I. Overview

The PMP9498 Reference Design is a complete automotive input protection solution which features zero-Iq reverse polarity protection, load switch capability, over-voltage protection, and over-current protection. The design utilizes the LM74610 Zero-Iq Smart Diode controller paired with the LM9061 High-Side Protection Controller. Both devices drive external N-channel MOSFETs and are available in automotive grade AEC-Q100 Grade 1.

II. Power Specification

INPUT Voltage: 12 V nominal, 7.7 V – 30 V operating voltage

Maximum DC voltage range: -17 V DC to +40 V DC

Overvoltage Protection (OVP): Activated when INPUT > 30 V, fixed with LM9061

Overcurrent Protection (OCP): Activated when Load > 12 A, adjustable with LM9061 Rthreshold (R1)

III. Simplified Block Diagram

![Figure 1 Simplified Block Diagram]
IV. Schematic

Figure 2 Schematic
V. Reference Board

The board measures 3.29 x 1.95 inch.

Figure 3 Reference board top view

Figure 4 Reference board bottom view
VI. LM74610 Smart Diode Operation

The LM74160 smart diode solution is a floating solution with a charge pump to drive an external N-channel MOSFET. The advantage of this is zero-Iq operation since there is no ground pin. In order to operate and charge the charge pump capacitor (C6), the MOSFET (Q1) must conduct through its body diode at a 1% duty cycle during forward conduction. Then, the MOSFET gate will be driven for 99% duty cycle, during which the current will flow through its $R_{DS(ON)}$. This operation scheme allows for very efficient, diode-like operation, but without the continuous diode voltage drop.

![Graph of Smart Diode Operation during Forward Conduction](image)

Figure 5 Smart Diode Operation during Forward Conduction
VII. Quiescent Current

The quiescent current into INPUT was measured. The board was operating at INPUT = 12 V, load = 15 Ω at the OUTPUT, and EN (TP9) = 0 V. The measurement was in the order of 90 nA.

![Image of measurement equipment showing 0.090 µA]

Figure 6 Quiescent Current when Load Switch is Disabled (EN/TP9 = 0V)

VIII. Reverse Polarity Protection (LM74610)

Automotive systems can be subjected to dynamic reverse voltages, even during operation. When using a MOSFET based solution instead of a diode, the MOSFET gate must be discharged very quickly during this time so that the load is protected from negative voltage. The system should also be able to withstand standing negative DC voltages, for example, when the battery is connected in reverse. The reverse polarity protection is performed by the LM74610 circuit of the reference board.
Dynamic Reverse Input Pulse

A dynamic pulse from 12 V to -12 V was applied at the INPUT. Load = 2 Ω at OUTPUT and EN (TP9) = 5 V. The OUTPUT was measured during the INPUT negative pulse and shows that the load is protected and does not see the negative voltage.

Figure 7 Dynamic Reverse Input Pulse
Standing Reverse DC Voltage

A DC voltage of -17 V was applied at the INPUT. Load = 50 Ω at OUTPUT and EN (TP9) = 0 V. The load was protected from negative voltage and the voltage at OUTPUT was measured at 0 V.

Figure 8 Standing Reverse DC Voltage
IX. Voltage Interruption (LM74610)

During operation, automotive systems may see short interruptions on the input line. During these interruptions, it is sometimes ideal to block reverse current and continue to supply power to the load by capacitors. Reverse current is blocked by the LM74610 circuit of the reference board.

Voltage Interruption

A dynamic pulse from 12 V to 0 V was applied at the INPUT to simulate a short interruption on the input line. Load = 100 Ω at the OUTPUT and EN (TP9) = 5 V. The reverse current is blocked during this time and the output capacitors continue to supply current to the load, keeping the OUTPUT voltage high. This kind of operation is ideal for continuous supply to the load and mimics the behavior of a true diode. By increasing the output capacitors of the reference board, the load voltage can be kept high for a longer period of time.

![Figure 9 Voltage Interruption](image-url)
X. Load Switch Operation (LM9061)

The load switch capability is performed by the LM9061 circuit of the reference board and connects or disconnects the load from the INPUT by driving an external N-Channel MOSFET (Q2).

Power Up

The board is tested with INPUT = 12 V, load = 2 Ω at OUTPUT. The EN test point (TP9) was driven with 5 V to enable the load switch and provide power to the load from the INPUT. The MOSFET Q2 VGS (gate-source voltage) reaches its final steady state value in about 120 μs and the OUTPUT voltage reaches 12 V in about 80 μs, both measured from the time EN is pulled high. The OUTPUT voltage rise rate will vary widely with load and output capacitance.

![Figure 10 Power up with 12 V Input](image)
Power Down

The board is tested with INPUT = 12 V, load = 2 Ω at OUTPUT. The EN test point (TP9) is initially high at 5 V and power is provided to the load from the INPUT. The EN test point is pulled low to 0 V to open the load switch and disconnect power to the load. The MOSFET Q2 VGS falls to 0 V in about 850 μs and the OUTPUT voltage falls to 0 V in about 2 ms, both measured from the time EN is pulled low. The OUTPUT voltage fall rate will vary widely with load and output capacitance.

Figure 11 Power down with 12 V input
XI. Over-Voltage and Over-Current Protection (LM9061)

Over-Voltage Protection (OVP)

The LM9061 contains an internal over-voltage shutoff mechanism with a threshold of about 30 V. The INPUT was ramped above 30 V, and the OUTPUT shuts off during this time. This protection feature is not latched, so the OUTPUT will again be driven when the INPUT returns below 30 V.

![Figure 12 Over-Voltage Protection](image-url)

The OUTPUT falls to 0 V when INPUT > 30 V

The OUTPUT rises when INPUT < 30 V
Over-Current Protection (OCP)

The current threshold is set by the Rthreshold resistor (R1) and can be adjusted by changing the R1 resistor. When changing the current limit, care should be taken to ensure both MOSFET limits are not exceeded, such as SOA and current capability. The LM9061 will disconnect power to the OUTPUT when there is greater than 12 A of current to the load and is detected by sensing the VDS voltage across Q2 and utilizing its R_{DS(on)}. The actual threshold may vary due to variations in R_{DS(on)}. This protection feature is latched, meaning the EN test point (TP9) must be toggled low, then back high to enable power to the load again. The delay of the OCP is set by Cdelay (C9).

![Figure 13 Over-Current Protection](image-url)

The OUTPUT falls to 0 V when OUTPUT CURRENT > 12 A

Figure 13 Over-Current Protection
XII. Thermal Image

The thermal image was taken at 25°C room temperature, no air flow. The board was operating at INPUT = 12 V, load = 10 A, for 5 minutes.

![Thermal Image from top view](image)

Figure 14 Thermal Image from top view

XIII. Summary

This test report presents a design that meets the low Iq requirements for automotive applications and provides a reliable solution for front-end protection for electronic modules in automotive systems. Various protection features were implemented and tested to provide an all-around front-end protection scheme.
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications
- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-apps
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video

Earliest Transportation: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated