Automotive Point-of-Load Solution

- Input 6...28V DC
- Outputs
 - LM53602A-Q1/LM536023-Q1 3.3V @ 1.6A
 - LMR23625C-Q1 3.3V @ 1.6A
 - TPS61071-Q1 5.0V @ 250mA
 - TLV71325-Q1 2.5V @ 140mA
 - TLV71310-Q1 1.0V @ 110mA
- Built on PCB PMP11757 Rev. B
1 +3.3V Buck Converter – LM53602A (Adjustable)

All measurements were done with C14 = 10pF and 2x 22uF output capacitance unless otherwise described.

1.1 Switching Node

The switching node is shown in Figure 1.
The input voltage is set to 12.0V with a 1.6A load.

Channel C2: **Switching node**, -1.0V min, 18.7V max
5V/div, 200ns/div

![Figure 1](image-url)
1.2 Transient Response with C14 = 10pF and 2x 22μF output capacitance

The response to a load step at 12.0V input voltage is shown in Figure 2.

Channel C2: **Output voltage**, -48mV undershoot (1.5%), 50mV overshoot (1.5%)
50mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 0.8A to 1.6A and vice versa
1A/div, 1ms/div

![Figure 2](image-url)
1.3 Transient Response with C14 = 33pF and 3x 22uF output capacitance

The response to a load step at 12.0V input voltage is shown in Figure 3.

Channel C2: **Output voltage**, -40mV undershoot (1.2%), 45mV overshoot (1.4%)
50mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 0.8A to 1.6A and vice versa
1A/div, 1ms/div

![Figure 3](image-url)
1.4 **Frequency Response with C14 = 10pF and 2x 22uF output capacitance**

Figure 4 shows the loop response at a load of 1.6A.

6.0V input
- 64 deg phase margin @ crossover frequency of 149 kHz
- -19 db gain margin

12.0V input
- 64 deg phase margin @ crossover frequency of 148 kHz
- -19 db gain margin

28.0V input
- 61 deg phase margin @ crossover frequency of 138 kHz
- -12 dB gain margin
1.5 Frequency Response with C14 = 33pF and 3x 22μF output capacitance

Figure 5 shows the loop response at a load of 1.6A.

6.0V input
- 60 deg phase margin @ crossover frequency of 152 kHz
- -24 db gain margin

12.0V input
- 60 deg phase margin @ crossover frequency of 153 kHz
- -23 db gain margin

28.0V input
- 57 deg phase margin @ crossover frequency of 143 kHz
- -13 dB gain margin

Figure 5
1.6 Efficiency
The efficiency and losses at 6.0V, 12.0V and 28.0V input voltage are shown in Figure 6 and Figure 7.

Figure 6

Figure 7

1.7 Load Regulation

The load regulation is shown in Figure 8.

![Figure 8](image-url)
1.8 Output Voltage Ripple

The output ripple at 1.6A load is shown in Figure 9.
The input voltage is set to 6.0V, 12.0V and 28.0V.

Channel C2: **6.0V input voltage**, 74mV peak-peak (Spikes!)
50mV/div, 200ns/div

Channel C2: **12.0V input voltage**, 85mV peak-peak (Spikes!)
50mV/div, 200ns/div

Channel C2: **28.0V input voltage**, 61mV peak-peak (Spikes!)
50mV/div, 200ns/div

Figure 9
1.9 Startup

The startup at no load on the output is shown in Figure 10.

Channel C1: **12.0V Input voltage**
- 2V/div, 500us/div

Channel C2: **3.3V Output voltage**
- 1V/div, 500us/div
1.10 Shutdown

The shutdown at 1.6A load on the output is shown in Figure 11.

Channel C1: **12.0V Input voltage**
2V/div, 500us/div

Channel C2: **3.3V Output voltage**
1V/div, 500us/div

![Figure 11](image-url)
2 +3.3V Buck Converter – LM536023 (3.3V Fixed)

The transient and frequency response of this device is different, all other measurements (switching node, efficiency etc.) are the same as for LM53602A.

2.1 Transient Response with 2x 22μF output capacitance

The response to a load step at 12.0V input voltage is shown in Figure 12.

Channel C2: **Output voltage**, -38mV undershoot (1.2%), 37mV overshoot (1.1%)

50mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 0.8A to 1.6A and vice versa

1A/div, 1ms/div

![Figure 12](image-url)
2.2 Transient Response with 3x 22uF output capacitance

The response to a load step at 12.0V input voltage is shown in Figure 3.

Channel C2: **Output voltage**, -39mV undershoot (1.2%), 40mV overshoot (1.2%)
50mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 0.8A to 1.6A and vice versa
1A/div, 1ms/div

![Figure 13](image-url)
2.3 Frequency Response with 2x 22uF output capacitance

Figure 14 shows the loop response at a load of 1.6A.

6.0V input
- 59 deg phase margin @ crossover frequency of 91 kHz
- -19 db gain margin

12.0V input
- 58 deg phase margin @ crossover frequency of 92 kHz
- -19 db gain margin

28.0V input
- 55 deg phase margin @ crossover frequency of 87 kHz
- -15 dB gain margin

![Figure 14](image-url)
2.4 Frequency Response with 3x 22μF output capacitance

Figure 15 shows the loop response at a load of 1.6A.

6.0V input
- 66 deg phase margin @ crossover frequency of 62 kHz
- -23 db gain margin

12.0V input
- 65 deg phase margin @ crossover frequency of 63 kHz
- -23 db gain margin

28.0V input
- 64 deg phase margin @ crossover frequency of 60 kHz
- -20 dB gain margin

Figure 15
3 +3.3V Buck Converter – LMR23625C

All measurements were done with C21 = 56pF and 4x 22uF output capacitance unless otherwise described.

3.1 Switching Node

The switching node is shown in Figure 16.
The input voltage is set to 12.0V with a 1.6A load.

Channel C2: **Switching node**, -0.8V min, 12.0V max
5V/div, 200ns/div

![Figure 16](image-url)
3.2 Transient Response with C21 = 22pF and 3x 22uF output capacitance

The response to a load step at 12.0V input voltage is shown in Figure 17.

Channel C2: **Output voltage**, -120mV undershoot (3.6%), 135mV overshoot (4.1%)
100mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 0.8A to 1.6A and vice versa
1A/div, 1ms/div

![Figure 17](image-url)
3.3 Transient Response with C21 = 56pF and 4x 22uF output capacitance

The response to a load step at 12.0V input voltage is shown in Figure 18.

Channel C2: Output voltage, -72mV undershoot (2.2%), 45mV overshoot (2.8%) 100mV/div, 1ms/div, AC coupled

Channel C1: Load current, load step 0.8A to 1.6A and vice versa 1A/div, 1ms/div

Figure 18
3.4 Frequency Response with $C_{21} = 22\text{pF}$ and 3x 22uF output capacitance

Figure 19 shows the loop response at a load of 1.6A.

6.0V input
- 75 deg phase margin @ crossover frequency of 51 kHz
- -14 db gain margin

12.0V input
- 71 deg phase margin @ crossover frequency of 52 kHz
- -14 db gain margin

28.0V input
- 70 deg phase margin @ crossover frequency of 31 kHz
- -16 dB gain margin

![Figure 19](image-url)
3.5 Frequency Response with C21 = 56pF and 4x 22uF output capacitance

Figure 20 shows the loop response at a load of 1.6A.

6.0V input
- 70 deg phase margin @ crossover frequency of 60 kHz
- -14 db gain margin

12.0V input
- 68 deg phase margin @ crossover frequency of 61 kHz
- -14 db gain margin

28.0V input
- 74 deg phase margin @ crossover frequency of 35 kHz
- -16 dB gain margin

Figure 20
3.6 Efficiency

The efficiency and losses at 6.0V, 12.0V and 28.0V input voltage are shown in Figure 21 and Figure 22.

Figure 21

![Efficiency-Graph](image1)

Figure 22

![Losses-Graph](image2)
3.7 Load Regulation

The load regulation is shown in Figure 23.

![Figure 23](image_url)
3.8 Output Voltage Ripple

The output ripple at 1.6A load is shown in Figure 24. The input voltage is set to 6.0V, 12.0V and 28.0V.

Channel C2: **6.0V input voltage**, 16mV peak-peak
20mV/div, 200ns/div

Channel C2: **12.0V input voltage**, 24mV peak-peak
20mV/div, 200ns/div

Channel C2: **28.0V input voltage**, 28mV peak-peak
20mV/div, 200ns/div

![Figure 24](image-url)
3.9 Startup

The startup at no load on the output is shown in Figure 25.

Channel C1: **12.0V Input voltage**
2V/div, 500us/div

Channel C2: **3.3V Output voltage**
1V/div, 500us/div

![Figure 25](image-url)
3.10 Shutdown
The shutdown at 1.6A load on the output is shown in Figure 26.

Channel C1: **12.0V Input voltage**
2V/div, 500us/div

Channel C2: **3.3V Output voltage**
1V/div, 500us/div

![Figure 26](image-url)
4 +5.0V Boost Converter – TPS61071

4.1 Switching Node

The switching node is shown in Figure 27.

The input voltage is set to 3.3V with a 0.25A load.

Channel C2: **Switching node**, -0.02V min, 8.1V max
2V/div, 500ns/div

![Figure 27](image-url)
4.2 Transient Response

The response to a load step at 12.0V input voltage is shown in Figure 28.

Channel C2: **Output voltage**, -79mV undershoot (2.4%), 76mV overshoot (2.3%)
100mV/div, 2ms/div, AC coupled

Channel C1: **Load current**, load step 0.1A to 0.25A and vice versa
100mA/div, 2ms/div

![Figure 28](image-url)
4.3 Frequency Response

Figure 29 shows the loop response at a load of 0.25A.

3.3V input
- 60 deg phase margin @ crossover frequency of 14 kHz
- -14 dB gain margin

![Figure 29](image-url)
4.4 Efficiency

The efficiency and losses at 3.3V input voltage are shown in Figure 21 and Figure 22.

Figure 30

Figure 31
4.5 Load Regulation

The load regulation is shown in Figure 23.
4.6 Output Voltage Ripple

The output ripple at 0.25A load is shown in Figure 33. The input voltage is set to 3.3V.

Channel C2: 3.3V input voltage, 58mV peak-peak (Spikes!)
20mV/div, 1us/div

![Figure 33](image.png)
4.7 Startup

The startup at no load on the output is shown in Figure 34.

Channel C1: **3.3V Input voltage**
2V/div, 500us/div

Channel C2: **5.0V Output voltage**
1V/div, 500us/div

![Figure 34](image)
4.8 Shutdown

The shutdown at 0.25A load on the output is shown in Figure 35.

Channel C1: **3.3V Input voltage**
2V/div, 500us/div

Channel C2: **5.0V Output voltage**
1V/div, 500us/div

![Figure 35](image-url)
5 Thermal Measurement – LM53602A

The thermal image (Figure 36) shows the circuit at an ambient temperature of 21 °C with an input voltage of 12.0V and full power on all rails.

![Thermal Image](image)

Figure 36

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
<th>Emissivity</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>U4</td>
<td>72.9°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
<tr>
<td>U1</td>
<td>55.1°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
<tr>
<td>U3</td>
<td>48.1°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
<tr>
<td>U2</td>
<td>53.9°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
</tbody>
</table>
6 Thermal Measurement – LMR23625C

The thermal image (Figure 37) shows the circuit at an ambient temperature of 21 °C with an input voltage of 12.0V and full power on all rails.

![Figure 37]

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
<th>Emissivity</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>U5</td>
<td>90.5°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
<tr>
<td>U1</td>
<td>61.4°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
<tr>
<td>U3</td>
<td>50.8°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
<tr>
<td>U2</td>
<td>55.9°C</td>
<td>0.95</td>
<td>21.0°C</td>
</tr>
</tbody>
</table>
Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.