TIDA-00736 Universal Stepper Motor Driver

Design Overview

This design achieves a universal high performance stepper driver which is capable of up to 1/256 micro stepping and 0.5A to 5A, 12V to 36V wide operation range. This solution can ideally work with most bipolar steppers and diversified industrial applications.

Design Resources

- **TIDA-00736** Design Folder
- **DRV8711** Product Folder
- **MSP430G2202** Product Folder
- **TLV70433** Product Folder
- **CSD18531Q5A** Product Folder

Design Features

- Wide and selectable current level from 0.5A to 5A
- Selectable micro-stepping from Full to 1/256
- Wide operation range from 12V to 36V
- Wide adaption to different stepper motors
- Standard ISO industrial inputs interface
- Full protections

Featured Applications

- Factory automation
- Textile industry
- CNC equipment
- Machine tools
- Robots

1. Introduction

This design achieves a universal high performance stepper driver. With the on-board MCU SPI configuration to DRV8711, it achieves up to 1/256 selectable micro-stepping level and 0.5A to 5A selectable peak current level. The supply voltage can be from 12V to 36V. With optimized decay parameters setting, this solution can ideally work with most bipolar steppers and diversified industrial
applications. Optocoupler isolation for inputs signal is included. Also full protections are provided, such as outputs short, over current, and over temperature.

2. Hardware Block Diagram

As shown in figure 1, a low cost MCU MSP430G2202 is used as a dedicated configuration device for DRV8711. The 5V LDO of DRV8711 is fully utilized for the power supply of the MCU and ISO devices. The output MOSFET CSD18531Q5A has very low RDSON down to 4.6 mohm which is able to driving high current with only on-board copper dissipation. An 8-position bit switch is used to change the micro-stepping mode and current level.

![Figure 1. Hardware block diagram](image)

3. Parameters and Settings

To give the best current regulation and driving performance, the parameters of DRV8711 are optimized with lot of tests on most commonly used bipolar steppers. The following parameters are recommended for DRV8711 for most stepper and its applications. For more info about decay mode and settings, we can check the datasheet of DRV8711 and the following application notes.

<table>
<thead>
<tr>
<th>Items</th>
<th>Example Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIME</td>
<td>400ns</td>
<td></td>
</tr>
<tr>
<td>ISGAIN</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MODE</td>
<td>-</td>
<td>Set as needed</td>
</tr>
<tr>
<td>TORQUE</td>
<td>-</td>
<td>Set as needed</td>
</tr>
</tbody>
</table>
The on-board bit switch is configured as below table. ('X' means arbitrary)

<table>
<thead>
<tr>
<th>Bit switch states [BIT7~BIT0]</th>
<th>Micro-Stepping mode</th>
<th>Current level (PEAK, RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx 0000</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>xxxx 0001</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>xxxx 0010</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>xxxx 0011</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>xxxx 0100</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>xxxx 0101</td>
<td>1/32</td>
<td></td>
</tr>
<tr>
<td>xxxx 0110</td>
<td>1/64</td>
<td></td>
</tr>
<tr>
<td>xxxx 0111</td>
<td>1/128</td>
<td></td>
</tr>
<tr>
<td>xxxx 1000</td>
<td>1/256</td>
<td></td>
</tr>
<tr>
<td>0001 xxxx</td>
<td></td>
<td>1.4A, 1.0A</td>
</tr>
<tr>
<td>0010 xxxx</td>
<td></td>
<td>2.1A, 1.5A</td>
</tr>
<tr>
<td>0011 xxxx</td>
<td></td>
<td>2.8A, 2.0A</td>
</tr>
<tr>
<td>0100 xxxx</td>
<td></td>
<td>3.5A, 2.5A</td>
</tr>
<tr>
<td>0101 xxxx</td>
<td></td>
<td>4.2A, 3.0A</td>
</tr>
<tr>
<td>0110 xxxx</td>
<td></td>
<td>4.9A, 3.5A</td>
</tr>
<tr>
<td>0111 xxxx</td>
<td></td>
<td>5.7A, 4.0A</td>
</tr>
</tbody>
</table>

4. Software Flow Chart

Figure 2 shows the basic flow chart of the MSP430G2202. The MCU reads the bit switch status all the time and updates the registers of DRV8711 online when it is changed. In this reference design, the SPI function is achieved by GPIO and running at ~250 kHz clock frequency. So any low cost MCU with basic GPIO functions can finish the task properly.
5. **Lab Test Data**

As shown in the following picture, two different current/power level steppers were used to generate the test waveforms.

Figure 4 to figure 12 shows the phase current waveforms at different micro-stepping mode of motor #1. Figure 13 to figure 21 shows the current waveforms with motor #2. Figure 22 to figure 24 shows the waveforms changing online with the bit switch changing. 24V VM supply is used. (Green: Phase current; yellow: STEP input)
Figure 4. Motor #1 Peak 2A (RMS 1.43A) at Full step

Figure 5. Motor #1 Peak 2A (RMS 1.43A) at Half step
Figure 6. Motor #1 Peak 2A(RMS1.43A) at 1/4 micro-stepping

Figure 7. Motor #1 Peak 2A(RMS1.43A) at 1/8 micro-stepping
Figure 8. Motor #1 Peak 2A(RMS1.43A) at 1/16 micro-stepping

Figure 9. Motor #1 Peak 2A(RMS1.43A) at 1/32 micro-stepping
Figure 10. Motor #1 Peak 2A(RMS1.43A) at 1/64 micro-stepping

Figure 11. Motor #1 Peak 2A(RMS1.43A) at 1/128 micro-stepping
Figure 12. Motor #1 Peak 2A (RMS 1.43A) at 1/256 micro-stepping

Figure 13. Motor #2 Peak 4.5A (RMS 3.2A) at Full step
Figure 14. Motor #2 Peak 4.5A(RMS3.2A) at Half step

Figure 15. Motor #2 Peak 4.5A(RMS3.2A) at 1/4 micro-stepping
Figure 16. Motor #2 Peak 4.5A (RMS 3.2A) at 1/8 micro-stepping

Figure 17. Motor #2 Peak 4.5A (RMS 3.2A) at 1/16 micro-stepping
Figure 18. Motor #2 Peak 4.5A (RMS 3.2A) at 1/32 micro-stepping

Figure 19. Motor #2 Peak 4.5A (RMS 3.2A) at 1/64 micro-stepping
Figure 20. Motor #2 Peak 4.5A (RMS 3.2A) at 1/128 micro-stepping

Figure 21. Motor #2 Peak 4.5A (RMS 3.2A) at 1/256 micro-stepping
Figure 22. Motor #2 online change from Full to 1/16 micro-stepping

Figure 23. Motor #2 online change from 1/16 to 1/128 micro-stepping
Figure 24. Motor #2 online current level changing
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated