TI Designs

DDR ECC Reference Design to Improve Memory Reliability in 66AK2G02-Based Systems

TI Designs

This reference design describes system considerations for Dual Data Rate (DDR) memory interface with Error Correcting Code (ECC) support in high-reliability applications, based on the 66AK2G02 Multicore DSP + ARM® System-on-Chip (SoC). System interfaces, board hardware, software, throughput performance, and diagnostic procedures, are discussed. Detailed description about the DDR interface is available in the device Technical Reference Manual (TRM).

Design Resources

<table>
<thead>
<tr>
<th>Design Folder</th>
<th>Product Folder</th>
<th>EVM Tool Folder</th>
<th>Download Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIDEP0070</td>
<td>66AK2G02</td>
<td>K2G General Purpose EVM</td>
<td>Processor SDK for K2G</td>
</tr>
</tbody>
</table>

Design Features

- 32-bit DDR3L Interface With Optional 4-bit ECC for High-Reliability System Designs
- Flexible System Configurations With DDR ECC
- Built-In Read-Modify-Write (RMW) Hardware Supporting ECC Operation With Non-Aligned Access
- Minimum Performance Impact
- Implemented and tested on EVMK2G Hardware and Supported in Processor SDK for K2G

Featured Applications

- Automotive Audio Amplifiers
- Home Audio
- Professional Audio
- Power Protection
- Industrial Communications and Controls

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

KeyStone is a trademark of Texas Instruments. ARM is a registered trademark of ARM Limited. Linux is a registered trademark of Linus Torvalds.
1 Introduction

The 66AK2G02 supports the following features:

- **Processor Cores and Memory**
 - ARM® Cortex A15 at 600 MHz
 - 32 KB L1D, 32 KB L1P, 512 KB L2 cache
 - C66x DSP at 600 MHz
 - 32 KB L1D, 32 KB L1P, 1 MB L2
 - ECC on all memory

- **Industrial and Control Peripherals**
 - 2 Industrial Communication Subsystems enable cut through, real-time and low-latency Industrial Ethernet protocols
 - Programmable real-time I/O enables versatile field bus and control interfaces
 - PCIe for connection to an FPGA or ASIC that provides industrial network connections, backplane communication or connection to another 66AK2G02 device

- **Security and Crypto**
 - Standard secure boot with customer programmable OTP keys
 - Crypto

- **Package**
 - 21 x 21 mm^2 0.8 mm pitch BGA 625 pins

The 66AK2G02 is suited for applications such as Industrial PLC and Protection Relay as shown in Figure 1 and Figure 2. In these systems ECC on the memory is required for achieving reliability requirements. Device reliability requires managing failures that can cause the device not to function correctly at any point during its expected lifetime.
Error Correcting Code (ECC) memory is commonly used in server and communications infrastructure systems today and has significantly improved system reliability. In embedded systems, a similar trend is observed, where ECC memory is required for a variety of applications, such as:

- Safety-critical industrial and factory automation systems
- Harsh operating environment such as extreme temperature, pressure or radiation environment
- Always-on systems with extended duty hours
Figure 3 shows the relative failure rate reduction when ECC is used.

Figure 3. Memory Failure Rate Reduction With ECC

The 66AK2G02 device supports various methods of ECC in its internal memory and external memory interfaces. Namely, ECC is supported on:

- Processor core memory blocks
- Internal Multicore Shared Memory Controller (MSMC) SRAM
- Embedded SRAM memory blocks in other subsystems
- DDR3L memory interface

Except for the L1P in the A15 processor core, all ECC functions listed above implement Single Error Correction and Double Error Detection (SECDED) method using Hamming Code.

This design guide focuses on the DDR interface design with ECC in systems where high reliability is required. The DDR3L memory interface supports standard 32-bit DDR3L interface up to 800MT/s. Additional 4-bit data is available to support optional Error Correcting Code (ECC). ECC is performed on 32-bit quanta based on the SECDED algorithm. When the DDREMIF is used as 16-bit interface, no ECC is supported.
2 System Overview

The DDR3L interface consists of the following subsystems:

- DDREMIF controller — digital interface, FIFOs, and ECC module
- DDR3LPHY — consists of DDR3L PHY macros and system interface logic

Figure 4 shows the interconnect of the sub-modules in the 66AK2G02.

![Figure 4. DDREMIF and DDR3L PHY Subsystems in 66AK2G Devices](image-url)
The ECC block is connected in front of the data and command FIFOs within the DDREMIF controller, as shown in Figure 5. The ECC block enables the Read-Modify-Write (RMW) feature that is not available in some earlier KeyStone™ II devices. The RMW block allows data write that is not aligned to a 32-bit boundary, by first read, the full quanta data from the DDR device merges with the non-aligned data, recalculates ECC, and writes back to DDR. This procedure incurs extra write latency.

Figure 5. ECC Block With RMW in DDREMIF Controller
Table 1 lists different DDR configurations depending on the required DDR interface for the device.

NOTE: The 4-bit devices are not supported unless the device is used as an ECC device.

Table 1. DDR Configurations for 66AK2G-Based Systems

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>DDR WIDTH</th>
<th>DDR DEVICES</th>
<th>ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16-bit DDR3L with no ECC</td>
<td>2 x 8b</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>16-bit DDR3L with no ECC</td>
<td>1 x 16b</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>32-bit DDR3L with no ECC</td>
<td>4 x 8b</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>32-bit DDR3L with no ECC</td>
<td>2 x 16b</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>32-bit DDR3L with 4-bit ECC</td>
<td>4 x 8b</td>
<td>1 x 4b</td>
</tr>
<tr>
<td>6</td>
<td>32-bit DDR3L with 4-bit ECC</td>
<td>4 x 8b</td>
<td>1 x 8b (tie-off upper 4-bit)</td>
</tr>
<tr>
<td>7</td>
<td>32-bit DDR3L with 4-bit ECC</td>
<td>2 x 16b</td>
<td>1 x 4b</td>
</tr>
<tr>
<td>8</td>
<td>32-bit DDR3L with 4-bit ECC</td>
<td>2 x 16b</td>
<td>1x8b (tie-off upper 4-bit)</td>
</tr>
<tr>
<td>9</td>
<td>No DDR</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure 6 shows an example system interconnection between 66AK2G and five 8-bit external devices.
Figure 7 shows the DDR3L device placement on the 66AK2G device EVMK2G board.

Figure 7. DDR3L Device Placement on the 66AK2G Device EVMK2G Board

Figure 8 shows the DDR devices on the EVMK2G.

Figure 8. DDR Devices on the EVMK2G
4 Software
The processor SDK supports configuration, initialization, and testing on the DDR ECC, for systems using the feature.

4.1 Initialization
ECC and RMW options are controlled by memory mapped registers. Refer to the device datasheet (SPRS932) for the exact register address and assignment. The RMW feature is always enabled whenever ECC is enabled. The following steps are involved to enable ECC:
1. Enable bit[35:32] of the PHY macro (including leveling and training)
2. Enable ECC + RMW
3. Read back control register and verify ECC+RMW is enabled
4. Initialize DDR memory to validate ECC syndrome

NOTE: The entire ECC enabled DDR space must be initialized before any of the ECC memory region is used. Otherwise, due to RMW operations, a non-aligned write operation may invoke the DDREMIF to read back an incorrect ECC syndrome and thus cause ECC error.

Figure 9 shows an example GEL script to enable ECC.

ddr3A_setup(int ECC_Enable, int DUAL_RANK)
{
... ...
if(ECC_Enable == 0)
{
 read_val = DDR3A_DATX8_4;
 DDR3A_DATX8_4 = read_val & 0xFFFFFFFE; //Disable ECC byte lane
}
... ...
if(ECC_Enable==1)
{
 //Enable ECC
 //0xB0000000: ECC_EN=1, ECC_VERIFY_EN=1, RMW_EN=1
 //0x50000000: ECC_EN=1, ECC_VERIFY_EN=0, RMW_EN=1
 DDR3A_ECC_CTRL = 0xB0000000;
 read_val = DDR3A_ECC_CTRL;
 if(read_val!=0xB0000000){
 GEL_TextOut("\nIncorrect data written to DDR3A_ECC_CTRL..");
 }
}

Figure 9. GEL Script to Enable ECC and RMW

4.2 Verification and Diagnostics
Frequently, it may be required to verify the proper operation of the ECC, especially when the final product is presented to an independent safety compliance assessment body. A simple technique to prove out the proper operation of ECC may be:
1. Enable ECC, write a set of data to DDR. The data could be a combination of aligned and non-aligned bytes.
2. Read and verify these data matched to originals.
3. Disable the ECC by changing the control register.
4. Write a modified data set to the same address, modified means some data has 1 bit errors and some data has 2 or more bits of errors.

5. Reenable ECC.

6. Read back these data and compare with original, verify that single bit error counter increased when accessing single bit modified data, and a kernel panic happened when more than one bit modified data is accessed.

This procedure must be performed to ensure that no other DDR access is present. A real-life random memory bit error may be generated in a laboratory where the device is running under bombardment of high-energy particles such as a high-energy physics accelerator facility.

4.3 ECC Error Handling

Kernels of operating systems typically handle ECC error interrupts. Single-bit errors are automatically corrected when the data is presented to the host, however, data stored in the memory is not corrected. To reduce the probability of another single-bit error from happening in the same quanta block, perform software scrubbing where a scrubbing software performs periodic access to ECC-protected DDR space. When a single-bit error occurs, the scrubbing software first reads, and then writes back the correct data so the memory content is correct. Current K2G Processor SDKLinux® kernel does not perform scrubbing. For a 1-bit ECC error, no direct interrupt will be generated, instead the EMIF can be programmed with a threshold to its ECC Error Count Register. An interrupt will be generated so the host software can re-write memory addresses containing error bits.

The 2-bit ECC will immediately trigger an interrupt to the host, typically causes a kernel panic and subsequently causes a device reset.

4.4 Processor SDK Software Support

Both Linux and RTOS branch of the Processor SDK support initialization, verification and error handing of the ECC. Table II lists sub-modules in each branch related to ECC functions.

ECC and RMW are enabled by default in both Processor SDK Linux and Processor SDK TI-RTOS to match to K2G Gp-EVM hardware. But can be disabled if not required by customer systems.

Table 2 lists software support for DDR ECC.

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>DESCRIPTION</th>
<th>PROCSDK-RTOS</th>
<th>PROCSDK-Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enablement / Initialization</td>
<td>Enable data macros, leveling and training</td>
<td>GEL file scripts</td>
<td>u-boot</td>
</tr>
<tr>
<td>Memory Initialization</td>
<td>Initialize memory for correct syndrome</td>
<td>Yes</td>
<td>u-boot</td>
</tr>
<tr>
<td>Kernel Handling – Scrubbing</td>
<td>Frequently scrub memory to correct single-bit errors in memory device</td>
<td>No (user software)</td>
<td>No (user software)</td>
</tr>
<tr>
<td>Kernel Handling – Unrecoverable</td>
<td>Cause kernel panic if double-bit error is encountered</td>
<td>Not supported (user software)</td>
<td>Kernel Panic</td>
</tr>
<tr>
<td>Verification / Diagnostics</td>
<td>Utility or example to verify ECC support</td>
<td>Example code (user software)</td>
<td>Linux Utility (user software)</td>
</tr>
</tbody>
</table>
5 Test Data

For DDR access 8-byte aligned addresses, the ECC is transparently read and verified by the hardware controller. Therefore no impact on latency or memory throughput is expected. Table 3 lists measured block data transfers from the C66 L2 memory to the DDR space, with- and without- ECC enabled in the controller.

Table 3. Throughput Comparison of DDR ECC With and Without ECC Enabled

<table>
<thead>
<tr>
<th>TEST</th>
<th>SOURCE</th>
<th>DESTINATION</th>
<th>ACNT</th>
<th>BCNT</th>
<th>BIT LENGTH</th>
<th>THROUGHPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DSP L2</td>
<td>DDR3L</td>
<td>16384</td>
<td>1</td>
<td>131072</td>
<td>98.27%</td>
</tr>
<tr>
<td>2</td>
<td>DSP L2</td>
<td>DDR3L</td>
<td>32768</td>
<td>1</td>
<td>262144</td>
<td>99.13%</td>
</tr>
<tr>
<td>3</td>
<td>DSP L2</td>
<td>DDR3L</td>
<td>1</td>
<td>32768</td>
<td>262144</td>
<td>99.19%</td>
</tr>
<tr>
<td>5</td>
<td>DSP L2</td>
<td>DDR3L</td>
<td>2</td>
<td>32768</td>
<td>524288</td>
<td>99.59%</td>
</tr>
<tr>
<td>6</td>
<td>DSP L2</td>
<td>DDR3L</td>
<td>4</td>
<td>32768</td>
<td>1048576</td>
<td>99.65%</td>
</tr>
<tr>
<td>7</td>
<td>DSP L2</td>
<td>DDR3L</td>
<td>8</td>
<td>32768</td>
<td>131072</td>
<td>98.27%</td>
</tr>
</tbody>
</table>

In cases where non-aligned write access made to the DDR, the RMW procedure will be performed, where the DDREMIF controller first read the aligned data from the DDR, merge with requested write bytes, re-calculate ECC error correction code, then write to the DDR memory. Latency due to RMW operation is dependent on the background simultaneous access to the DDR, and the DDR command and data FIFO fill levels.

6 Design Files

The design files for the 66AK2G02 General Purpose EVM may be found at http://www.ti.com/tool/TIDEP0068.

7 References

2. Hardware Design Guide for KeyStone II Devices (SPRABV0)
3. DDR3 Design Requirements for KeyStone Devices (SPRABI1)
5. 66AK2G02 Multicore DSP + ARM KeyStone II System-on-Chip (SoC) Technical Reference Manual (SPRUHY8)
About the Author

DR. JIAN WANG is a Chip Architect with the Catalog Processor Group. Dr. Wang joined TI in 2006 as a Video Systems Engineer, working on Davinci family of digital media processors. His recent roles focus on SOC system architecture for machine vision and next-generation industrial applications.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Designer(s)") who are developing systems that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.

TI's provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other information or services does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such reference designs or other items.

TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.

Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer's systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems. Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer's systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions.

Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.

TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TI's standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products. Additional terms may apply to the sale of other types of TI products and services.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated