Design Overview

A power bank is a portable device that can supply USB power using stored energy in its built-in batteries. This reference design demonstrates a circuit based on the TPS61236 for the USB output port of the power bank. The reference design features a 5V and 2.4A output capability, auto detection of a portable device plug-in, output current sensing and limiting, short circuit protection, temperature protection, and battery voltage indication.

Design Resources

- **PMP9776**
 - All Design files
- **TPS61236**
 - Datasheet
- **MSP430G2332**
 - Datasheet
- **TPS2514**
 - Datasheet

Design Features

- 5V and 2.4A output capability in 95.5% efficiency
- Auto detection when connected to a portable device
- Cable voltage drop compensation.
- Battery voltage indication with four LEDs
- Short circuit protection, temperature limit and protection

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

WEBENCH is a registered trademark of Texas Instruments
Contents

1 Introduction .. 4
2 Operating Principle ... 4
 2.1 Standby mode .. 4
 2.2 Active Mode .. 5
 2.3 Shutdown mode ... 5
 2.4 Mode Transition ... 5
 2.5 LED Indication .. 6
3 Circuit implementation ... 6
 3.1 Boost Converter TPS61236 ... 6
 3.2 Microcontroller MSP430G2332 ... 7
 3.3 USB Charging Port Controller TPS2514A ... 8
4 Test Result .. 9
 4.1 Efficiency .. 9
 4.2 Thermal Performance ... 9
 4.3 Detection and Charge of the Portable Device ... 10
 4.4 Short Circuit Protection ... 11
 4.5 Constant Output Current Operation .. 11
 4.6 Cable Voltage Drop Compensation .. 12
5 Schematic, Bill of Materials and PCB Layout .. 12
 5.1 Schematic .. 12
 5.2 Bill of Materials .. 13
 5.3 PCB Layout ... 14
List of Figure

Figure 1: Block Diagram of the Reference-Design ... 4
Figure 2: Modes Transition Conditions .. 5
Figure 3: Waveform after Connecting an IPAD AIR with the Reference Design 6
Figure 4: Schematic of the TPS61236 ... 7
Figure 5: Schematic of the MSP430G2332 ... 8
Figure 6: Schematic of TPS2514A and USB type-A port .. 8
Figure 7: Efficiency of the Reference Design .. 9
Figure 8: Thermal Performance at 2.4 A \(I_{OUT}\) .. 10
Figure 9: Connection with Portable Device .. 10
Figure 10: Short Circuit Waveform ... 11
Figure 11: CC Function Operating with IPAD-AIR ... 11
Figure 12: Cable Voltage Drop Compensation ... 12
Figure 13 PMP9776 Schematic .. 12
Figure 14 PMP9776 Top Overlay, Top Layer and Top Paste .. 14
Figure 15 PMP9776 Bottom Overlay and Bottom Layer ... 14

List of Table

Table 1 PMP9776 Bill of Material .. 13
1 Introduction

The Reference-Design (RD) builds a power circuit for the USB output port used in a power bank, which mostly uses lithium-ion battery or lithium-polymer battery for the energy storage. The input voltage range of the RD is 3 V to 4.4V and the output power can up to 5 V and 2.4 A. The features of the reference design are auto-detection of the portable device plug-in, supporting four of the common dedicated charging schemes, short circuit protection, constant output current operation to limit battery temperature, over temperature protection and the battery voltage indication using the LEDs.

2 Operating Principle

The RD's block diagram is shown in Figure 1. In the system, the boost converter TPS61236 converts the battery voltage to regulated 5V for the VBUS; The USB dedicated charging port controller TPS2514A provides the electrical signatures on the data lines D+ and D- based on the charging scheme; And the MCU MSP430G2332 controls the operation mode of the RD.

![Block Diagram of the Reference-Design](image)

Figure 1: Block Diagram of the Reference-Design

The RD has three operating modes depending on the battery and output current condition: standby mode, active mode and shutdown mode.

2.1 Standby mode

The RD has two types of standby modes: Standby mode 1, in which the battery’s open circuit voltage is lower than 3.5 V or ambient temperature is higher than 60°C; Standby mode 2, in which the battery’s open circuit voltage is higher than 3.5 V but TPS61236’s output current is lower than 50 mA (typical).

- **Standby mode 1**: Depending on the material of the battery, this RD decides that there is little energy in the battery when its open circuit voltage is lower than 3.5 V and it stays at standby mode 1. In this mode, the TPS61236, TPS2514A and LED are disabled. The MCU starts ADC (Analog-to-Digital Converter) to detect the battery voltage in every four seconds. The current consumption during the ADC period is approximate 200µA, while the current consumption is approximate 3 µA in the rest period. The ADC period lasts 100ms, so the average input current is approximate 8µA at this condition. The RD also stays at this mode when ambient temperature is higher than 60°C.

- **Standby mode 2**: When the open circuit voltage of the battery is higher than 3.5 V, the boost converter TPS61236 is enabled and output typical 5 V for VBUS. The RD will stay at this mode if the load of VBUS is lower than typical 50mA. The LEDs and TPS2514A are disabled and the MCU enter very low power sleep mode. The VINT in Figure 1 is equal to VBUS, so the USB data lines D+ and D- is short by the NMOSFET. The current consumption in this mode is approximate 22µA.
2.2 **Active Mode**

The RD exits the standby mode 2 and enters active mode when the load of \(V_{BUS} \) is higher than 50 mA (typical). At active mode, the MCU keeps detecting the battery voltage, \(V_{BUS} \), CC pin voltage (refer to the TPS61236 datasheet for the pin function description) and the ambient temperature through the ADC functions; The \(V_{BAT} \) is pulled down to ground by the MCU, so the TPS5214A is powered on and the N-MOSFET between D+ and D-lines is open.

There are three states of active mode depending on the load and the battery condition.

- **Active mode 1**: the RD enters this mode when the battery voltage is higher than 3.5 V and load current of \(V_{BUS} \) is lower than 1.6 A. The \(V_{COM} \) in Figure 1 is in low voltage, and the \(V_{BUS} \) voltage is determined by \(R_1 \), \(R_2 \); the \(V_{CUR} \) is in high voltage to turn on the MOSFET, so the output current limit is determined by \(R_4 \), \(R_5 \).

- **Active mode 2**: the RD enters this mode when the output current is higher than 1.6 A. The \(V_{COM} \) becomes logic high level, which turn on the N-MOSFET and parallels the \(R_3 \) from CC pin of TPS61236. The output current limit of the boost converter decreases to a value determined only by \(R_4 \), which is set to 1 A in the RD. Once entering this mode, the RD does not exit this mode until the portable device is disconnected for more than 4 seconds or the RD is reset by shutdown mode.

- **Active mode 3**: this mode is triggered when ambient temperature (or battery temperature in real application) is higher than 45°C. The \(V_{CUR} \) becomes logic low level and disconnects \(R_5 \) from CC pin of TPS61236. The output current limit of the boost converter decreases to a value determined only by \(R_4 \), which is set to 1 A in the RD. Once entering this mode, the RD does not exit this mode until the portable device is disconnected for more than 4 seconds or the RD is reset by shutdown mode.

2.3 **Shutdown mode**

The RD shuts down if one of the three conditions occurs: the PCB temperature higher than 60°C (or battery temperature in the real application), \(V_{BUS} \) short circuit or battery voltage lower than 3V during active mode. After entering the shutdown mode, the MCU will reset the RD once every 4 seconds. The RD is back to normal operation if all the three faults are removed.

2.4 **Mode Transition**

The transition conditions between the modes are showed in Figure 2, where:

- \(V_{BAT} \) is voltage of the battery detected by the MCU;
- H, L means logic high and logic low respectively;

![Figure 2: Modes Transition Conditions](image-url)
The most important mode transition is between standby mode 2 and active mode 1. When there is no portable device connected with the USB port, the RD operates at standby mode 2. To minimize the power consumption at this mode, the TPS2514A (consume 155µA at 5V power supply) is powered down and the MCU stops operating. An N-MOSFET shorts data lines D+, D- in this mode. Once a portable device is plugged into USB port of the RD, three steps will happen sequentially for the handshaking between the portable device and the RD as shown in Figure 3 (refer to the TPS2514A datasheet for the detail information):

S1. V_{INT} is logic high, so the TPS2514A powers off, D+ and D- is short together. The portable device identifies the USB port as the dedicated charging port and starts to sinks current.

S2. The output current of the TPS61236 changes the INACT from logic high to logic low. The falling edge wakes up the MCU which changes the VINT and EN to logic low to disable the boost converter. The V_{BUS} drop to 1.8V after 400ms delay set by the MCU.

S3. After the 400ms timer expires, the TPS61236 is enabled and V_{BUS} recover to 5V again. The portable device triggers the handshaking process with the RD through D+, D- again. As the TPS2514A is powered on in this time, the device will adapt its D+, D- signal to the voltage compatible with the USB charging protocol of the portable device. The charge current is approximate 2 A after the system is stable.

![Figure 3: Waveform after Connecting an IPAD AIR with the Reference Design](image)

2.5 **LED Indication**

There are four LEDs in the RD to indicate the battery voltage during the active mode. The battery voltage divides into four ranges: 3 V ~ 3.5 V, 3.5 V ~ 3.7 V, 3.7 V ~ 3.9 V and higher than 3.9 V. The MCU detects the battery voltage and turns on one, two, three or four LEDs based the voltage ranges.

3 **Circuit implementation**

3.1 **Boost Converter TPS61236**

The schematic of the TPS61236 is shown in Figure 4.
When \(V_{\text{COM}} \) is logic low level and Q1 is off, the \(V_{\text{BUS}} \) voltage is defined by formula (1), where \(V_{\text{REF}} \) is the reference voltage for the feedback error amplifier.

\[
V_{\text{BUS}} = V_{\text{REF}} \cdot \frac{R_1 + R_6}{R_6} = 5.09V
\]

(1)

When \(V_{\text{COM}} \) is logic high level, the \(V_{\text{BUS}} \) voltage will change to formula (2), of which the voltage is 100mV higher.

\[
V_{\text{BUS}} = V_{\text{REF}} \cdot \frac{R_1 + (R_6 // R_2)}{(R_6 // R_2)} = 5.19V
\]

(2)

The TPS61236 has a CC pin to control the average output current at the value according formula (3), where the \(R_{\text{CC}} \) is the resistor between this pin and GND.

\[
I_{\text{OUT,CC}} = \frac{1.244}{R_{\text{CC}}} \cdot 100000
\]

(3)

When \(V_{\text{CUR}} \) is logic low, the output current limit is 1A; when \(V_{\text{CUR}} \) is logic high, the output current limit is 3.2A. During normally operation, the voltage of the CC is approximately linear with the output current of TPS61236, defined by formula (4). Using this feature, the MCU can detect the output current of the RD.

\[
V_{\text{CC}} = \frac{I_{\text{OUT}} \cdot R_{\text{CC}}}{100000}
\]

(4)

The output current limit tolerant could be \(\pm 20\% \) because of the IC process and temperature. So the maximum output current requirement should be not higher than 2.56 A if the current limit is set to 3.2 A.

The TPS61236 can indicate the load status by the INACT pin. The INACT pin is open drain output pin. It outputs high impedance when the load current is smaller than 50mA (typical), and short to GND when the load current is high. The RD utilizes this function to detect if a portable device is plugged in and wake up the MCU from the low power sleep mode.

The selection principle of the components for other pins can be found in the datasheet of TPS61236 (SLVSCK4).

3.2 Microcontroller MSP430G2332

The schematic of the MSP430G2332 is shown in Figure 5. The TPS78230 is a 500nA ultra-low quiescent current, 3V output LDO for the power of the MCU. Pin 2, 3, 4, 5 of the MCU are used as ADC port to sense the battery voltage, bus voltage of the USB (TPS61236 output voltage), the voltage of the CC pin and the voltage determined by the NTC resistor respectively.
Figure 5: Schematic of the MSP430G2332

Pin 15 of the MCU (P1.7) is used as logic input, and also an interrupt to wake up the MCU from low power mode (Standby Mode 2).

Other pins are used as logic output. Refer to the datasheet of MSP430G2332 for detail description of each pin function.

3.3 USB Charging Port Controller TPS2514A

The schematic for TPS2514A and USB type-A port is shown in Figure 6. Depending on the operating mode, the V_{INT} is pulled up to V_{BUS} or down to ground by the MCU:

- When V_{INT} is pulled up to V_{BUS}, the Q4 is turned off and the TPS2514A is powered off; the Q3 is turned on and D+ and D- are short. The portable device still recognizes the dedicated charging port but the charging current would be not higher than 1.5A.
- When V_{INT} is pulled down to ground, the Q4 is turned on and TPS2514A is powered on; the Q3 turns off and isolates D+ and D-. The TPS2514A integrate an auto-detect feature to adjust its D+ and D- voltage for difference portable devices. (refer to the datasheet for more detail)

Figure 6: Schematic of TPS2514A and USB type-A port

The L2 between GND and the case of type-A port helps to reduce the EMI
4 Test Result

4.1 Efficiency

The efficiency of the reference design is shown in Figure 7. With 3.6V battery voltage, the efficiency of the RD reaches 97% at 1.1A output current, and 95% at 2.4A output current. High efficiency of the RD will help to extend the battery life time and improve the thermal performance of a real product.

Figure 7: Efficiency of the Reference Design

4.2 Thermal Performance

The thermal performance of the RD is shown in Figure 8. The measurement condition of the left image in $V_{IN}=3V$, ambient temperature 25°C, free wind and 2.4A output current, which is the maximum input current of the IPAD. The hottest point is 67.6°C at the boost converter TPS61236. The right image is measured at $V_{IN}=3.6$, in which the hottest point is approximate 10°C lower than 3V input voltage condition because of higher efficiency.
4.3 Detection and Charge of the Portable Device

Figure 9 shows the waveforms of the V_{BUS} voltage and output current, data lines voltage when a portable device is connected to the RD. The left image is with the Galaxy S4 from Samsung and the right image is with the IPhone 5S from Apple. As explaining in Figure 3, the RD disables the boost converter TPS61236 and enables the USB controller TPS2514A after the MCU detects a portable device is attached. Then it enables the boost converter again after 400ms seconds delay. Finally the TPS2514A automatically provides the correct electrical signatures on the data lines and the mobile phones are charged.
4.4 Short Circuit Protection

Figure 10 shows the short circuit waveform of the RD. The V_{BUS} drops down to zero when the short circuit happens. The MCU disables the TPS61236 when detecting this short circuit and tries to restart the TPS61236 in every four seconds. The V_{BUS} voltage will recover to 5V if the short circuit is removed.

![Figure 10: Short Circuit Waveform](image)

4.5 Constant Output Current Operation

The Figure 11 shows the CC pin function of the TPS61236. The MCU continues to detect the temperature of the RD (or the battery in real application) during discharging. It sets the V_{CUR} from logic high to logic low when the temperature is higher than 45ºC, so the TPS61236 limit its output current at 1A which is lower than the discharge current at $V_{\text{BUS}}=5$V condition. As the portable device has a function that decreases its charge current with the V_{BUS} dropping down, the whole system will get into a stable state, at which the V_{BUS} is lower than 5 V and I_{OUT} is equal to the value set by the CC, 1 A.

![Figure 11: CC Function Operating with IPAD-AIR](image)
4.6 Cable Voltage Drop Compensation

The RD increase the V_{BUS} voltage by 100 mV when the output current is higher than 1.6 A to compensate the voltage drop caused by the resistance of the cable. The V_{BUS} voltage recovers to normal value when the I_{OUT} is lower than 1.3 A, as shown in Figure 12.

Figure 12: Cable Voltage Drop Compensation

5 Schematic, Bill of Materials and PCB Layout

5.1 Schematic

Figure 13 shows the whole schematic of the RD.

Figure 13 PMP9776 Schematic
5.2 Bill of Materials

The bill of materials in the reference design is shown in Table 1.

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>PartNumber</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>CAP, CERM, 22µF, 10V, +/-20%, X5R, 0805</td>
<td>MuRata</td>
<td>GRM21BR61A226ME44</td>
<td>4</td>
</tr>
<tr>
<td>C5</td>
<td>CAP, CERM, 10 pF, 50 V, +/-5%, CDG/NP0, 0402</td>
<td>MuRata</td>
<td>GRM1555C1H010J0A01D</td>
<td>1</td>
</tr>
<tr>
<td>C6</td>
<td>CAP, CERM, 0.01 µF, 50 V, +/- 10%, X7R, 0402</td>
<td>MuRata</td>
<td>GRM155R71H103KA88D</td>
<td>1</td>
</tr>
<tr>
<td>C7</td>
<td>CAP, CERM, 0.1 µF, 25 V, +/- 10%, X7R, 0402</td>
<td>MuRata</td>
<td>GRM155R71E104KE14D</td>
<td>1</td>
</tr>
<tr>
<td>C8, C9, C10, C14</td>
<td>CAP, CERM, 1000 pF, 50 V, +/- 10%, X7R, 0402</td>
<td>MuRata</td>
<td>GRM1555R71H0102KA01D</td>
<td>5</td>
</tr>
<tr>
<td>C11, C12, C13, C15, C16</td>
<td>CAP, CERM, 22µF, 10V, X5R, 0805</td>
<td>MuRata</td>
<td>GRM21BR61A226ME44</td>
<td>4</td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>LED, Red, SMD</td>
<td>Avago</td>
<td>HSMC-C190</td>
<td>4</td>
</tr>
<tr>
<td>J1, J2, J3, J4</td>
<td>Terminal, Turret, TH, Double</td>
<td>Keystone</td>
<td>1502-2</td>
<td>4</td>
</tr>
<tr>
<td>J5</td>
<td>Connector, Receptacle, USB Type A, R/A, Bottom Mount TH</td>
<td>Wurth Elektronik</td>
<td>614 104 150 121</td>
<td>1</td>
</tr>
<tr>
<td>J6</td>
<td>Header, 100mil, 2x1, Gold, TH</td>
<td>Samtec</td>
<td>TSW-102-07-G-S</td>
<td>1</td>
</tr>
<tr>
<td>L1</td>
<td>Inductor, Shielded, Metal Composite, 1 µH, 9.4 A, 0.009 ohm, SMD</td>
<td>Toko</td>
<td>FDSD0630-H-TR0M</td>
<td>1</td>
</tr>
<tr>
<td>L2</td>
<td>Ferrite Bead, 1000 ohm @ 100 MHz, 0.2 A, 0603</td>
<td>Wurth Elektronik</td>
<td>74279266A</td>
<td>1</td>
</tr>
<tr>
<td>Q1, Q2, Q3</td>
<td>MOSFET, N/P-CH, 20 V, 0.63 A, SOT-416</td>
<td>Vishay-Siliconix</td>
<td>S1012CR-T1-GE3-ND</td>
<td>3</td>
</tr>
<tr>
<td>Q4</td>
<td>Transistor, PNP, 40 V, 0.2 A, SOT-23</td>
<td>Fairchild Semiconductor</td>
<td>MMBT3906</td>
<td>1</td>
</tr>
<tr>
<td>Q5</td>
<td>Transistor, NPN, 40 V, 0.2 A, SOT-23</td>
<td>Fairchild Semiconductor</td>
<td>MMBT3904</td>
<td>1</td>
</tr>
<tr>
<td>R1</td>
<td>RES, 806 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402806KFKED</td>
<td>1</td>
</tr>
<tr>
<td>R2</td>
<td>RES, 10.0 M, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW040210M0FKED</td>
<td>1</td>
</tr>
<tr>
<td>R3</td>
<td>RES, 56.2 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW040256K2FKED</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>RES, 124 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402124KFKED</td>
<td>1</td>
</tr>
<tr>
<td>R5, R14, R15</td>
<td>RES, 511 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402511KFKED</td>
<td>3</td>
</tr>
<tr>
<td>R6</td>
<td>RES, 261 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402261KFKED</td>
<td>1</td>
</tr>
<tr>
<td>R7</td>
<td>RES, 100, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402100RFKED</td>
<td>1</td>
</tr>
<tr>
<td>R8, R9, R19, R20</td>
<td>RES, 100 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402100KFKED</td>
<td>4</td>
</tr>
<tr>
<td>R10, R12, R16, R17</td>
<td>RES, 1.00 k, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402100KFKED</td>
<td>4</td>
</tr>
<tr>
<td>R11, R13, R18</td>
<td>RES, 2.00 M, 1%, 0.063 W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402220M0FKED</td>
<td>3</td>
</tr>
<tr>
<td>R19</td>
<td>Thermistor NTC, 470k ohm, 5%, 0402</td>
<td>MuRata</td>
<td>NCP155WM474J03RC</td>
<td>1</td>
</tr>
<tr>
<td>U1</td>
<td>7-A Synchronous Boost Converter with Programmable Output Current Limit, R/WL0009A</td>
<td>Texas Instruments</td>
<td>TPS61236RWLR</td>
<td>1</td>
</tr>
<tr>
<td>U2</td>
<td>Single Output LDO, 150 mA, Fixed 3 V Output, 2.2 to 5.5 V Input, with 0.5 uA Quiescent Current, 6-pin SON (DRV), -40 to 125 degC, Green (RoHS & no Sb/Br)</td>
<td>Texas Instruments</td>
<td>TPS78230DRVR</td>
<td>1</td>
</tr>
<tr>
<td>U3</td>
<td>USB Dedicated Charging Port Controller, DBV0006A</td>
<td>Texas Instruments</td>
<td>TPS2514ADBV</td>
<td>1</td>
</tr>
<tr>
<td>U4</td>
<td>16 MHz Mixed Signal Microcontroller with 4 KB Flash, 256 B SRAM and 16 GPIOs, 20-pin SOP (PW), Green (RoHS & no Sb/Br)</td>
<td>Texas Instruments</td>
<td>MSP430G2332IPW20</td>
<td>1</td>
</tr>
</tbody>
</table>
5.3 PCB Layout

Figure 14 and Figure 15 show the layout of the reference design. The output capacitor of the boost converter must be placed closed to the IC. And the copper thick is 2oz to help to improve the efficiency and thermal performance.

Figure 14 PMP9776 Top Overlay, Top Layer and Top Paste

Figure 15 PMP9776 Bottom Overlay and Bottom Layer
Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs. Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. **HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.**

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated