Test Data
For PMP10645
04/22/2015

TEXAS INSTRUMENTS
Contents

1) Overview
2) Power Specification
3) Block Diagram
4) Connector Description
5) Test result
1. Overview

The PMP10645 reference design is designed for SM74101 mosfet driver with a Fly-Buck power supply to drive half bridge. The SM74101 is a tiny 7A mosfet driver which can support 3A source current and 7A sink current. It has a tiny WSON-6 package and an 8-Lead exposed-pad MSOP package. It also provides both inverting and non-inverting inputs to satisfy requirements for inverting and non-inverting gate drive with a single device type. The isolated output Fly-Buck power supply has four outputs to supply the gate driver bias in motor drive or inverter applications. It features the LM5017, 7.5-100V wide Vin, 600mA, Constant On-Time (COT), synchronous buck regulator configured in the Fly-Buck topology. The Fly-Buck converter is a simple, cost effective and compact isolated power solution. The reference board generates two pairs of +8 V and -4.5V outputs each with 100mA current capability. The user can use jumpers to set Unipolar or Bipolar PWM gate driver. The user can also set higher gate voltage by changing the Fly-buck feedback resistor when set the Unipolar PWM gate driver.

2. Power Specification

For gate driver:
- Input: 5V PWM signal
- Output: Unipolar or Bipolar PWM gate driver

For Fly-Buck:
- Vin range: 19V – 30V
- Nominal Vin = 24V
- Quad Isolated Outputs: 2 x (+8V@100mA, -4.5V@100mA)
- Fsw = 350kHz

3. Block Diagram

![Figure 1](image-url)
The Fly-Buck can provide the isolated power supply for the gate diver. We also use the optocoupler and the small delay time tiny gate driver to isolate and drive the pwm signal. Because the optocoupler is inverting logical. So we can set the gate diver inverting logical too to get the right logic.

4. Board Photo

![Board Photo](image)

(a) Top

(b) Bottom

Figure 2

Size: 78x71mm²
4. Connector Description

Figure 3

J1 – is high side and low side PWM signal can provide by the MCU (Micro Controller Unit).

J2 – is optional for the Unipolar or Bipolar PWM high side gate driver.

J3 – is optional for the Unipolar or Bipolar PWM low side gate driver.

Figure 4

If connect the jumper as figure 4(a), user can get the Bipolar PWM gate signal. If connect the jumper as figure 4(b), user can get the Unipolar PWM gate signal.
5. Test result

1) Delay time test: Give a signal at the input of the optocoupler, then test the delay time between the optocoupler and the output signal of SM74101.

![Figure 5](image)

Test Result: The total delay time of the optocoupler and the gate driver is only 30ns when the pwm signal frequency is 20kHz or 300kHz.
2) Source and sink current test: Give a 20kHz PWM signal at the input of the optocoupler, use 1ohm drive resistor and 100nF capacitive load. Check the voltage drop on 1 ohm resistor.

![Figure 6](image)

Figure 6
Test Result: SM74101 can provide 3A source current according to figure 6, the sink current can be higher when use a smaller drive resistor.

3) Rise and fall time test: Give a 300kHz PWM signal at the input of the optocoupler, use 1ohm drive resistor and 2.2nF capacitor load. Check the output signal waveform rise and fall time.

![Figure 7](image)

Figure 7 VCC=8V
Test Result: The rise time is only 15ns, and the fall time only 13ns, almost the same as the datasheet data.

4) Bipolar PWM test: connect the J2 & J3 as the figure 4(a).

Test Result: The board works well when the user set the Bipolar PWM gate signal out.
For Fly-buck:

Ti has many Fly-Buck reference designs, so this test report focuses on the gate driver SM74101. But the LM5017 Fly-Buck design is also a simple, cost effective and compact isolated power solution and it has very good cross regulation and line/load response.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that have specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated