Test Data
For PMP10750
09/28/2015
Contents
1. Design Specifications ..3
2. Circuit Description and PCB details ..3
3. PMP10750 Board Photos ..5
4. Thermal Data ..6
5. Efficiency ..8
6. Waveforms ..9
 6.1 Reverse Protection – Smart diode ..9
 6.2 Input Overvoltage Protection – PFET Fault switch ..11
 6.4 Output Voltage Ripple and Switch Node Voltage ..14
 6.5 Load Transient Response ...16
7. Conducted Emissions ..18
1. Design Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin Minimum</td>
<td>4.8VDC</td>
</tr>
<tr>
<td>Vin Maximum</td>
<td>30 VDC (OVP at 20V)</td>
</tr>
<tr>
<td>Vout1</td>
<td>3.3 VDC_Slave</td>
</tr>
<tr>
<td>Iout 1</td>
<td>3A</td>
</tr>
<tr>
<td>Vout2</td>
<td>3.3VDC_Master</td>
</tr>
<tr>
<td>Iout 2</td>
<td>3A</td>
</tr>
<tr>
<td>Approximate Switching Frequency</td>
<td>2.1MHz Approx (all the DC/DC converters)</td>
</tr>
<tr>
<td>EMI</td>
<td>CISPR25 Class 5</td>
</tr>
<tr>
<td>Protection</td>
<td>Input Overvoltage, Reverse polarity, Short Circuit protections at Outputs, Load Dump protection</td>
</tr>
</tbody>
</table>

2. Circuit Description and PCB details

PMP10750 is a System optimized (CISPR 25 Class 5) 20W design for upstream converter used in ADAS system with all the required automotive protection.

The design has various protections such as Load dump through TVS (ISO pulse testing), Reverse Voltage (Innovative Smart diode with very low Iq), Battery Disconnect Switch with OVP protection (PFET) and is EMI optimized to meet Conductive EMI limits of CISPR25 Class 5.

Input voltage range is between 4.5V to 30V with OVP at 20V and hence will operate in wide input voltage conditions.

LM74610 is used for Battery reverse protection which utilizes a charge pump to drive an N-channel FET to provide a resistive path for the bypass current to flow. LM53603Q1 is used as front end DC/DC Buck converter which is 2.2MHz switching, Synchronous rectified Wide Vin Buck Converter which can take transient up to 42V.
The Board dimension of PMP10750 PCB is 3450mil * 4950mil. Two layer PCB was used for the design.
3. PMP10750 Board Photos

Figure 2: Top of board

Figure 3: Bottom of board
4. Thermal Data

Figure 4: IR thermal image at steady state with 12Vin and both outputs fully loaded
Figure 5: IR thermal image at steady state with 12Vin zoomed on LM3603
5. Efficiency

![Load current vs efficiency with both outputs identically loaded for various input voltages](image)

Figure 6: Load current vs efficiency with both outputs identically loaded for various input voltages
6. Waveforms

6.1 Reverse Protection – Smart diode

Figure 7: Reverse protection using smart diode circuit schematic
Figure 8: Reverse input voltage protection as Vin transitions to -12V while Vin to the IC remains unchanged
6.2 Input Overvoltage Protection – PFET Fault switch

Figure 9: Input overvoltage protection using a PFET fault switch circuit schematic
Figure 10: Transition to overvoltage condition shown on C1 forces the PFET gate shown on C3 high bringing the input voltage to the IC shown on C2 low.
Figure 11: Transition to normal condition shown on C1 forces the PFET gate shown on C3 low allowing the input voltage to the IC shown on C2 to come up
6.4 Output Voltage Ripple and Switch Node Voltage

Figure 12: Switch node voltage and output voltage ripple for the 3.3V_Slave channel of LM53603 with both outputs fully loaded
Figure 13: Switch node voltage and output voltage ripple for the 3.3V_Master channel of LM53603 with both outputs fully loaded.
6.5 Load Transient Response

Figure 14: Load transient response shown on C2 for 3.3V_Slave channel at 6Vin with a 50%-to-100% load step shown on C1 while 3.3V_Master channel is under full load
Figure 15: Load transient response shown on C2 for 3.3V_Slave channel at 12Vin with a 50%-to-100% load step shown on C1 while 3.3V_Master channel is under full load
Figure 16: Load transient response shown on C2 for 3.3V_Slave channel at 18Vin with a 50%-to-100% load step shown on C1 while 3.3V_Master channel is under full load

The load transient response for the other channel (3.3V_Master) is identical to that of the 3.3V_Slave channel shown above.

7. Conducted Emissions

The conducted emissions is tested followed the of CISPR 25 standards. The frequency band examined spans from 150 kHz to 108 MHz covering the AM, FM radio bands, VHF band, and TV band specified in the CISPR 25.

Figure 17 shows the test result using peak detection (yellow trace) and average detection (blue trace) measurements respectively up to 30MHz. Figure 18 shows the test result using peak detection (yellow trace) and average detection (blue trace) measurements respectively from 30MHz to 108MHz. The limit lines shown in red are the Class 5 limits(up 108MHz) for conducted disturbances specified in the CISPR 25. The results show the power supply operates quietly and the noise is below the Class 5 limits overall.
Figure 17: EMI testing for PMP10750 up to 30 MHz showing the peak detection (yellow), average detection (blue), and Class 5 peak and average limits (red)
Figure 18: EMI testing for PMP10750 from 30 MHz to 108MHz showing the peak detection (yellow), average detection (blue), and Class 5 peak and average limits (red)
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE TO THE USER OR ANY THIRD PARTY FOR ANY INFRINGEMENT CLAIM THAT RELATES TO TI REFERENCE DESIGNS OR USER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warning in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.