PHOTO OF THE PROTOTYPE
1 Startup

The output voltage behavior at startup is shown in the images below. The input voltage was set to 90Vac, 60Hz for the fully loaded case and 265Vac, 50Hz for the unloaded one.

Ch.2: Output voltage (2V/div, 10ms/div, 20MHz BWL, DC coupling)
Iout = 1.8A, Vin = 90Vac, 60Hz

Ch.2: Output voltage (2V/div, 10ms/div, 20MHz BWL, DC coupling)
Iout = 0, Vin = 265Vac, 50Hz
2 Optocoupler Fail Simulation

In the pictures shown below, we measured what happen to the output of the converter when the internal light emitter of the optocoupler was shorted, in practice by shorting the pins 1 and 2 of U3. The converter has been supplied at 190Vdc (upper picture) and 375Vdc (bottom one) while the output was unloaded. The converter stopped working (with latch) when the output voltage reached in both cases ~ 13.7V. After waiting a couple of minutes (bulk capacitor discharge) and removing the short on the optocoupler, the converter started to run again.

Ch.4: Output voltage (2V/div, 20ms/div, 20MHz BWL, DC coupling)

\[I_{out} = 0, \text{Vin} = 190\text{Vdc} \]

![Graph showing output voltage for 190Vdc supply](image)

Ch.4: Output voltage (2V/div, 20ms/div, 20MHz BWL, DC coupling)

\[I_{out} = 0, \text{Vin} = 375\text{Vdc} \]

![Graph showing output voltage for 375Vdc supply](image)
3 Efficiency

The efficiency data are shown in the tables and graph below. A digital power meter Yokogawa WT210 has been used and the input AC voltage set to 90V, 120V, 230 and 265V rms.

<table>
<thead>
<tr>
<th>Iout (mA)</th>
<th>Vout (V)</th>
<th>Pout (W)</th>
<th>Pin (W)</th>
<th>Vin (Vac)</th>
<th>Ploss (W)</th>
<th>Eff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.640</td>
<td>0</td>
<td>0.121</td>
<td>90</td>
<td>0.121</td>
<td>0.00</td>
</tr>
<tr>
<td>26.9</td>
<td>10.640</td>
<td>0.286</td>
<td>0.537</td>
<td>90</td>
<td>0.251</td>
<td>53.30</td>
</tr>
<tr>
<td>51.1</td>
<td>10.640</td>
<td>0.544</td>
<td>0.884</td>
<td>90</td>
<td>0.493</td>
<td>61.50</td>
</tr>
<tr>
<td>101.9</td>
<td>10.640</td>
<td>1.084</td>
<td>1.577</td>
<td>90</td>
<td>0.954</td>
<td>81.75</td>
</tr>
<tr>
<td>200.7</td>
<td>10.640</td>
<td>2.135</td>
<td>2.831</td>
<td>90</td>
<td>1.533</td>
<td>84.74</td>
</tr>
<tr>
<td>401.4</td>
<td>10.639</td>
<td>4.270</td>
<td>5.224</td>
<td>90</td>
<td>2.544</td>
<td>85.42</td>
</tr>
<tr>
<td>800.5</td>
<td>10.636</td>
<td>8.514</td>
<td>10.047</td>
<td>90</td>
<td>3.274</td>
<td>85.41</td>
</tr>
<tr>
<td>1402</td>
<td>10.632</td>
<td>14.906</td>
<td>17.45</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1803</td>
<td>10.630</td>
<td>19.166</td>
<td>22.44</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the following table and graph, the RCD network has been replaced with a diode + TVS (and capacitor in parallel) and the “R1= revision 1” of the transformer (which showed slightly lower core losses). An improvement on efficiency values at light load has been observed and measured.
4 Output Voltage Regulation

The output voltage variation as function of load and input voltage is shown below:
5 Output Ripple Voltage

The output ripple voltage is shown in the plots below. The input was set to 90Vac, 60Hz (worst case for output ripple). In the bottom picture also the bulk voltage (C3) is shown.

Ch.2: Output Voltage (20mV/div, 10us/div, AC coupling, 20MHz BWL), Iout = 1.8A

Ch.2: Output Voltage (20mV/div, 5ms/div, AC coupling, 20MHz BWL), Iout = 1.8A
Ch.3: C3 Bulk Voltage (50V/div, DC coupling, 20MHz BWL)
6 Transient Response
The image below shows the transient response on the output voltage when the load has been switched between 50% and 100% of the nominal value, measured at 90Vac.

Ch2: Output Voltage (50mV/div, 2ms/div, AC coupled, 20MHz BWL)
Ch3: Output Current (1A/div, DC coupled, 20MHz BWL)

7 Switching Node Waveform
The image below shows the peak voltage on the drain of the FET Q1 and the drain of Q2 with the converter supplied at 265Vac and full load.
Ch3: Q1 Drain voltage (200V/div, 2us/div, 200MHz BWL)
Ch4: Q2 Drain voltage (50V/div, 200MHz BWL)
8 Stability Analysis

The open loop gain and phase has been measured by supplying the converter @ 115Vac, 60Hz and 230Vac, 50Hz while it was fully loaded. The crossover frequency was 2.44 KHz, the phase margin 62.94deg. and the gain margin 25.2dB. Almost no difference is visible between the measurements at 115Vac and 230vac.
9 EMI measurement

The graph below shows the EMI measurement of the converter connected to an isolation transformer plus an Hameg HM6050-2 LISN. The supply voltage was 230Vac. The converter has been loaded with a passive resistor set to draw 1.8A from the output. The output negative terminal of the converter has been connected to the ground of the LISN.
10 Thermal Analysis

The graph below shows the thermal shot, taken in still air condition; the converter has been placed horizontally on the bench and supplied at 230Vac and fully loaded. The first picture shows the top side of the board, while the second one gives the information about bottom side temperatures.

![Thermal Image](image-url)

Image Info

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background temperature</td>
<td>20.0°C</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>32.3°C</td>
</tr>
<tr>
<td>Image Range</td>
<td>25.5°C to 66.4°C</td>
</tr>
<tr>
<td>Camera Model</td>
<td>Ti40FT</td>
</tr>
<tr>
<td>Camera Manufacturer</td>
<td>Fluke</td>
</tr>
<tr>
<td>Image Time</td>
<td>4/29/2015 5:07:56 PM</td>
</tr>
</tbody>
</table>
Image Info

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Background temperature</td>
<td>20.0°C</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>33.0°C</td>
</tr>
<tr>
<td>Image Range</td>
<td>26.0°C to 57.3°C</td>
</tr>
<tr>
<td>Camera Model</td>
<td>Ti40FT</td>
</tr>
<tr>
<td>Camera Manufacturer</td>
<td>Fluke</td>
</tr>
<tr>
<td>Image Time</td>
<td>4/29/2015 5:09:03 PM</td>
</tr>
</tbody>
</table>
For Feasibility Evaluation Only, in Laboratory/Development Environments. The EVM is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

Certain Instructions. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that have specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated