

TIDA-00617 Class 4 High-Efficiency Driven Flyback Converter (5V/5A) for PoE PD Applications

1 Introduction

TIDA-00617 is a Class 4 high efficiency driven flyback converter capable of 5V/5A for PoE PD applications. It is IEEE802.3.at compliant.

2 Configurable features

2.1 Features

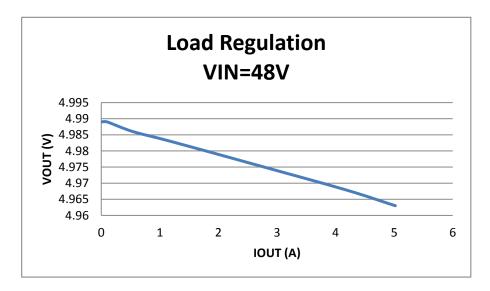
- Excellent efficiency, driven, synchronous flyback design.
- Gigabit Ethernet pass through interface
- 24V and 48V adapter input capability
- 5V @ 5A DC output

2.2 Applications

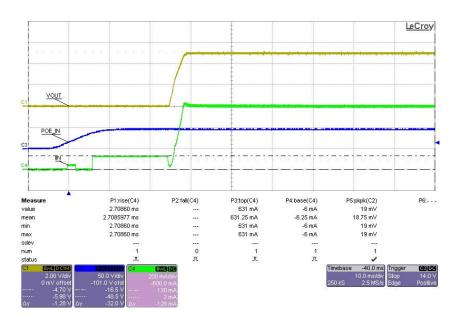
- IEEE802.3at compliant devices
- Video and VoIP Telephones
- Multiband Access Points
- Security Cameras
- Pico-base stations

3 Electrical specifications

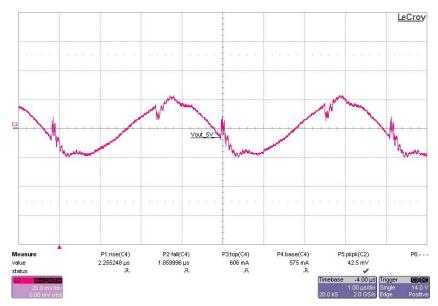
TIDA-00617 Electrical and Performance Specifications


Parameter		Conditi	Min	Тур	Max	Units	
Power Interface							
Input Voltage		Applied to the powe	42.5	-	57		
		Applied to the powe	21.6		57		
Operating Voltage		After start up.	30.5	-	57	Volts	
		Rising input voltage	-	-	40		
Input UVLO		Falling input voltag	е	30.5	-	-	
Detection voltage				1.4	-	10.1	
Classification volta	ge			11.9	-	23.0	
Classification curre	ent	Rclass = 63.4 ohm	S	38	-	42	mA
Inrush current-limit				100	-	180	
Operating current-limit			850	-	1200	L	
DC/DC Converter							
Output Voltage	21.6V ≤ Vin ≤ 57V, ILOAD ≤ ILOAD (max)		5V output	-	4.98	-	Volts
Output Current	21.6V ≤ Vin ≤ 57V		5V output	-	-	5	Amps
Output ripple voltage, pk-to-pk	Vin = 48V, ILOAD = 5A		5V output	-	40	-	mV
Efficiency, dc-dc converter	Vin = 48V, ILOAD = 4.2A		5V output	-	93	-	%
Efficiency, end- to-end	Vin = 48V, ILOAD = 5A		5V output	-	90	-	%
Switching frequency				225	-	270	kHz

Efficiency VIN=48V 100% 90% 80% 70% Efficiency (%) 60% 50% Converter 40% PoE 30% 20% 10% 0% 0 1 2 3 4 5 6 IOUT (A)

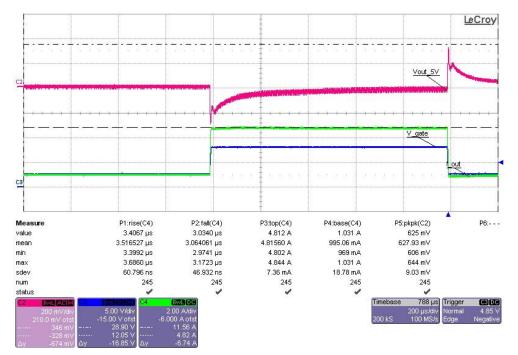

4 Efficiency

5 Load Regulation

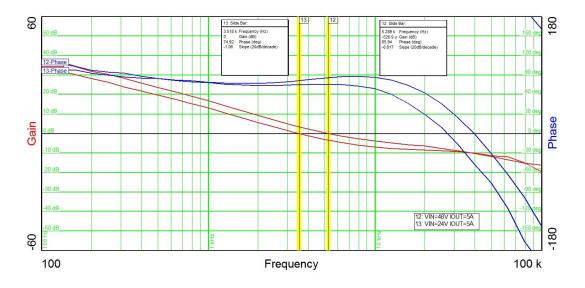

6 Start up

The scope plot below shows the 5V output voltage startup waveform after the application of 48Vdc at J1 (Ethernet connector). The output was loaded to 5A using an electronic load in CR mode.

7 Output Ripple Voltage


The 5V output ripple voltage is shown in the scope plot below (J6 connector across pins w/tip and ring). The scope plot was taken with the output loaded to 5A.Vin = 48Vdc at J1.

8 Load Transient

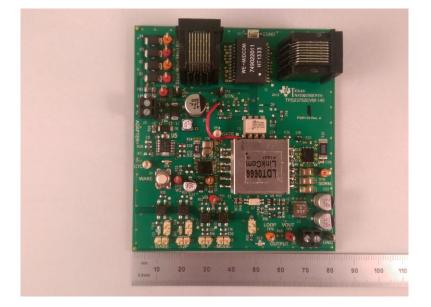

The scope plot below shows the 5V output voltage when the load current is pulsed from 0.6 to 4.8A at a 1A/us slew rate. Vin = 48Vdc at J1.

9 Control Loop Gain / Stability

The figure below shows the closed loop response at 48V input and a 5A load.

The table below shows the loop gain and phase margin.

Input voltage	Crossover	Phase Margin
48V	5.3kHz	86°
24V	3.5kHz	75°



10 Thermal

The image below shows the board with a 48VDC input. The ambient temperature was 27C with no forced air flow. The output was loaded with 5A

11 Board Image

12 Sifos Test Report

The table below shows the results of the Sifos Technologies PoE Powered Device Analyzer using a 1A load.

PDA-300 TEST RESULTS			802.3at PD Test Report			
March 25 201	5 4:27 PM		Sifos Technologies		firmware ver.	3.32
Test Cycles					hardware ver.	2
Quadrants Tested					report version	3.06
PD Tested						0.00
	Test	Cycle	Low	P/F	High	P/F
Parameters Test Cycles:	1	UNITS	Limit		Limit	
ALT-A, MDI Unpowered PD						
R_detect=	24.74	Kohm	23.70	Pass	26.30	Pass
C_detect=	0.112	uF	0.050	Pass	0.120	Pass
I_Class=	39.4	mA	36.0	Pass	44.0	Pass
Class=	4	****	0	Pass	4	Pass
Type=	2	****	1	Pass	2	Pass
V_on=	38.9	Volts	30.0	Pass	42.0	Pass
V_off=	32.3	Volts	30.0	Pass	42.5	Pass
Inrush_E=	0.114	W-s	0.000	Pass	0.350	Pass
ALT-A, MDI Type-1 Grant						
Pclass_PD_1=	0.94	Watts	0.00	Pass	13.00	Pass
Ppeak_PD_1=	0.96	Watts	0.00	Pass	14.40	Pass
Max_Load_1=	20.1	mA	10.0	Pass	300.0	Pass
MPS_Load_1=	19.4	mA	10.0	Pass	270.8	Pass
Average_Load_1=	19.6	mA	2.3	Pass	270.8	Pass
ALT-A, MDI Type-2 Grant						
I_Mark=	0.9	mA	0.3	Pass	4.0	Pass
Pclass_PD_2=	1.04	Watts	0.00	Pass	25.50	Pass
Ppeak_PD_2=	1.22	Watts	0.00	Pass	28.30	Pass
P_type-1=	0.12	Watts	0.00	Pass	14.40	Pass
Max_Load_2=	22.5	mA	10.0	Pass	524.1	Pass
MPS_Load_2=	18.8	mA	10.0	Pass	472.2	Pass
Average_Load_2=	19.1	mA	2.3	Pass	472.2	Pass
ALT-A, MDI-X Unpowered PD						
R_detect=	24.74	Kohm	23.70	Pass	26.30	Pass
C_detect=	0.110	uF	0.050	Pass	0.120	Pass
I_Class=	39.5	mA	36.0	Pass	44.0	Pass
Class=	4	****	0	Pass	4	Pass
Туре=	2	****	1	Pass	2	Pass
V_on=	38.9	Volts	30.0	Pass	42.0	Pass

TIDA-00617 UPOE High-Efficiency Flyback Converter (19V/2.3A) for Forced 4-Pair PoE PD Applications

l lyba			v/z.SA) for Forced 4			10113
V_off=	32.3	Volts	30.0	Pass	42.5	Pass
Inrush_E=	0.114	W-s	0.000	Pass	0.350	Pass
ALT-A, MDI-X Type-1 Grant						
Pclass_PD_1=	0.94	Watts	0.00	Pass	13.00	Pass
Ppeak_PD_1=	0.96	Watts	0.00	Pass	14.40	Pass
Max_Load_1=	20.2	mA	10.0	Pass	300.0	Pass
MPS Load 1=	19.4	mA	10.0	Pass	270.8	Pass
Average Load 1=	19.6	mA	2.3	Pass	270.8	Pass
ALT-A, MDI-X Type-2 Grant						
I Mark=	0.9	mA	0.3	Pass	4.0	Pass
Pclass_PD_2=	1.04	Watts	0.00	Pass	25.50	Pass
Ppeak PD 2=	1.45	Watts	0.00	Pass	28.30	Pass
P type-1=	0.12	Watts	0.00	Pass	14.40	Pass
Max Load 2=	26.7	mA	10.0	Pass	524.1	Pass
MPS Load 2=	18.7	mA	10.0	Pass	472.2	Pass
Average Load 2=	19.1	mA	2.3	Pass	472.2	Pass
ALT-B, MDI Unpowered PD	.0.1		2:0		112.2	
R detect=	24.73	Kohm	23.70	Pass	26.30	Pass
C detect=	0.110	uF	0.050	Pass	0.120	Pass
I Class=	39.5	mA	36.0	Pass	44.0	Pass
Class=	4	****	0	Pass	4	Pass
Type=	2	****	1	Pass	2	Pass
V on=	38.9	Volts	30.0	Pass	42.0	Pass
V off=	32.3	Volts	30.0	Pass	42.5	Pass
	0.114	W-s	0.000	Pass	0.350	Pass
ALT-B, MDI Type-1 Grant	0.114	VV-5	0.000	F 855	0.330	газэ
Pclass PD 1=	0.94	Watts	0.00	Pass	13.00	Pass
Ppeak PD 1=	0.96	Watts	0.00	Pass	14.40	Pass
Max Load 1=	20.0	mA	10.0	Pass	300.0	Pass
MPS Load 1=	19.3	mA	10.0	Pass	270.8	Pass
Average Load 1=	19.5		2.3		270.8	
ALT-B, MDI Type-2 Grant	19.0	mA	2.3	Pass	270.0	Pass
I Mark=	0.9	mA	0.3	Pass	4.0	Pass
Pclass PD 2=					25.50	
	1.04	Watts	0.00	Pass		Pass
Ppeak_PD_2=	1.17	Watts		Pass	28.30 14.40	Pass
P type-1=	0.12	Watts	0.00	Pass		Pass
Max Load 2=	21.6	mA mA	10.0	Pass	524.1	Pass
MPS Load 2=	18.8	mA	10.0	Pass	472.2	Pass
Average_Load_2=	19.1	mA	2.3	Pass	472.2	Pass
ALT-B, MDI-X Unpowered PD	0470		00 70	De	00.00	De
R_detect=	24.78	Kohm	23.70	Pass	26.30	Pass
C_detect=	0.110	uF	0.050	Pass	0.120	Pass
I_Class=	39.4	mA	36.0	Pass	44.0	Pass
Class=	4	****	0	Pass	4	Pass
Type=	2	****	1	Pass	2	Pass
V_on=	38.9	Volts	30.0	Pass	42.0	Pass
V_off=	32.3	Volts	30.0	Pass	42.5	Pass
Inrush_E=	0.114	W-s	0.000	Pass	0.350	Pass

TIDA-00617 Class 4 High-Efficiency Driven Flyback Converter (5V/5A)

ALT-B, MDI-X Type-1 Grant						
Pclass_PD_1=	0.94	Watts	0.00	Pass	13.00	Pass
Ppeak PD 1=	0.96	Watts	0.00	Pass	14.40	Pass
Max Load 1=	20.2	mA	10.0	Pass	300.0	Pass
MPS_Load_1=	19.2	mA	10.0	Pass	270.8	Pass
Average_Load_1=	19.6	mA	2.3	Pass	270.8	Pass
ALT-B, MDI-X Type-2 Grant						
I_Mark=	0.9	mA	0.3	Pass	4.0	Pass
Pclass_PD_2=	1.04	Watts	0.00	Pass	25.50	Pass
Ppeak_PD_2=	1.45	Watts	0.00	Pass	28.30	Pass
P_type-1=	0.12	Watts	0.00	Pass	14.40	Pass
Max_Load_2=	26.6	mA	10.0	Pass	524.1	Pass
MPS_Load_2=	18.8	mA	10.0	Pass	472.2	Pass
Average_Load_2=	19.1	mA	2.3	Pass	472.2	Pass
Average-Over-Pairs Unpowered PD						
R_detect=	24.75	Kohm	23.70	Pass	26.30	Pass
C_detect=	0.111	uF	0.050	Pass	0.120	Pass
I_Class=	39.5	mA	36.0	Pass	44.0	Pass
Class=	4	****	0	Pass	4	Pass
Type=	2	****	1	Pass	2	Pass
V_on=	38.9	Volts	30.0	Pass	42.0	Pass
V_off=	32.3	Volts	30.0	Pass	42.5	Pass
Inrush_E=	0.114	W-s	0.000	Pass	0.350	Pass
Average-Over-Pairs Type-1 Grant						
Pclass_PD_1=	0.94	Watts	0.00	Pass	13.00	Pass
Ppeak_PD_1=	0.96	Watts	0.00	Pass	14.40	Pass
Max_Load_1=	20.1	mA	10.0	Pass	300.0	Pass
MPS_Load_1=	19.3	mA	10.0	Pass	270.8	Pass
Average_Load_1=	19.6	mA	2.3	Pass	270.8	Pass
Average-Over-Pairs Type-2 Grant						
I_Mark=	0.9	mA	0.3	Pass	4.0	Pass
Pclass_PD_2=	1.04	Watts	0.00	Pass	25.50	Pass
Ppeak_PD_2=	1.32	Watts	0.00	Pass	28.30	Pass
P_type-1=	0.12	Watts	0.00	Pass	14.40	Pass
Max_Load_2=	24.4	mA	10.0	Pass	524.1	Pass
MPS_Load_2=	18.8	mA	10.0	Pass	472.2	Pass
Average_Load_2=	19.1	mA	2.3	Pass	472.2	Pass

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have **not** been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated