Test Data
For TIDA00858
11/03/2015
1. Design Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin Maximum</td>
<td>42V AC</td>
</tr>
<tr>
<td>Vout</td>
<td>Rectified Vin</td>
</tr>
<tr>
<td>Max AC Voltage Frequency</td>
<td>300Hz</td>
</tr>
<tr>
<td>Max Iout</td>
<td>100A</td>
</tr>
<tr>
<td>Charge pump Capacitors</td>
<td>0.47uF</td>
</tr>
</tbody>
</table>

2. Circuit Description

TIDA00858 is highly efficient Full Bridge Rectifier TI Design which can be used as an AC/DC rectifier for high power applications. In this full bridge rectifier design all 4 schottky diodes are replaced with the LM74670-Q1 ICs combined with N-Channel MOSFETs. The main features and benefits of this design are as followed:
1. A novel Full Bridge Rectifier approach uses four LM74670-Q1 controller ICs combined with four N-Channel MOSFETs for forward conduction (Figure). This design accepts an AC input voltage up to 45Vin and provides rectified output voltage without forward diode drop.

![Smart Diode Full Bridge Rectifier Application](image)

2. The MOSFETs used in this design can comfortably handle 100A output load current.

3. The LM74670-Q1 has zero IQ and it’s used to drive the NFET gate for forward condition. The forward voltage drop of NFETs is significantly smaller than a diode, therefore this TIDesign provides highly efficient alternative for diode bridge rectifier.
3. TIDA00858 Board Photos

Board Dimensions: 4217mil * 3432mil

Board Photo (Top)

Board Photo (Bottom)
4. AC/DC Rectifier Test Results

4.1 Thermal Data at 10A without heat sinks

IR thermal image taken at steady state with 24V AC Vin and @ 10A load (no airflow)
4.2 Thermal Data at 20A

IR thermal image taken at steady state with 24V AC Vin and @ 20A load (no airflow)
4.3 Waveforms

4.3.1 Rectifier Results with 5A Load Current and no output capacitor

Full Bridge Rectifier Results with 60Hz, 24V Peak to Peak VIN, @ 5A Output Load Current

Full Bridge Rectifier at 60Hz AC Input frequencies
Full Bridge Rectifier Results with **100Hz**, 24V Peak to Peak VIN, @ 5A Output Load Current

100Hz, AC Input

Rectified Output

Full Bridge Rectifier at 100Hz AC Input frequencies
Full Bridge Rectifier Results with **150Hz**, 24V Peak to Peak VIN, @ 5A Output Load Current

150Hz, AC Input

Rectified Output

Full Bridge Rectifier at **150Hz** AC Input frequencies
Full Bridge Rectifier Results with **200Hz**, 24V Peak to Peak VIN, @ 5A Output Load Current

Full Bridge Rectifier at 200Hz AC Input frequencies
Full Bridge Rectifier Results with **250Hz**, 24V Peak to Peak VIN, @ 5A Output Load Current

Full Bridge Rectifier at **250Hz** AC Input frequencies
Full Bridge Rectifier Results with 300Hz, 24V Peak to Peak VIN, @ 5A Output Load Current

Full Bridge Rectifier at 300Hz AC Input frequencies
4.3.2 Rectifier Results with 10A Load Current and no output capacitor

Full Bridge Rectifier Results with 60Hz, 24V Peak to Peak VIN, @ 10A Output Load Current

Full Bridge Rectifier at 60Hz AC Input frequencies
Full Bridge Rectifier Results with 100Hz, 24V Peak to Peak VIN, @ 10A Output Load Current

Full Bridge Rectifier at 100Hz AC Input frequencies
Full Bridge Rectifier Results with 150Hz, 24V Peak to Peak VIN, @ 10A Output Load Current

Full Bridge Rectifier at 150Hz AC Input frequencies
Full Bridge Rectifier Results with **200Hz**, 24V Peak to Peak VIN, @ 10A Output Load Current

200Hz, AC Input

Rectified Output

Full Bridge Rectifier at 200Hz AC Input frequencies
Full Bridge Rectifier Results with 300Hz, 24V Peak to Peak VIN, @ 10A Output Load Current

Full Bridge Rectifier at 300Hz AC Input frequencies
4.3.3 Rectifier Output without Diode Drop

- **AC Input**: Input to the rectifier before rectification.
- **Rectified Output**: Output from the rectifier, showing a smoothed wave without diode drop.

The graph shows the comparison between AC input and rectified output, highlighting the reduction in voltage due to the diode drop effect.
5. Thermal Comparison with Diode Rectifier

Diode Rectifier IR thermal image taken at steady state with 24V AC Vin and @ 10A load (no airflow) without thermal management

LM74670-Q1 Rectifier IR thermal image taken at steady state with 24V AC Vin and @ 10A load (no airflow) without thermal management
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated