Table of Contents

I. Overview ... 3
II. Power Specification .. 3
III. Reference Board .. 4
IV. Efficiency and Regulation ... 5
V. Thermal ... 6
VI. Conducted EMI .. 7
VII. Power Up ... 10
VIII. Switching Waveforms ... 11
IX. Load Transients ... 13
X. Output Voltage Ripples ... 15
XI. Closed Loop Response .. 17
Appendix: Efficiency and Regulation Test Data .. 19
I. Overview

The PMP10610 is a 12W SEPIC power supply reference design for automotive applications. It takes 12V nominal input voltage, and generates a 12V @ 1A output with 92% peak efficiency. The SEPIC converter topology allows voltage step-up and step-down conversion. The design covers a wide input range of 4.5V to 20V. When using it in the 12V car battery system, the design can operate uninterrupted during vehicle start-stop. The reference design features the LM3481 as the SEPIC controller, and it is available in automotive grade AEC-Q100 Grade 1. The design uses single coupled inductor to achieve compact solution size. The component area of the SEPIC is about 24 x 30 mm (1.2 x 0.95 inch). The reference board is layout-optimized for improved EMI performance, and there is an optional input EMI filter section on the board. The board is tested under the automotive EMC standard, CISPR 25, and its conducted emissions are in compliance with the CISPR 25 Class 5 limits.

II. Power Specification

Input Voltage: 12V nominal, 4.5V – 20V
(Minimum Vin is 5V with the EMI filter)

Output: 12V @ 1A

Total output power: 12W

Switching frequency: 500 kHz
III. Reference Board

The board size is 76 x 76 mm (3 x 3 inch). The SEPIC component area is 24 x 30 mm (1.2 x 0.95 inch).

Figure 1 Reference board top view

Figure 2 Reference board bottom view
IV. Efficiency and Regulation

The efficiency and output regulation was measured without the EMI filter section at different input voltage condition.

![Figure 3 Power efficiency](image)

![Figure 4 Output regulation](image)
V. Thermal

The thermal image was taken at 23°C room temperature, no air flow. The board was operating at 12V input, full load.

![Thermal image from top view](image1.png)

Figure 5 Thermal image from top view

![Thermal image from bottom view](image2.png)

Figure 6 Thermal image from bottom view
VI. Conducted EMI

The conducted emissions were tested under the CISPR 25 standards. The test setup is shown in Figure 7. The input voltage was set at 13V and supplied to the reference board through two CISPR 25 compliant LISNs (Line Impedance Stabilization Networks). The input supply cables was connected to the filter input terminals, IN+ and IN-, and one 12Ω power resistors were soldered on the output terminals of the test board as the 1A load.

The frequency band examined spans from 150 kHz to 108 MHz covering the AM, FM radio bands, VHF band, and TV band specified in the CISPR 25. The scan results (Figure 8, Figure 9,) show the EMI noise using peak detector (yellow) and average detector (blue) in the spectrum analyzer. The limit lines in red are the Class 5 limits for conducted disturbances at different frequency bands specified in the standard, and the peak limits are the higher ones than the average limits. It can be seen that, with the EMI filter, the peak/average noise is lower than the corresponding peak/average limits in the scan results. Therefore, the SEPIC power supply board is in compliance with the CISPR 25 Class 5 conducted emissions standard.
Figure 8 Conducted EMI scan, 150 kHz – 30 MHz, with the EMI filter
Figure 9 Conducted EMI scan, 30 MHz – 108 MHz, with the EMI filter
VII. Power Up

The reference board was tested under no load and full load at 12V input. Ch1 (yellow) is the input voltage, and Ch2 (green) is the output voltage.

Figure 10 Power up into no load at 12V input

Figure 11 Power up into full load at 12V input
VIII. Switching Waveforms

The switch node voltage was measured at the drain terminal of the Q1 FET. Ch1 (yellow) is the switch node voltage.

![Figure 12 Switch node voltage at full load, 12V input](image1)

![Figure 13 Switch node voltage at full load, 4.5V input](image2)
The voltages across the output diode D2 was measured at full load and 20V input, where the diode had the highest voltage pulses. The result shows that the max voltage across the diode is lower than its 40V rating. Ch1 (yellow) shows the voltage across the diode.

Figure 14 Output diode anode (+) to cathode (-) voltage at full load, 20V input
IX. Load Transients

The load transient responses were tested by applying output load steps from 50% to 100% at different input voltages. Ch1 (yellow) is the output voltage in AC mode, and Ch4 (magenta) is the output current.

Figure 15 Output load transient response at 12V input

Figure 16 Output load transient response at 4.5V input
Figure 17 Output load transient response at 20V input
X. Output Voltage Ripples

The output ripples were measured directly at the output capacitors at full load condition. Ch1 (yellow) is the output voltage ripple in AC mode.

Figure 18 Output ripple at full load, 12Vin

Figure 19 Output ripple at full load, 4.5Vin
Figure 20 Output ripple at full load, 20Vin
XI. Closed Loop Response

The closed loop gain was measured by injecting a small AC signal across the 24.9Ohm resistor, R5, in series with the feedback loop. The Bode plots were obtained by using an AP200 network analyzer. The result shows the design has good phase margin for the entire input range.

![Closed loop response at full load, 12Vin](image)

Figure 21 Closed loop response at full load, 12Vin
Figure 22 Closed loop response at full load, 4.5Vin

Figure 23 Closed loop response at full load, 20Vin
Appendix: Efficiency and Regulation Test Data

4.5V input

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vout(V)</th>
<th>Iout(A)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.508</td>
<td>0.004</td>
<td>12.050</td>
<td>0.000</td>
<td>0.0%</td>
</tr>
<tr>
<td>4.502</td>
<td>0.045</td>
<td>12.045</td>
<td>0.010</td>
<td>60.3%</td>
</tr>
<tr>
<td>4.503</td>
<td>0.162</td>
<td>12.038</td>
<td>0.050</td>
<td>83.4%</td>
</tr>
<tr>
<td>4.500</td>
<td>0.312</td>
<td>12.033</td>
<td>0.100</td>
<td>85.9%</td>
</tr>
<tr>
<td>4.504</td>
<td>0.603</td>
<td>12.031</td>
<td>0.200</td>
<td>88.8%</td>
</tr>
<tr>
<td>4.509</td>
<td>1.208</td>
<td>12.028</td>
<td>0.401</td>
<td>88.5%</td>
</tr>
<tr>
<td>4.505</td>
<td>1.859</td>
<td>12.026</td>
<td>0.600</td>
<td>86.2%</td>
</tr>
<tr>
<td>4.502</td>
<td>2.569</td>
<td>12.023</td>
<td>0.801</td>
<td>83.2%</td>
</tr>
<tr>
<td>4.513</td>
<td>3.327</td>
<td>12.020</td>
<td>1.002</td>
<td>80.2%</td>
</tr>
</tbody>
</table>

12V input

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vout(V)</th>
<th>Iout(A)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.010</td>
<td>0.003</td>
<td>12.051</td>
<td>0.000</td>
<td>0.0%</td>
</tr>
<tr>
<td>12.007</td>
<td>0.016</td>
<td>12.050</td>
<td>0.010</td>
<td>63.3%</td>
</tr>
<tr>
<td>11.999</td>
<td>0.069</td>
<td>12.047</td>
<td>0.050</td>
<td>73.0%</td>
</tr>
<tr>
<td>12.000</td>
<td>0.124</td>
<td>12.044</td>
<td>0.100</td>
<td>81.3%</td>
</tr>
<tr>
<td>12.038</td>
<td>0.236</td>
<td>12.038</td>
<td>0.200</td>
<td>84.9%</td>
</tr>
<tr>
<td>12.000</td>
<td>0.451</td>
<td>12.034</td>
<td>0.401</td>
<td>89.2%</td>
</tr>
<tr>
<td>12.001</td>
<td>0.662</td>
<td>12.032</td>
<td>0.600</td>
<td>90.9%</td>
</tr>
<tr>
<td>12.008</td>
<td>0.874</td>
<td>12.031</td>
<td>0.800</td>
<td>91.7%</td>
</tr>
<tr>
<td>12.005</td>
<td>1.090</td>
<td>12.029</td>
<td>1.000</td>
<td>92.0%</td>
</tr>
</tbody>
</table>

20V input

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vout(V)</th>
<th>Iout(A)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.010</td>
<td>0.003</td>
<td>12.052</td>
<td>0.000</td>
<td>0.0%</td>
</tr>
<tr>
<td>20.008</td>
<td>0.010</td>
<td>12.051</td>
<td>0.010</td>
<td>59.0%</td>
</tr>
<tr>
<td>20.004</td>
<td>0.041</td>
<td>12.050</td>
<td>0.050</td>
<td>73.3%</td>
</tr>
<tr>
<td>20.008</td>
<td>0.079</td>
<td>12.048</td>
<td>0.100</td>
<td>76.5%</td>
</tr>
<tr>
<td>19.998</td>
<td>0.143</td>
<td>12.045</td>
<td>0.200</td>
<td>84.3%</td>
</tr>
<tr>
<td>20.028</td>
<td>0.273</td>
<td>12.037</td>
<td>0.401</td>
<td>88.4%</td>
</tr>
<tr>
<td>20.007</td>
<td>0.408</td>
<td>12.034</td>
<td>0.600</td>
<td>88.6%</td>
</tr>
<tr>
<td>20.061</td>
<td>0.533</td>
<td>12.033</td>
<td>0.800</td>
<td>90.0%</td>
</tr>
<tr>
<td>20.041</td>
<td>0.661</td>
<td>12.031</td>
<td>1.000</td>
<td>90.8%</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.**

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. **HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.**

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that have specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated