4000EVMs or from mismatches in the onboard LMK04828-clock chips. Analog-input skews can be from the short cables between the splitter and the analog inputs, from the splitter itself, or from phase mismatches between the onboard baluns. A different splitter measured at 2140 MHz. Because all skews are significantly smaller than a sampling clock period, the deterministic latency was achieved and the ADCs synchronized.

Verification and Measured Performance

Input Frequency (MHz)	NCO Frequency (MHz)	Phase Skew (Degrees)	Time Skew (PS)
70	0	0.506	20.09
500	430	7.709	42.8
2140	2070	9.406	12.2

Table 5. Uncalibrated Skew Results

Figure 6. Sampled Signals at 70 MHz With Complex Mixer Disabled (NCO Frequency = 0)

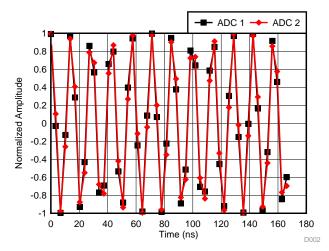


Figure 7. Sampled Signals at 500 MHz With Complex Mixer Enabled (NCO Frequency = 430 MHz)

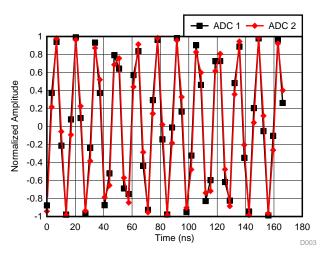


Figure 8. Sampled Signals at 2140 MHz With Complex Mixer Enabled (NCO Frequency = 2070 MHz)

6 Design Files

6.1 Schematics

To download the schematics, see the design files at TIDA-00432.

6.2 Bill of Materials

To download the bill of materials (BOM), see the design files at TIDA-00432.

6.3 Layer Plots

To download the layer plots, see the design files at TIDA-00432.

6.4 Altium Project

To download the Altium project files, see the design files at TIDA-00432.

6.5 Layout Guidelines

To download the Layout Guidelines, see the design files at TIDA-00432.

6.6 Gerber Files

To download the Gerber files, see the design files at TIDA-00432.

6.7 Software Files

To download the software files, see the design files at TIDA-00432.

Appendix A Example Files

A.1 Example ADC12J4000EVM Configuration File

LMK04828 0x000 0x80 0x000 0x00 0x002 0x00 0x100 0x14 0x101 0x55 0x103 0x00 0x104 0x02 0x105 0x01 0x106 0x70 0x107 0x01 0x108 0x0A 0x109 0x55 0x10B 0x02 0x10C 0x22 0x10D 0x00 0x10E 0xF0 0x10F 0x10 0x110 0x14 0x111 0x55 0x113 0x00 0x114 0x02 0x115 0x01 0x116 0xF1 0x117 0x01 0x118 0x08 0x119 0x55 0x11B 0x00 0x11C 0x02 0x11D 0x00 0x11E 0xF9 0x11F 0x00 0x120 0x08 0x121 0x55 0x123 0x00 0x124 0x22 0x125 0x00 0x126 0xF8 0x127 0x00 0x128 0x01 0x129 0x55 0x12B 0x01 0x12C 0x22 0x12D 0x00 0x12E 0xF0 0x12F 0x11 0x130 0x18 0x131 0x55 0x133 0x01 0x134 0x22 0x135 0x00 0x136 0xF9 0x137 0x00 0x138 0x20 0x139 0x03

www.ti.com
0.404.0.04
0x13A 0x01 0x13B 0x40
0x13C 0x00
0x13D 0x08
0x13E 0x03
0x13F 0x15
0x140 0x00 0x141 0x00
0x141 0x00 0x142 0x08
0x143 0x11
0x144 0xFF
0x145 0x00
0x146 0x00
0x147 0x00 0x148 0x02
0x149 0x02
0x14A 0x02
0x14B 0x02
0x14C 0x00
0x14D 0x00 0x14E 0x00
0x14E 0x00
0x150 0x01
0x151 0x02
0x152 0x00
0x153 0x00 0x154 0x78
0x154 0x78 0x155 0x00
0x156 0x78
0x157 0x00
0x158 0x78
0x159 0x00
0x15A 0x78 0x15B 0xF4
0x15C 0x20
0x15D 0x00
0x15E 0x00
0x15F 0x0B
0x160 0x00 0x161 0x01
0x162 0x80
0x163 0x00
0x164 0x00
0x165 0x50
0x17C 0x15
0x17D 0x33 0x166 0x00
0x167 0x00
0x168 0x01
0x169 0x58
0x16A 0x20
0x16B 0x00 0x16C 0x00
0x16D 0x00
0x16E 0x13
0x139 0x00 // Set SYSREF_Mux to "Normal"
0x143 0x11 // Set SYNC_MUX to "Pin"
0x140 0x00 // Turn on all the SYSREF blocks
0x144 0x74 // Enable syncing of all clock outputs 0x143 0x11 // Trigger SYNC event using "Pin" mode
on the on the integer of the event using the mode

Example ADC12J4000EVM Configuration File

Example LMK04828EVM Configuration File

0x143 0x31 0x143 0x11 0x144 0xFF // Disable syncing of all clock outputs 0x139 0x03 // Set SYSREF_MUX to "Continuous" ADC12J4000 0x0021 0x00 // Initiate reset of all registers 0x0021 0x01 // De-assert reset 0x0030 0x00 // SYSREF receiver and processor off 0x0040 0x04 // Set serializer pre-emphasis for high speed PCB 0x0066 0x03 // Foreground calibration mode with timing optimization enabled 0x002B 0x13 // Change reserved register to proper setting 0x0208 0x07 // Change over-range processing to longest interval 0x0051 0x84 // Calibration optimized for large signals 0x0201 0xBE // Scrambler on, KM1 = 15, DDR, JESD disabled 0x0200 0x14 // 6.02dB gain, decimate-by-10 0x0202 0x40 // P54 PLL off, Differential SYNC, Normal data mode 0x0030 0xC0 // SYSREF receiver and processor on 0x0210 0x00 // Set NCO Preset 0 to 0 0x0211 0x00 0x0212 0x00 0x0213 0x00 0x0201 0xBF // Scrambler on, KM1 = 15, DDR, JESD enabled 0x0050 0x0E // Initiate a foreground calibration

A.2 Example LMK04828EVM Configuration File

[SETUP] ADDRESS=888 CLOCK=8 DATA=4 LE=2 PART=LMK04828B PINPOSITION00=1 PINPOSITION01=10 PINPOSITION02=5 PINPOSITION03=6 PINPOSITION04=7 [MODES] NAME00=R0 (INIT) VALUE00=144 NAME01=R0 VALUE01=16 NAME02=R2 VALUE02=512 NAME03=R256 VALUE03=65539 NAME04=R257 VALUE04=65877 NAME05=R259 VALUE05=66305 NAME06=R260 VALUE06=66594 NAME07=R261 VALUE07=66816 NAME08=R262 VALUE08=67312 NAME09=R263 VALUE09=67408 NAME10=R264 VALUE10=67587

NAME11=R265 VALUE11=67925 NAME12=R267 VALUE12=68353 NAME13=R268 VALUE13=68642 NAME14=R269 VALUE14=68864 NAME15=R270 VALUE15=69360 NAME16=R271 VALUE16=69456 NAME17=R272 VALUE17=69640 NAME18=R273 VALUE18=69973 NAME19=R275 VALUE19=70400 NAME20=R276 VALUE20=70658 NAME21=R277 VALUE21=70912 NAME22=R278 VALUE22=71417 NAME23=R279 VALUE23=71424 NAME24=R280 VALUE24=71704 NAME25=R281 VALUE25=72021 NAME26=R283 VALUE26=72448 NAME27=R284 VALUE27=72706 NAME28=R285 VALUE28=72960 NAME29=R286 VALUE29=73465 NAME30=R287 VALUE30=73472 NAME31=R288 VALUE31=73736 NAME32=R289 VALUE32=74069 NAME33=R291 VALUE33=74496 NAME34=R292 VALUE34=74754 NAME35=R293 VALUE35=75008 NAME36=R294 VALUE36=75513 NAME37=R295 VALUE37=75520 NAME38=R296 VALUE38=75784 NAME39=R297 VALUE39=76117 NAME40=R299 VALUE40=76544

Example LMK04828EVM Configuration File

NAME41=R300 VALUE41=76834 NAME42=R301 VALUE42=77056 NAME43=R302 VALUE43=77553 NAME44=R303 VALUE44=77584 NAME45=R304 VALUE45=77830 NAME46=R305 VALUE46=78165 NAME47=R307 VALUE47=78592 NAME48=R308 VALUE48=78850 NAME49=R309 VALUE49=79104 NAME50=R310 VALUE50=79609 NAME51=R311 VALUE51=79616 NAME52=R312 VALUE52=79909 NAME53=R313 VALUE53=80131 NAME54=R314 VALUE54=80385 NAME55=R315 VALUE55=80704 NAME56=R316 VALUE56=80896 NAME57=R317 VALUE57=81160 NAME58=R318 VALUE58=81411 NAME59=R319 VALUE59=81664 NAME60=R320 VALUE60=81922 NAME61=R321 VALUE61=82176 NAME62=R322 VALUE62=82432 NAME63=R323 VALUE63=82705 NAME64=R324 VALUE64=83199 NAME65=R325 VALUE65=83327 NAME66=R326 VALUE66=83480 NAME67=R327 VALUE67=83738 NAME68=R328 VALUE68=83970 NAME69=R329 VALUE69=84290 NAME70=R330 VALUE70=84482 www.ti.com

NAME71=R331 VALUE71=84758 NAME72=R332 VALUE72=84992 NAME73=R333 VALUE73=85248 NAME74=R334 VALUE74=85696 NAME75=R335 VALUE75=85887 NAME76=R336 VALUE76=86019 NAME77=R337 VALUE77=86274 NAME78=R338 VALUE78=86528 NAME79=R339 VALUE79=86784 NAME80=R340 VALUE80=87160 NAME81=R341 VALUE81=87296 NAME82=R342 VALUE82=87672 NAME83=R343 VALUE83=87808 NAME84=R344 VALUE84=88214 NAME85=R345 VALUE85=88320 NAME86=R346 VALUE86=88696 NAME87=R347 VALUE87=89076 NAME88=R348 VALUE88=89120 NAME89=R349 VALUE89=89344 NAME90=R350 VALUE90=89600 NAME91=R351 VALUE91=89867 NAME92=R352 VALUE92=90112 NAME93=R353 VALUE93=90369 NAME94=R354 VALUE94=90692 NAME95=R355 VALUE95=90880 NAME96=R356 VALUE96=91136 NAME97=R357 VALUE97=91404 NAME98=R380 VALUE98=97301 NAME99=R381 VALUE99=97587 NAME100=R358 VALUE100=91648

Example LMK04828EVM Configuration File

NAME101=R359 VALUE101=91904 NAME102=R360 VALUE102=92172 NAME103=R361 VALUE103=92505 NAME104=R362 VALUE104=92704 NAME105=R363 VALUE105=92928 NAME106=R364 VALUE106=93184 NAME107=R365 VALUE107=93440 NAME108=R366 VALUE108=93715 NAME109=R371 VALUE109=94976 NAME110=R8189 VALUE110=2096384 NAME111=R8190 VALUE111=2096640 NAME112=R8191 VALUE112=2096979 OSCIN00=122.88 EXTRA_PLL_N_DIV_1_00=1 OSCIN01=122.88 EXTRA_PLL_N_DIV_1_01=1 PINS=0 [BURST] COUNT=0

TEXAS INSTRUMENTS

www.ti.com

Example Matlab Program for Analyzing Skew

```
A.3 Example Matlab Program for Analyzing Skew
```

```
--%
% Import Data Saved from Chipscope
                                                 %
§_____§
% Import the data from the Xilinx Chipscope capture. Import as a string
% rather than as a number for the routine below. Only import the columns
% that contain the I data for each board
90
   data1 = RX DATA[31:0] % Board 1 - I data
9
   data2 = RX DATA[95:64] % Board 2 - I data
% Declare variables for imported data
Fs = 294.912e6;
Fin = 99.93e6;
N = length(data1) *2;
num bits = 15;
%______%
% Transport Layer Implementation
                                                 00
%______%
data = char(data1);
samples board 1 = zeros(length(data1)*2,1);
for i=1:length(data1)
   samples board 1((i-1)*2+1) = bin2dec([data(i,25:32),data(i,17:24)]);
   samples board 1(i*2) = bin2dec([data(i,9:16),data(i,1:8)]);
end
% Convert data to 2's complement number in Matlab and remove offset
samples board 1 = typecast(uint16(samples board 1),'int16');
samples board 1 = double(samples board 1);
samples board 1 = samples_board_1 - mean(samples_board_1);
data = char(data2);
samples board 2 = zeros(length(data2)*2,1);
for i=1:length(data1)
   samples board 2((i-1)*2+1) = bin2dec([data(i,25:32),data(i,17:24)]);
   samples board 2(i*2) = bin2dec([data(i,9:16),data(i,1:8)]);
end
% Convert data to 2's complement number in Matlab and remove offset
samples board 2 = typecast(uint16(samples board 2),'int16');
samples_board_2 = double(samples_board_2);
samples board 2 = samples board 2 - mean(samples board 2);
%____%
% Analyze Skew
                                                 00
%_____%
% Plot time domain data for each board.
figure(1)
plot(1:length(samples board 2), samples board 2,...
1:length(samples board 1), samples board 1)
% Get FFT of for each board.
```


else

```
window = blackman(N);
X=fftshift(fft(window.*samples board 2));
Y=fftshift(fft(window.*samples board 1));
X = X(N/2:end);
Y = Y(N/2:end);
A = 2^{(num bits-1)};
figure(2)
plot(20*log10(abs(X*2/N/A)));
figure(3)
plot(20*log10(abs(Y*2/N/A)));
% Find the bin with the largest amplitude. This is the sine wave.
[mag_x index_x] = max(abs(X));
[mag y index y] = max(abs(Y));
% Get the phase of each signal at the appropriate bin.
phase x = angle(X(index x));
phase y = angle(Y(index y));
% Calculate the phase difference and time skew.
phase diff = phase_y - phase_x;
phase diff deg = phase diff / pi * 180;
skew ps = phase_diff / (2*pi*Fin) / 1e-12;
if(skew ps \ge 0)
    fprintf('Board2 lags Board1 by %f degrees or %f ps\n',...
    phase diff deg, skew ps);
```

```
fprintf('Board1 lags Board2 by %f degrees or %f ps\n',...
-phase_diff_deg, -skew_ps);
end
```

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have **not** been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated