PMP10449 Test Report
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Specification</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>Test Setup</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>Test Results</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Start-up and Shut-down Behavior</td>
<td>4</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Turn-on and Turn-off from VIN</td>
<td>4</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Turn-on and Turn-off in presence of pre-bias on output</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Voltage ripple and switch-node waveforms</td>
<td>5</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Output Ripple Voltage</td>
<td>5</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Maximum Phase Node Voltage Stress</td>
<td>7</td>
</tr>
<tr>
<td>3.3</td>
<td>Efficiency</td>
<td>7</td>
</tr>
<tr>
<td>3.4</td>
<td>Thermal Stress</td>
<td>8</td>
</tr>
<tr>
<td>3.5</td>
<td>Loop Gain Measurement</td>
<td>8</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Bode plots at VIN = 7.5V and VOUT = 1.5V</td>
<td>8</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Bode plots at VIN = 12V and VOUT = 1.5V</td>
<td>9</td>
</tr>
<tr>
<td>3.6</td>
<td>Load transient response</td>
<td>9</td>
</tr>
<tr>
<td>3.7</td>
<td>Load and Line Regulation</td>
<td>10</td>
</tr>
<tr>
<td>3.8</td>
<td>Short circuit protection and recovery</td>
<td>10</td>
</tr>
</tbody>
</table>
Table of Figures
Figure 1 Test Setup of the TPS53355, PMP10449 REV. A ...4
Figure 2 Start Up, No Load ..5
Figure 3 Shutdown, 25% Load ..5
Figure 4 Prebias Turn-on, 7.5Vin, 1.5Vout ...5
Figure 5 Prebias Turn-on, 12Vin, 1.5Vout ...5
Figure 6 12Vin, 1.5Vout, No Load, Phase and Vout ..6
Figure 7 12Vin, 1.5Vout, 20A, Phase and Vout ..6
Figure 8 12Vin, 1.5Vout, 0A, Phase and Vout ..6
Figure 9 12Vin, 1.5Vout, 20A, Phase and Vout ..6
Figure 10 14Vin, 1.5Vout, 20A, Phase Node ..7
Figure 11 Efficiency vs. Load at different VIN, VO= 1.5V ..7
Figure 12 Thermal image of PMP10449 ...8
Figure 13 Bode plots of Voltage Loop at VIN = 7.5V ...8
Figure 14 Bode plots of Voltage Loop at VIN = 12V ...9
Figure 15 7.5Vin, 1.5Vout, 5A to 10A Load Step ...9
Figure 16 7.5Vin, 1.5Vout, 15A to 20A Load Step ...9
Figure 17 12Vin, 1.5Vout, 5A to 10A Load Step ...10
Figure 18 12Vin, 1.5Vout, 15A to 20A Load Step ..10
Figure 19 Output Regulation with R5 = 20Ω for VOUT = 1.5V ...10
Figure 20 12Vin, Short circuit applied ...11
Figure 21 12Vin, Short circuit released ..11
1.0 Specification

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN, input voltage range</td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>VOUT, output voltage</td>
<td>1.44</td>
<td>1.5</td>
</tr>
<tr>
<td>Iout, output current range</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Fsw, switching frequency</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

2.0 Test Setup

![Test Setup Diagram]

Figure 1 Test Setup of the TPS53355, PMP10449 REV. A.

3.0 Test Results

3.1 Start-up and Shut-down Behavior

3.1.1 Turn-on and Turn-off from VIN

Scope waveform will show:
- Input voltage, 10V/DIV
- Output voltage, 1V/DIV
- Phase Node, 10V/DIV
- Time Scale, 5msec/DIV
Table 1 Start-up and Shutdown Waveforms

<table>
<thead>
<tr>
<th>Figure 2 Start Up, No Load</th>
<th>Figure 3 Shutdown, 25% Load</th>
</tr>
</thead>
</table>

+ Comments:
 * Measured soft-start ramp time is 2.4msec.
 * Converter operates in Discontinuous Current Mode during start up to prevent any reverse current.

3.1.2 Turn-on and Turn-off in presence of pre-bias on output

- Supply is turned on and off via. enable control
- Scope waveform will show:
 - Output voltage, 200mV/DIV
 - Phase node voltage, 10V/DIV
Prebiased output at >1.2V.

Table 2 Prebiased Start-Up Waveforms.

<table>
<thead>
<tr>
<th>Figure 4 Prebias Turn-on, 7.5Vin, 1.5Vout</th>
<th>Figure 5 Prebias Turn-on, 12Vin, 1.5Vout</th>
</tr>
</thead>
</table>

3.2 Voltage ripple and switch-node waveforms

3.2.1 Output Ripple Voltage
- 20MHz bandwidth mode on scope for Vout measurement
- Switch-node measurement was made directly across low-side FET
- Full bandwidth mode on scope for phase node.
- Trigger off of first switch-node and use infinite persistence of scope to show duty-cycle "jitter"
- Scope waveform will show:
 - Output voltage, 10mV/DIV
 - Phase node voltage, 5V/DIV
 - Time scale, 1usec/DIV

Table 3 Voltage Ripple and Switch-node waveforms

<table>
<thead>
<tr>
<th>Voltage Ripple and Switch-node waveforms</th>
<th>Figure 6 12Vin, 1.5Vout, No Load, Phase and Vout</th>
<th>Figure 7 12Vin, 1.5Vout, 20A, Phase and Vout</th>
</tr>
</thead>
</table>

Comments:
- Output peak to peak ripple voltage worst case happens at VIN = 12V and 100% load.
- The maximum ripple voltage measured was 9.81mV, ±0.327% of VOUT.
- Measured maximum phase node jittering is 58nsec.

Table 4 Voltage Ripple with Broadband Noise

<table>
<thead>
<tr>
<th>Voltage Ripple with Broadband Noise</th>
<th>Figure 8 12Vin, 1.5Vout, 0A, Phase and Vout</th>
<th>Figure 9 12Vin, 1.5Vout, 20A, Phase and Vout</th>
</tr>
</thead>
</table>

Comments:
- Output peak to peak ripple voltage worst case happens at VIN = 12V and 100% load.
- The maximum ripple voltage including white noise measured was 9.97mV. White noise contributes to output ripple by 0.16mV, 1.7% of the switching ripple.
3.2.2 Maximum Phase Node Voltage Stress

Test Conditions:
- **Inductor**: XAL1010-681ME 0.68uH
- **Fsw**: 400KHz
- **Snubber**: 1000pF + 0.6Ω
- **Bootstrap circuit**: Rboot = 3.0Ω, Cboot = 0.22uF, 0402, X5R

![Figure 10 14Vin, 1.5Vout, 20A, Phase Node](image)

Comments:
- TPS53355 Phase Pin Absolute Maximum Rating 27V, <20nsec
- Measured Maximum Phase Pin Voltage Stress at VIN = 14V is 21V, which is below 21.6V, 80% of the Absolute Maximum Rating.

3.3 Efficiency

VIN is measured at P16 and VOUT is measured at P1. Power dissipation of PCB traces is not included.

![Efficiency vs. Load -- VO = 1.5V](image)

Figure 11 Efficiency vs. Load at different VIN, VO= 1.5V.
3.4 Thermal Stress

Test Conditions:
- VIN = 12V, IOUT = 20A
- No forced airflow
- Room temperature

![Thermal image of PMP10449](image)

Figure 12 Thermal image of PMP10449

Comments:
- Board size: 1.5" X 1.8"
- Power solution size is 0.59" by 0.82"
- No direct contact between solution and top/bottom copper

3.5 Loop Gain Measurement

Compensation components Used for 1.2V output:
- TMAR11 = 12.4KΩ, TMAC10 = 22nF, TMAC9 = 820pF
- TMAR1 = 10KΩ, TMAR2 = 15KΩ and TMAR3 = 549 KΩ.

3.5.1 Bode plots at VIN = 7.5V and VOUT = 1.5V

![Bode plots](image)

Figure 13 Bode plots of Voltage Loop at VIN = 7.5V.

Comments:
- Control Bandwidth is from 60 KHz to 70 KHz.
- Phase margin is greater than 75 degree and gain margin is greater than 10dB.
3.5.2 Bode plots at VIN = 12V and VOUT = 1.5V

![Bode plots](image)

Figure 14 Bode plots of Voltage Loop at VIN = 12V.

Comments:
- Control Bandwidth is from 60 KHz to 80 KHz.
- Phase margin is greater than 75 degree and gain margin is greater than 10dB.

3.6 Load transient response

- Load step amplitude is 5A with di/dt = 5A/usec
- Scope waveform will show:
 - Output voltage, 10mV/DIV (AC coupling)
 - Transient current, 2.5A/DIV, 2.5A/100mV
 - Time scale, 20usec/DIV

Table 5 Load Transient Response for 1.5V output with 25% Load Step

![Scope waveform](image)

Figure 15 7.5Vin, 1.5Vout, 5A to 10A Load Step

Figure 16 7.5Vin, 1.5Vout, 15A to 20A Load Step
Comments:
- Worst case undershoot is 23mV, 1.5%
- Worst case overshoot is 27.1mV, 1.8%

3.7 Load and Line Regulation
TMAR12 and TMAC11 are for remote sensing noise filtering and loop gain measurement. When remote sensing is in place, it is recommended to set TMAR12 = 200Ω and TMAC11 = 0.22uF. Connect Vsen to remote sensing point through a 20Ω resistor.

LOAD, LINE Regulation

![LOAD, LINE Regulation graph]

3.8 Short circuit protection and recovery
- Scope waveform will show:
 - Output voltage, 1V/DIV
 - Output current, 10A/DIV
 - Phase node, 10V/DIV
 - Time Scale, 20msec/DIV
Table 6 Short circuit protection entry and recovery, VOUT = 1.5V

Comments:
- Typical overcurrent DC limit is set at 30.3A. Measured OC limit is 29.8A.
- Hiccup interval is 39msec.
- Current stress during hiccup is reduced to 10.6Arms.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.