1 Startup

The photo below shows the output voltage startup waveform after the application of 16V in. The 13.2V output was loaded to 0A. (5V/DIV, 5mS/DIV)

The photo below shows the output voltage startup waveform after the application of 16V in. The 13.2V output was loaded to 3A. (5V/DIV, 5mS/DIV)
The photo below shows the output voltage startup waveform after the application of 6V in. The 13.2V output was loaded to 0A. (5V/DIV, 5mS/DIV)

The photo below shows the output voltage startup waveform after the application of 6V in. The 13.2V output was loaded to 3A. (5V/DIV, 5mS/DIV)
2 Efficiency

The converter efficiency is shown below for Vin = 12V and Vout = 13.2V.

The converter efficiency is shown below for Vin = 16V and Vout = 13.2V.
The converter efficiency is shown below for \(V_{\text{in}} = 6 \text{V} \) and \(V_{\text{out}} = 13.2 \text{V} \).
3 Output Ripple Voltage

The 13.2V output ripple voltage (AC coupled) is shown in the figure below. The image was taken with the output loaded to 3A. The input voltage is set to 16V. (20mV/DIV, 5μS/DIV)

![Graph 1](image1)

The 13.2V output ripple voltage (AC coupled) is shown in the figure below. The image was taken with the output loaded to 3A. The input voltage is set to 6V. (20mV/DIV, 5μS/DIV)

![Graph 2](image2)
4 Load Transients

The photo below shows the 13.2V output voltage (ac coupled) when the load current is stepped between 1.5A and 3A. Vin = 16V. (500mV/DIV, 1A/DIV, 1mS/DIV)

The photo below shows the 13.2V output voltage (ac coupled) when the load current is stepped between 1.5A and 3A. Vin = 12V. (500mV/DIV, 1A/DIV, 1mS/DIV)
The photo below shows the 13.2V output voltage (ac coupled) when the load current is stepped between 1.5A and 3A. Vin = 6V. (500mV/DIV, 1A/DIV, 1mS/DIV)
5 Switch Node Waveforms

The photo below shows the two switching node voltages for an input voltage of 16V and a 3A load. Blue is the bottom FET (TP7) and Red is the top FET (TP3). (10V/DIV, 2uS/DIV)

The photo below shows the two switching node voltages for an input voltage of 6V and a 3A load. Blue is the bottom FET (TP7) and Red is the top FET (TP3). (10V/DIV, 2uS/DIV)
6 Loop Gain

The plot below shows the loop gain with the input voltage set to 16V and the output set to 1A, 3A, and 5A.

<table>
<thead>
<tr>
<th>Loop Gain (Iout = 5A)</th>
<th>BW: 1.39KHz</th>
<th>PM: 91 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Gain (Iout = 3A)</td>
<td>BW: 1.46KHz</td>
<td>PM: 89 degrees</td>
</tr>
<tr>
<td>Loop Gain (Iout = 1A)</td>
<td>BW: 1.28KHz</td>
<td>PM: 88 degrees</td>
</tr>
</tbody>
</table>
The plot below shows the loop gain with the input voltage set to 12V and the output set to 1A, 3A, and 5A.

<table>
<thead>
<tr>
<th>Loop Gain (Iout = 5A)</th>
<th>BW: 1.06KHz</th>
<th>PM: 93 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Gain (Iout = 3A)</td>
<td>BW: 956Hz</td>
<td>PM: 93 degrees</td>
</tr>
<tr>
<td>Loop Gain (Iout = 1A)</td>
<td>BW: 1.09KHz</td>
<td>PM: 92 degrees</td>
</tr>
</tbody>
</table>
The plot below shows the loop gain with the input voltage set to 6V and the output set to 1A, 3A, and 5A.

- Loop Gain (Iout = 5A)
 BW: 439Hz
 PM: 60 degrees

- Loop Gain (Iout = 3A)
 BW: 522Hz
 PM: 70 degrees

- Loop Gain (Iout = 1A)
 BW: 693Hz
 PM: 80 degrees
7 Photo

The photo below shows the PMP9581 REVC assy.
8 Thermal Image

A thermal image is shown below operating at 12V input and 13.2V@3A output (room temp, no airflow).

A thermal image is shown below operating at 12V input and 13.2V@4A output (room temp, no airflow).
A thermal image is shown below operating at 12V input and 13.2V@5A output (room temp, no airflow).
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI anticipates dangerous failures, monitors failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated