PMP10654
Test Report

TExAS INstrUMENTS
Table of Contents

I. Overview ... 3

II. Power Specification ... 4

III. Reference Board ... 4

IV. Efficiency ... 6

V. Cross Regulation ... 6

VI. Thermal .. 10

VII. Power Up .. 11

VIII. Switching Waveforms ... 12

IX. Load Transients .. 14

X. Output Voltage Ripples .. 15

XI. Short Circuit Test .. 16
I. Overview

The PMP10654 reference design is a dual output isolated Fly-Buck power module for single IGBT driver bias. It takes 12V nominal input and generates isolated +15V and -9V outputs with 200mA current capability. The two voltage rails are suitable for providing the positive and negative bias to an IGBT gate driver in motor drives for EV/HEV and industrial applications, as shown in Figure 1. The reference board is designed as a power module with a miniature size of 28 x 18 mm (1.1 x 0.7 inch), and its footprint is compatible with the standard DIP package.

The reference design employs the Fly-Buck topology, and uses the LM5160 synchronous buck converter. The Fly-Buck has the advantages of primary side regulation (with no need of opto-coupler feedback) and good cross regulation. In order to achieve the low input voltage operation (down to 8V), the primary side is configured as an inverting buck in the design.

The input voltage range of the design is 8V to 20V. The output regulation is within +/-5% tolerance over line and load variations. The peak efficiency is about 87%. The insulation voltage rating provided by the transformer is 2500VDC/1min.

![Figure 1 The single IGBT gate driver bias supply with PMP10654](image-url)
II. Power Specification

Input Voltage: 12V nominal, 8V – 20V
Output: Isolated +15V, -9V @ 200mA each
Total output power: 4.8W
Switching frequency: 210 kHz

III. Reference Board

The reference board is designed as a power module in standard DIP 22-pin package (100mil pin pitch, 600mil row spacing). The footprint of the board is shown in Figure 2. Note that the pin 7, 8 (VPRI) are the -15.3V primary output voltage of the Fly-Buck, and they are unused in the design. The reference board uses 1oz copper 2-layer PCB, and its dimensions are as follows:

Board size: 28 x 18 mm (1.1 x 0.7 inch).
Total height: 12.5mm when mounted on a PCB
Component height: top side 8.5mm, bottom side 2.5mm

![Figure 2 Reference board footprint](image-url)
Figure 3 Reference board top view

Figure 4 Reference board bottom view

Figure 5 Reference board side view
IV. Efficiency

The efficiency was measured at different input voltages under balanced load, where both outputs were loaded with the same current.

![Figure 6 Power efficiency under balanced load](image)

V. Cross Regulation

The output regulation of the reference design was examined at different input voltage under balanced and unbalanced load condition. The test results show that both outputs were within +/-5% variation under all the input and load conditions.
Under balanced load, the two outputs were loaded with the same output current. Figure 7 and Figure 8 show the output variations under balanced load.

Figure 7 +15V output regulation under balanced load

Figure 8 -9V output regulation under balanced load
The unbalanced load condition was tested by varying the load on one output while fixing the load on the other output. Figure 9 and Figure 10 show the output variations with fixed load on the -9V output, while Figure 11 and Figure 12 show the results with fixed load on the +15V output.

Figure 9 +15V output regulation under unbalanced load, fixed load on -9V output

Figure 10 -9V output regulation under unbalanced load, fixed load on -9V output
Figure 11 +15V output regulation under unbalanced load, fixed load on +15V output

Figure 12 -9V output regulation under unbalanced load, fixed load on +15V output
VI. Thermal

The thermal image was taken at 23°C room temperature, no air flow. The board was operating at 12V input, full load on the two outputs.

Figure 13 Thermal image from top view

Figure 14 Thermal image from bottom view
VII. Power Up

The reference board was tested under no load and full load at 12V input. Ch1 (yellow) is the input voltage, Ch2 (green) is the +15V output voltage, Ch3 (purple) is the -9V output voltage.

Figure 15 Power up into no load at 12V input

Figure 16 Power up into full load at 12V input
VIII. Switching Waveforms

The primary side switch node voltage was measured at no load and full load condition at 12V input. Ch1 (yellow) is the switch node voltage.

![Figure 17 Switch node voltage at no load, 12V input](image1)

![Figure 18 Switch node voltage at full load, 12V input](image2)
On the isolated secondary side, the voltages across the rectifier diodes were measured at full load and 20V input, as the condition represented the worst case for the highest blocking voltage on the diodes. Ch1 (yellow) shows the voltage across the diode.

![Figure 19](image1.png)
Figure 19 +15V output diode anode (+) to cathode (-) voltage at full load, 20V input

![Figure 20](image2.png)
Figure 20 -9V output diode cathode (-) to anode (+) voltage at full load, 20V input
IX. Load Transients

The load transient response was tested by applying 0 to 0.2A load steps from the +15V to -9V as one output. Ch1 (yellow) is the output voltage in AC mode, and Ch4 (magenta) is the output current.

Figure 21 +15V output load transient at 12V input

Figure 22 -9V output load transient at 12V input
X. Output Voltage Ripples

The output ripples were measured directly at the output capacitors. Ch1 (yellow) is the output voltage ripple in AC mode.

![Figure 23 +15V output ripple at 12V input, full load](image)

![Figure 24 -9V output ripple at 12V input, full load](image)
To further reduce the ripple, more capacitors can be added to the output. There is one extra 1210 solder pad available for each output on the bottom of the board.

XI. Short Circuit Test

The short circuit test was conducted by shorting the +15V and -9V output together when the board was operating at full load and 12V input. While in short circuit, the LM5160 IC can protect itself from over current by limiting the on-time of the integrated high side FET. The board can still recover to normal operation once the short circuit condition is released. However, the rectifier diodes on the secondary side will still experience high current pulse in short circuit, and thus have high temperature rise. To prevent damaging the diodes, it is not suggested to have the board undergo the short circuit for too long.

Ch1 (yellow) is the switch node voltage, Ch2 (green) is the +15V output voltage, Ch3 (purple) is the -9V output voltage, and Ch4 (magenta) is the input current.

Figure 25 From full load operation to short circuit at 12V input
Figure 26 Short circuit removed into full load operation at 12V input

Figure 27 Operation in short circuit at 12V input
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated