Design Overview

TIDA-00827 is an integrated, sensored BLDC motor controller suitable for low-powered, battery operated, brushless DC motor applications. These applications include camera gimbals, low power fans, and robotics. The TIDA-00827 has an 8 to 35 V operating voltage range to support 3S to 6S LiPo battery supplies. The motor controller is composed of the MSP430G2353 16-bit, ultra-low-power microcontroller and the DRV8313 highly integrated, 2.5 A triple half-bridge driver. The MSP430G2353 utilizes hall sensor commutation feedback to provide the correct drive voltages to the motor through the DRV8313. An onboard potentiometer and push button provide a simple interface to control the motor.

Design Features

- 8 to 35 V operating voltage range
- 2.5 A peak output current capability
- Small form factor: 2.0” x 1.0” (L x W)
- Sensored BLDC motor control through MSP430 microcontroller
- Integrated current limiting comparator
- Integrated undervoltage, overtemperature, and overcurrent protection
- Integrated 3.3 V, 10 mA LDO regulator

Featured Applications

- BLDC gimbals
- Lower power fans
- Robotics

Board Image

![Board Image](image-url)
System Overview

TIDA-00827 is a highly integrated sensored BLDC motor controller that can be used for lower power gimbal and fans applications. It uses two devices, MSP430G2353 and DRV8313, to create the entire system. Standard 100 mil connectors provide connection points for power, motor, sensors, and test signals. An onboard potentiometer and push button can be used to implement functions to control the speed and direction of the motors through the MCU. A general purpose LED can be used to indicate system status, motor speed, or other system indicators.

The MSP430G2353 is a low power, 16-bit microcontroller often used in battery powered applications. The microcontroller is powered by the integrated 3.3 V, 10 mA LDO regulator of the DRV8313. The microcontroller is programmed through a four pin spy-bi-wire connection that can interface directly with an MSP430G2 LaunchPad. Timers A0 and A1 are used to generate the three PWM signals that are required for BLDC motor control. The hall sensor inputs are fed to pins with both digital and analog input capability and a resistor divider provides the value of the main supply voltage to monitor for low or high voltage conditions.

The DRV8313 is a highly integrated, triple half-bridge motor driver that is commonly used for BLDC motor applications. It incorporates three half-bridge gate drivers and MOSFETs, a charge pump for the high-side gate bias, a linear regulator for the low-side gate bias, a 3.3 V, 10 mA linear regulator for the microcontroller, a current limiting comparator, and a suite of power stage protection features. The half-bridge outputs are controlled through the EN and IN pins which allow each output to be low, high, or hi-z. Fault conditions are reported through the nFAULT pin to the microcontroller and the current comparators reports on the nCOMPO pin.
Test Data

This section will provide lab data on several parameters of the reference design.

An important parameter in a motor drive system is the propagation delay from the input to the output. Long and mismatched delays can lead to distortion between the inputs and outputs. The blue signal is the input and the yellow signal is the output.

Figure 1: Rising Propagation Delay (328 ns)

Figure 2: Falling Propagation Delay (280 ns)
The slew rate of the outputs is an important factor for efficiency, voltage transients, and output distortion. The blue signal is the input and the yellow signal is the output.

Figure 3: Rising Slew Rate (100 ns)

Figure 4: Falling Slew Rate (258 ns)
Dead time is the period of time between the HS MOSFET switching OFF and the LS MOSFET switching ON or vice versa. It is used to prevent shoot-through currents in the output state. Long dead time has the drawback of reduced efficiency and output distortion. The blue signal is the input and the yellow signal is the output.

Figure 5: Rising Dead Time (74 ns)

Figure 6: Falling Dead Time (196 ns)
The DRV8313 incorporates internal overcurrent protection (OCP) to protect the system in case of an output short circuit or motor overcurrent event. The DRV8313 OCP fires at approximately 5 A, then will disable the outputs and report a fault condition on the nFAULT pin. The blue signal is the input, the purple signal is nFAULT, the yellow signal is the output, and the green signal is the output current.

Figure 7: DRV8313 Overcurrent Protection
The DRV8313 incorporates a 3.3 V, 10 mA LDO regulator to power an external microcontroller. Two important parameters of an LDO supply are the output ripple and dynamic load response. The output ripple is shown with a differential probe (purple). The green signal indicates the LDO output current.

Figure 8: 3.3 V Output Ripple (+/- 10 mV)

Figure 9: 3.3 V Load Response (10 mA Step)
A key parameter of battery powered motor drive system is the efficiency of the power stage. This can be calculated by comparing input power against output power.

The data below is calculated with the DRV8313 running off of 12 V and operating at 50% duty cycle. It is driving a 1 mH, 10 Ω load. Two different switching frequencies were measured and the driver was operating at an output current of ~500 mA.

<table>
<thead>
<tr>
<th>Switching Frequency (kHz)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>93.51</td>
</tr>
<tr>
<td>20</td>
<td>93.26</td>
</tr>
</tbody>
</table>

The efficiency loss will show up as heat dissipated in the system design. Using a thermal imaging camera this effect can be captured at various data points. The image below shows the system driving 0.5 A out of each of the outputs. The DRV8313 is at 47.6°C and the power sense resistor is slightly hotter at 57.7°C. The sense resistor is carrying the sum of the 3 outputs.

![Figure 10: 0.5 A From Each Output](image-url)
The image below shows the system driving 2.0 A from OUT2 only. This simulates a system that only has one phase active at a given time.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“ Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products. TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated