
Sub-1 GHz Sensor-to-Cloud Industrial IoT Gateway Demo

Industrial IoT Gateway
(BeagleBone Black,

CC1350 /DXQFK3DG��)

Sub-1 GHz
Network

CC1350 Sensor tags

Internet
Ethernet switch

Internet port

Laptop showing
Cloud application

Logical connectivity with AWS

Physical connectivity via
Ethernet cables

RF connectivity (Sub-1 GHz)

* 7KHUH¶V�D�
logical link to
each node

Cloud application

RF

JTAG

clk

AM335x

Ethernet
PHY Arm®

Cortex®-A8
application processor

Graphics

Power
Management

Micro SD
Card

eMMC
(2 GB)

DDR3L
(512 MB)

USB

DDR eMMC MMC/SD PowerI2C

Display

System
DMA, timers, WDT,
PWM ADC, RTC,

power management

Connectivity
USB with PHY,
Ethernet, SPI,

UART, I2C, McASP,
CAN

PRU-ICSS

JTAG

clk

USB

CC13x0 or CC13x2

Arm®
Cortex®-M

microcontroller

RF Core

Flash/SRAM

Peripherals
I2C, UART, I2S,

GPIO, AES,
µDMA, Timers,
EDT, SSI, RTC,

temp mon

Sensor
controller

ADC, analog
CMP, SPI/I2C

dig, TDC, CCS

DC/DC

BeagleBone Black

/DXQFK3DG��'HYHORSPHQW�.LW

Power
Management

Power

UART

RF
Circuitry

1TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

TI Designs: TIDEP0084
Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things
(IoT) Gateway Reference Design

Description
This reference design demonstrates how to connect
sensors to the cloud over a long-range Sub-1 GHz
wireless network, which is suitable for industrial
settings such as building control and asset tracking.
The design is powered through a TI Sitara™ AM335x
processor and SimpleLink™ ultra-low-power (ULP)
Sub-1 GHz CC13x0 and CC13x2 devices. The
reference design pre-integrates the TI 15.4-Stack, part
of the SimpleLink CC13x0 software development kit
(SDK), which is a part of TI’s SimpleLink MCU
platform, providing a unified software experience
across TI’s low-power wired and wireless MCUs. This
reference design also includes the Linux® Processor
SDK from Texas Instruments™. The TI Design
Network partners with stackArmor to support the cloud
application services for cloud connectivity and
visualization of the sensor node data.

Resources

TIDEP0084 Design Folder
CC1310 Product Folder
CC1350 Product Folder
CC1312R Product Folder
CC1352R Product Folder
AM335x Product Overview

ASK Our E2E Experts

Features
• Large Network-to-Cloud Connectivity Enabling

Long Range, Up to 1 km (Line of Sight)
• IEEE 802.15.4e/g Standards-Based Sub-1 GHz

Solution With TI 15.4-Stack
• Based on Proven Hardware Designs Enabling

Quick Time to Market With Out-of-the-Box, Ready-
to-Use Demonstration Software

• TI's Linux Processor SDK Provides Scalability
Across Multiple Sitara Processors, Such as
AM437x and AM57x

• Supports Star Networks
• Ultra-Low-Power Sensor Nodes

Applications
• Building Security Gateway
• Door and Window Sensor Networks
• HVAC Gateway
• Asset Management and Tracking

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://www.ti.com/tool/tidep0084
http://www.ti.com/product/CC1310
http://www.ti.com/product/CC1350
http://www.ti.com/product/cc1312r
http://www.ti.com/product/cc1352r
http://www.ti.com/lsds/ti/processors/sitara/arm_cortex-a8/am335x/overview.page
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
http://www.ti.com/solution/actuator_driven_blinds_doors_windows
http://www.ti.com/lsds/ti/solution/gateway.page

System Description www.ti.com

2 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

1 System Description
This reference design provides a reference for creating an industrial IoT gateway that is capable of
connecting a network of wireless sensors to an enterprise cloud provider. In this reference design, a long-
range, low-power wireless network, made up of Sub-1 GHz CC13x0 or CC13x2 devices (both families are
supported) that run the TI 15.4-Stack-based application, is connected to the cloud. An online dashboard is
provided that allows the user to visualize the real-time sensor data as well as send actuation commands
from anywhere in the world using an Internet-connected device with a web browser.

This reference design provides a list of required hardware, schematics, and foundational software to
quickly begin your Internet of things (IoT) product development. Amazon Web Services™ (AWS) IoT
service, which is brokered by stackArmor™, was chosen as the default cloud service provider for the
demonstration. The software design, however, is architected to be flexible to enable other cloud service
providers. This document also outlines how to get this design up and running on the cloud platform from
IBM®.

This reference design enables IoT in numerous applications such as building security gateways, door and
window sensor networks, asset management and tracking, and other IoT-enabled home and industrial
automation applications.

The connection between the wireless sensor network and the cloud is made possible by TI’s Sitara
AM335x device on the BeagleBone Black development platform. On one side, the AM335x is connected
to a Sub-1 GHz device acting as the central node in the wireless network, and on the other side, the
device is connected to the cloud using Ethernet or the element14 Wireless Cape. These two connections
allow the AM335x device to act as a gateway to get the sensor messages from the wireless network to the
cloud and also to get the actuation requests from the cloud dashboard sent back to the wireless network.

Due to the long-range and low-power capabilities of the Sub-1 GHz sensors, this reference design is
useful for any type of application that would benefit from distributed sensing. This reference design
provides a blueprint that gives the ability to visualize or actuate tens or hundreds of sensors while only
needing one gateway device, TI’s Sitara AM335x, to be connected to the Internet.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

RF

JTAG

clk

AM335x

Ethernet
PHY Arm®

Cortex®-A8
application processor

Graphics

Power
Management

Micro SD
Card

eMMC
(2 GB)

DDR3L
(512 MB)

USB

DDR eMMC MMC/SD PowerI2C

Display

System
DMA, timers, WDT,
PWM ADC, RTC,

power management

Connectivity
USB with PHY,
Ethernet, SPI,

UART, I2C, McASP,
CAN

PRU-ICSS

JTAG

clk

USB

CC13x0 or CC13x2

Arm®
Cortex®-M

microcontroller

RF Core

Flash/SRAM

Peripherals
I2C, UART, I2S,

GPIO, AES,
µDMA, Timers,
EDT, SSI, RTC,

temp mon

Sensor
controller

ADC, analog
CMP, SPI/I2C

dig, TDC, CCS

DC/DC

BeagleBone Black

/DXQFK3DG��'HYHORSPHQW�.LW

Power
Management

Power

UART

RF
Circuitry

www.ti.com System Overview

3TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

2 System Overview

2.1 Block Diagram

Figure 1. IoT Gateway Reference Design Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Cloud Service

BBB + Processor SDK

IOT Gateway Application (NodeJS)

cloudAdapter

User Interface
Application

MAC Coprocessor Application
CC1310LP

 IOT Cloud Application

CC1310LP
Sensor End

Node

CC13xx
Sensor Tag
Sensor End

Node

appClient

Linux Kernel

TI 15.4-Stack
appServer

Internet
Connection

Socket Interface

Serial Device Level Interface

TI 15.4-Stack
Collector Example

Application

UART Interface

Copyright © 2016, Texas Instruments Incorporated

System Overview www.ti.com

4 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

2.1.1 Software Block Diagram

Figure 2. TI 15.4-Stack Sensor-to-Cloud Reference Design Software Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com System Overview

5TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

The following is a high-level description of each module in the software block diagram:
• User Interface Application: This application presents the network information, device information, and

provides ability to control network behavior to the end user.
• IOT Cloud Application: This application runs on the cloud, which communicates with the IoT gateway

application. The interface of the IoT cloud application with the cloud server is described in
Section 3.1.2.10 and Section 3.1.2.11.

• IoT Gateway Application: This application runs on the BeagleBone Black board. The application
interfaces on one side with the cloud service to enable cloud connectivity and on the other side to the
Linux collector application to interface with the TI 15.4-Stack based network. The interface between the
IoT gateway and the cloud service is described in Section 3.1.2.10.
– cloudAdapter: This application provides the cloud service provider specific functionality and is

described in Section 3.1.2.11. Users can take the current interface, which is designed as an
extensible framework, and quickly modify the interface to add their own functionality for their end
product development.

– appClient: This application interfaces with the Linux collector application over the socket interface
to enable connection with the TI 15.4-Stack network. The interface is described in Section 3.1.2.9.

• TI 15.4-Stack Linux Collector Example Application: This application implements an example
application that starts the network, allows new devices to join the network, configures the joining
devices on how often to report the sensor data, configures how often to poll for buffered messages in
case of non-beacon and frequency-hopping mode of network operation for sleepy network devices,
and tracks connected devices to determine if they are active or inactive on the network. This
determination is achieved by the collector periodically sending tracking request messages and awaiting
corresponding tracking response messages.
– TI 15.4-Stack appServer: The collector application also opens up a socket server to talk to the iot-

gateway application. The interface between the collector application and the iot-gateway application
is described in Section 3.1.2.9.

• MAC CoP Application: The MAC coprocessor application runs on the CC13x0 or CC13x1
LaunchPad™ Development Kit, which provides a UART-based interface from TI 15.4-Stack sensor to
cloud IoT gateway SDK.

• CC13xx LaunchPad Sensor End Node: The sensor example application from TI 15.4-Stack and runs
on the CC13x0 or CC13x2 LaunchPad Development Kit.

• CC1350 SensorTag: The CC1350 SensorTag runs the sensor example application ported from the TI
15.4-Stack out-of-box sensor example applications, which enable support of the CC1350 SensorTag
platform and integrate support for various sensors on the SensorTag platform.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

PRU-ICCS

Industrial
Communication

Subsystem

EtherCAT®,
PROFINET®,

EtherNET/IP®,
and more

Security
AccelerationPac

Crypto

Display

Graphics
AccelerationPac

SGX530

24-bit LCD Controller

Touch Screen
Controller

Connectivity and I/Os

Arm® Cortex®-A8
Processor

Up to 1 GHz

32KB and 32KB L1

256KB L2 w/ECC

64KB RAM

64KB L3 Shared RAM

LPDDR1/DDR2/DDR3/DDR3L

System Services

EDMA JTAG/ETB Timers ×8 WDT RTC 12-bit ADC

EMAC
2-port

w/Switch
10M/100M/1G

w/1588

USB2
OTG
+PHY

×2
SPI ×2

PWM ×3

I2C ×3

GPIO

McASP ×2

UART ×6

NAND/NOR
(16-bit ECC)

MMC/SD/
SDIO

×3

CAN ×2

eCAP/eQEP
×3

System Overview www.ti.com

6 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

2.2 Highlighted Products
This section highlights key hardware devices and software components used in the reference design.

2.2.1 AM335x
The AM335x processors, based on the Arm® Cortex®-A8 core, are enhanced with image, graphics
processing, peripherals, and industrial interface options, such as EtherCAT® and PROFIBUS®.

These devices support high-level operating systems (HLOS) such as Linux, which is available free of
charge from TI. The AM335x processors contain the subsystems shown in Figure 3. The microprocessor
unit (MPU) subsystem is based on the Arm Cortex-A8 core and the PowerVR SGX™ graphics accelerator
subsystem provides 3-D graphics acceleration to support display and gaming effects.

The PRU-ICSS is separate from the Arm core, which allows independent operation and clocking for
greater efficiency and flexibility. The programmable real-time unit subsystem and industrial communication
subsystem (PRU-ICSS) enables additional peripheral interfaces and real-time protocols such as
EtherCAT, PROFINET®, EtherNet/IP®, PROFIBUS, Ethernet Powerlink®, Sercos®, and others.

Figure 3. AM335x Block Diagram

Additionally, the programmable nature of the PRU-ICSS, along with its access to pins, events, and all
system-on-chip (SoC) resources, provides flexibility in implementing fast, real-time responses, specialized
data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor
cores of the SoC.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

CC13x0 SimpleLinkTM Wireless MCU

Main CPU

128KB
Flash

Sensor Controller

cJTAG

20KB
SRAM

ROM

Arm® Cortex®-M3
Processor

DC/DC Converter

RF Core

Arm® Cortex®-M0
Processor

DSP Modem

4KB
SRAM

ROM

Sensor Controller Engine

2× Comparator

12-bit ADC, 200 ks/s

Constant Current Source

SPI-I2C Digital Sensor IF

2KB SRAM

General Peripherals / Modules

4× 32-bit Timer

2× SSI (SPI, µW, TI)

Watchdog Timer

Temp. / Battery
Monitor

RTC

I2C

UART

 I2S

10 / 15 / 31 GPIOs

AES

32 ch. µDMA

ADC

Digital PLL

TRNG

ADC

8KB
Cache

Time-to-DIgital Converter

www.ti.com System Overview

7TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

2.2.2 SimpleLink™ Ultra-Low-Power CC13x0 or CC13x2
The CC13x0 and C13x2 are members of the CC26xx and CC13xx family of cost-effective, ultra-low-
power, 2.4-GHz and Sub-1 GHz RF devices. Very-low active RF and microcontroller (MCU) current
consumption, in addition to flexible low-power modes, provide excellent battery lifetime and allow long-
range operation on small coin-cell batteries and in energy-harvesting applications.

The CC135x devices in the CC13xx and CC26xx family of cost-effective, ultra-low-power wireless MCUs
are capable of handling both Sub-1 GHz and 2.4 GHz RF frequencies. The CC135x devices combines a
flexible, very-low-power RF transceiver with a powerful 48-MHz Arm® Cortex®-M3 MCU (the CC13x2 has
an even more powerful 48-MHz Arm Cortex-M4F MCU) in a platform supporting multiple physical layers
and RF standards. A dedicated radio controller (Arm® Cortex®-M0) handles low-level RF protocol
commands that are stored in ROM or RAM, thus, ensuring ultra-low power and flexibility to handle both
Sub-1 GHz protocols and 2.4-GHz protocols [for example Bluetooth ® low energy (BLE)]. This enables the
combination of a Sub-1 GHz communication solution that offers the best possible RF range together with
a BLE smartphone connection that enables great user experience through a phone application. The
CC131x is the Sub-1 GHz-only device in this family.

The CC135x devices are highly-integrated, true single-chip solutions that incorporate a complete RF
system and an on-chip DC/DC converter.

Figure 4. CC1350 Block Diagram

Sensors can be handled in a very low-power manner by a dedicated autonomous ultra-low-power MCU
that can be configured to handle analog and digital sensors; thus, the main MCU (Arm Cortex-M3 or the
Arm Cortex-M4F) can maximize sleep time.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

System Overview www.ti.com

8 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

2.2.3 TI 15.4-Stack
TI 15.4-Stack is an IEEE802.15.4e/g-based software stack part of the SimpleLink CC13x0 and CC13x2
SDK supporting a Star network topology for Sub-1 GHz applications. TI 15.4-Stack software runs on TI’s
SimpleLink Sub-1 GHz CC13x0 or CC13x2 wireless MCU. TI 15-4 Stack offers several key benefits such
as longer range in FCC band and better protection against in-band interference by implementing
frequency hopping. The SDK also provides customers an accelerated time to market with a complete end-
to-end, node-to-gateway solution. TI 15.4-Stack is supported on the industry’s lowest-power SimpleLink
Sub-1 GHz wireless MCU platform.

This release is available royalty-free to customers using TI’s CC13x0 or CC13x2 wireless MCU and also
runs on TI’s SimpleLink Sub-1 GHz CC13x0 or CC13x2 wireless MCU LaunchPad development kit.

Features:
• IEEE 802.15.4e/g standards-based solution
• Frequency hopping
• Medium access with CSMA/CA
• Built in acknowledgment and retries
• Network and device management (joining, commissioning, service discovery)
• Security feature through AES-128 encryption and integrity check
• Supported on SimpleLink Sub-1 GHz CC13x0 and CC13x2 wireless MCU
• Star topology: Point-to-point, one-to-many, and data concentrator
• Synchronous (beacon) and asynchronous (non-beacon) modes
• Designed for 915-MHz FCC, 863-MHz ETSI, and 433-MHz China bands
• SimpleLink long range mode for all supported frequency bands
• Support for SimpleLink CC1190
• Bluetooth low energy beacon advertisement support
• Sensor-to-web example application
• Easy application development guided through sample applications showcasing the stack configuration

and APIs
• Coprocessor mode for adding connectivity to any MCU or MPU, with Linux host middleware and

console application

For more details and to get the TI 15.4-Stack software, download the SimpleLink CC13x0 SDK [1], which
includes the TI 15.4-Stack.

2.2.4 TI Processor Linux® SDK for AM335x
The TI processor SDK is a unified software platform for TI embedded processors, which provides easy
setup and fast out-of-the-box access to benchmarks and demonstrations. All releases of the processor
SDK are consistent across TI’s broad portfolio, which allows developers to seamlessly reuse and migrate
software across devices. Developing scalable platform solutions has never been easier with the processor
SDK and TI’s embedded processor solutions.

TI processor Linux SDK highlights:
• Long-term stable (LTS) mainline Linux kernel support
• U-Boot bootloader support
• Linaro GNU compiler collection (GCC) tool chains
• Yocto Project® OE Core compatible file systems

For more details and to get the processor SDK, see AM335x Processor SDK [2].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

9TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3 Hardware, Software, Testing Requirements and Test Results

3.1 Required Hardware and Software
This section provides details on required hardware and software to be able to run the out-of-box TI 15.4-
Stack sensor-to-cloud reference design software application. Developers can then quickly use the out-of-
box application as a framework to develop end products.

3.1.1 Required Hardware
The following hardware is required to get the out-of-box application running and to develop applications:
• A CC13x0 or CC13x2 LaunchPad Development Kit to run the MAC coprocessor application
• One or more CC13x0 or CC13x2 LaunchPad Development Kit or CC1350 SensorTag to run the TI

15.4-Stack sensor application to create one or more Sub-1 GHz network devices
• An AM335x-based BeagleBone Black board
• An 8-GB micro SD card (the TI processor SDK image requires at least 8 GB of space)
• A 5-V power supply for the BeagleBone Black
• An Ethernet cable or Wireless Cape to connect the BeagleBone Black to the Internet
• A means to configure and set up the BeagleBone Black micro SD card (Windows® or Linux machine)
• A PC to host and run the web browser used to view the web application
• A standard Ethernet router required for internet connectivity to the BeagleBone Black and the host

computer or tablet to view the web-application to monitor and control the sensor nodes in the network
• A USB cable to connect the BeagleBone Black with the CC13x0 or CC13x2 LaunchPad

NOTE: The out-of-box application is demonstrated using a USB cable to connect the AM335x-based
BeagleBone Black with the CC13x0 or CC13x2 LaunchPad. The reference design includes
design files for a hardware adapter board that connects the BeagleBone Black with the
CC131x0 or CC13x2 LaunchPad the way an end product should. The adapter board is not
available for purchase but customers can either build their own using the design files
provided, or they can jump straight to their own form factor design using the adapter board
design files as a reference for how to connect the AM335x and CC13x0 or CC13x2 devices
for an end product. When designing an end product, customers must also keep in mind that
certificates must be stored in secure memory; therefore, a trusted platform module (TPM) or
other means of having secure storage must be included in the end-product design.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://www.ti.com/tool/launchxl-cc1310
http://www.ti.com/tool/LAUNCHXL-CC1352R1
http://www.ti.com/tool/cc1350stk
https://beagleboard.org/black
http://elinux.org/Beagleboard:BeagleBone_Black_Accessories#Power_Supplies
https://www.element14.com/community/docs/DOC-79264/l/wireless-connectivity-cape-for-beaglebone-black

CC1310LP running MAC
coprocessor application

USB cable connects
BBB and CC1310/50LP

Micro-SD card
programmed with Processor

SDK Linux for AM335x

BeagleBone Black

Ethernet cable for
internet connectivityCC1350 SensorTag

CC1310LP with optional LCD
BoosterPack

Hardware, Software, Testing Requirements and Test Results www.ti.com

10 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

Figure 5 shows the hardware setup to run the demonstration.

Figure 5. Demonstration Hardware Setup

3.1.2 Required Software
With the required hardware, perform the following steps to replicate the software portion of the
demonstration:
1. Boot the Linux kernel and file system from the Linux Processor SDK on the BeagleBone Black.
2. Copy the provided Sub-1 GHz IoT gateway demonstration reference design software to the

BeagleBone Black.
3. Program a CC13x0 or CC13x2 LaunchPad with the provided MAC coprocessor application.
4. Program the remaining CC13x0 or CC13x2 LaunchPad and CC1350 SensorTags with the provided

sensor application.

The following sections in this chapter detail these instructions. For the purposes of this design guide, it is
assumed that a Windows host machine is being used.

3.1.2.1 BeagleBone Black SD Card
Program the SD card with the Linux processor SDK image using the following steps:
1. Download the prebuilt TI Linux processor SDK SD card image

am335x-evm-linux-xx.xx.xx.xx.img.zip from
http://software-dl.ti.com/processor-sdk-linux/esd/AM335X/latest/index_FDS.html
(where xx.xx.xx.xx is the version number of the latest Linux Processor SDK).

2. To program the micro SD memory card, see the instructions in Processor SDK Linux Creating an SD
Card with Windows [4].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://software-dl.ti.com/processor-sdk-linux/esd/AM335X/latest/index_FDS.html

www.ti.com Hardware, Software, Testing Requirements and Test Results

11TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.2 Booting BeagleBone Black
Boot the BeagleBone Black from the micro SD card using the following steps:
1. Disconnect power and unplug the USB cable from the BeagleBone Black board.
2. Insert the micro SD card into the BeagleBone Black (see Figure 6).
3. Press and hold the boot switch (S2).

• Important: The boot switch is detected only at initial power on.
4. Provide power to the BeagleBone Black (1.5 A, 5 V).
5. Wait a few seconds then release the boot switch. In about 5 to 15 seconds, the LEDs begin to blink.

3.1.2.2.1 Configuring BeagleBone Black With Wireless Connectivity Cape (Wi-Fi® Optional)

A few extra steps must be taken after booting the BeagleBone Black for the first time to enable use of the
element14 Wireless Connectivity Cape.
1. Clone the Sensor To Cloud repository to the BeagleBone Black
2. On the BeagleBone run the setup_beaglebone.sh script. This script will prompt for various setting and

configure the BeagleBone with the correct pins upon reboot. After reboot the BeagleBone broadcasts a
Wi-Fi network (SSID and password are configured using the setup_beaglebone script). This step
requires an active internet connection in order to download and install the required Node.Js
dependencies.

3. For more information on configuring the Wireless Cape can be found at Using the WL18xx Cape with
BeagleBone Black.

NOTE: The first boot from a freshly-formatted SD card takes about one to two minutes longer.
During this extended time, the BeagleBone Black Linux distribution performs some one-time-
only steps.

Figure 6. Boot BeagleBone Black From SD Card

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://processors.wiki.ti.com/index.php/Using_the_WL18xx_Cape_with_BeagleBone_Black
http://processors.wiki.ti.com/index.php/Using_the_WL18xx_Cape_with_BeagleBone_Black

Hardware, Software, Testing Requirements and Test Results www.ti.com

12 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.3 Determining BeagleBone Black Network Address
In order to transfer files to the BeagleBone Black using its network interface, it is necessary to find its
network address (IP address). There are two methods to determine the IP address of the BeagleBone
Black:
• Method 1: Use the FTDI cable to connect through the serial header on the BeagleBone Black, and use

the ifconfig command to determine the IP address allocated to the BeagleBone Black.

• Method 2: Most routers include a built-in web server to configure the device (see Table 1).
– Connect the BeagleBone Black to the router.
– Boot the BeagleBone Black.
– Find the DHCP client page to determine the IP address of the BeagleBone Black. Some examples

follow. The generic name for this feature is the DHCP client table.

NOTE: Troubleshooting—the DHCP IP address is often determined by the order in which the
devices boot. If the user's laptop booted first, it may receive address: xx.xx.xx.100. The
BeagleBone Black boots second and receives the address: xx.xx.xx.101; however, on the
next use or if another device is attached (for example, a cell phone or tablet), the resulting
boot order may change, and therefore, the IP address might change.

Table 1. Commercial Routers

BRAND EXAMPLE LINK
LINKSYS™ http://www.linksys.com/us/support-article?articleNum=139502
NETGEAR® http://documentation.netgear.com/fvs336g/enu/202-10257-01/FVS336G_RM-11-07.html
BELKIN™ http://www.belkin.com/pyramid/AdvancedInfo/F5D8235-4/Advance/reserveIP.htm

3.1.2.4 Get Sub-1 GHz IoT Gateway Demonstration Software
The Sub-1 GHz sensor to cloud Industrial IoT gateway reference design demonstration software is located
on a Git repository found at https://git.ti.com/apps/tidep0084. Clone the repository to the host machine and
copy it over to the BeagleBone Black using secure copy (SCP). It is also possible to clone the repository
directly on the BeagleBone Black.
• On the Windows® host machine:

– cd C:\path\to\desired\clone\directory\
– git clone git://git.ti.com/apps/tidep0084.git tidep0084
– Use WinSCP, Tera Term, or FileZilla® to copy the tidep0084 directory to the BeagleBone Black

using the network address found earlier.

3.1.2.5 Logging in to BeagleBone Black Using Secure Shell (SSH) Protocol
Putty or Tera Term can be used (along with the IP address found in Section 3.1.2.3) to connect to the
BeagleBone Black using SSH. The user name is root, and there is no password. Once connected, the root
user will be logged into the board and the Linux console prompt will appear.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://www.linksys.com/us/support-article?articleNum=139502
http://documentation.netgear.com/fvs336g/enu/202-10257-01/FVS336G_RM-11-07.html
http://www.belkin.com/pyramid/AdvancedInfo/F5D8235-4/Advance/reserveIP.htm
https://git.ti.com/apps/tidep0084

www.ti.com Hardware, Software, Testing Requirements and Test Results

13TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.6 Programming CC13x0 or CC13x2 LaunchPad™ Development Kit
To run the example application users must first program one CC13x0 or CC135x2 LaunchPad
Development Kit with the MAC CoP hex file and the other LaunchPad Development Kits with the sensor
example application hex file. In this design guide, the UniFlash tool running on a Windows machine is
used. Developers can also use the Serial Flash Programmer tool, described in the CC13x0 SimpleLink TI
15.4-Stack 2.x.x Linux Developer’s Guide [5] to program the desired hex image onto the CC13x0 or
CC13x2 LaunchPad Development Kit.

NOTE: It is easy to confuse the sensor and CoP devices. Be sure to label the devices as they are
programmed.

To program the LaunchPad Development Kit or SensorTag, follow these steps:
1. Download and install the UniFlash Standalone Flash Tool for TI MCUs, Sitara™ Processors, and

SimpleLink™ Devices.
2. Program CC13x0 or CC13x2 LaunchPad 1 – this device runs the CoP example application.

a. Label this device collector. The LCD BoosterPack Plug-in Module is not supported in the CoP
application.

b. If using the CC13x0LP as MAC coprocessor: From a Windows PC, use UniFlash to program a
CC13x0 LaunchPad MAC CoP with the coprocessor_cc13x0_lp.hex file located here:
{demo software clone directory}/firmware/CC13x0_LAUNCHXL/coprocessor_cc13x0_lp.hex

c. If using the CC13x2LP as MAC coprocessor: From a Windows PC, use UniFlash to program a
CC13x2 LaunchPad MAC CoP with the coprocessor_cc13x2_lp.hex file located here:
{demo software clone directory}/firmware/CC13x2_LAUNCHXL/coprocessor_cc13x2_lp.hex

3. Program CC13x0 or CC13x2 LaunchPad 2 or SensorTag – this device runs the sensor example
application.
a. Label this device sensor. Optional: connect the LCD BoosterPack Plug-in Module to this

LaunchPad Development Kit.
b. To program the CC13x0 LaunchPad Development Kit: From a Windows PC, use UniFlash to

program the hex file sensor_cc13x0_lp_defualt_915.hex file located here:
{demo software clone directory}/firmware/
CC13x0_LAUNCHXL/sensor_cc13x0_lp_default_915.hex

c. To program the CC13x2 LaunchPad Development Kit: From a Windows PC, use UniFlash to
program the hex file sensor_cc13x2_lp_default_915.hex file located here:
{demo software clone directory}/firmware/
CC13x2_LAUNCHXL/sensor_cc13x2_lp_default_915.hex

d. To program CC1350 SensorTag: From a Windows PC, use UniFlash to program the hex file
sensor_cc1350stk_915mhz.hex file located here:
{demo software clone directory}/firmware/ CC1350_SensorTag/sensor_cc1350stk_915mhz.hex

NOTE: Important—the default hex files are built for 915-MHz, 863-MHz, and 433-MHz bands of
operation at 50 kbps. To rebuild the hex files for other bands (for example, SimpleLink Long
Range mode), see the CC13x0 SimpleLink TI 15.4-Stack 2.x.x Embedded Developer's Guide
[6] or TI 15.4-Stack CC13x0 SimpleLink Embedded Applications Quick Start Guide [7]. See
the CC13x0 SimpleLink TI 15.4-Stack 2.x.x Linux Developer’s Guide [5], specifically the
Example Collector Application configuration section, to change the Linux example
application.

To change the band of operation of the CoP, configure collector.cfg. For more information on
configuring the CoP, refer to CC13x0 SimpleLink TI 15.4-Stack 2.x.x Linux Developer’s
Guide [5].

For porting the out-of-box TI 15.4-Stack sensor application, which is supported on the
LaunchPad platform to the CC1350 SensorTag platform, see the TI 15.4-Stack Wiki [3].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://www.ti.com/tool/UNIFLASH
http://www.ti.com/tool/UNIFLASH

Hardware, Software, Testing Requirements and Test Results www.ti.com

14 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.7 Running the Demonstration
With the required hardware and software together, the demonstration can be completed. At this point, the
following assumptions are made:
• The BeagleBone Black is booted from the SD card using the latest kernel and file system from the

Linux processor SDK.
• The BeagleBone Black is powered up, and the user is logged in using SSH and can send commands

on the Linux console.
• The Git repository containing the demonstration software was copied to the file system of the

BeagleBone Black.
• The coprocessor LaunchPad Development Kit has been programmed with the coprocessor firmware.
• The remaining LaunchPad Development Kits and SensorTags have been programmed with the sensor

example application.

If any of these assumptions are not true at this point, return to the previous corresponding sections in this
chapter.

3.1.2.7.1 Connecting CC13x0 or CC1350 LaunchPad™ Development Kit Coprocessor
Plug the CC13x0 or CC13x2 LaunchPad running tx2 coprocessor application into the BeagleBone Black
using the USB cable. In Figure 7, the USB connection on the right side of the image is connected to the
CC13x0 or CC13x2 LaunchPad coprocessor.

Figure 7. Coprocessor LaunchPad™ Development Kit Connected to BeagleBone Black

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

15TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

Once this connection is made, type

ls -l /dev/ttyACM*

at the BeagleBone Black console. There are two ttyACM devices that correspond to the serial ports from
the CC13x0 or CC13x2 LaunchPad Development Kit (similar to Figure 8).

Figure 8. /dev/ttyACM0 Device Check

Make sure /dev/ttyACM0 shows up in the list. This is the UART connection between the BeagleBone
Black and the CC13x0 or CC13x2 LaunchPad device over which all of the sensor and network information
is transferred. Open the {demo software directory}/prebuilt/bin/collector.cfg file and double check that the
[uart-cfg] section for the collector application is pointing to the correct device, as shown in Figure 9.

Figure 9. UART Configuration

3.1.2.7.2 AWS Certificates and Configuration From stackArmor™
To connect the IoT Gateway to the AWS IoT service, the gateway needs authentication certificates
provisioned by AWS. For these certificates, as well as a unique AWS URL, see the stackArmor web
page[8]. Return to this guide once obtaining the following:
• certificate.pem.crt
• private.pem.key
• public.pem.key
• root-CA.crt
• a URL to the AWS host that should be used

Use SCP to copy the four files into the {demo software directory}/example/iot-gateway/cloudAdapter/certs/
directory on the BeagleBone Black’s file system.

Open the {demo software directory}/example/iot-gateway/cloudAdapter/awsConfig.json file and do the
following:
• certDir - Make sure that the certDir parameter is set to the correct path to the certs directory where the

four files were copied.
• host - Set the host parameter equal to the URL that was provided by stackArmor.
• region - Make sure that the region parameter matches the region portion of the URL. It should be

something similar to us-east-1.
• clientId - The clientId parameter must be changed to a unique string. Only one connection to the AWS

cloud from a specific clientId is allowed. If the same clientId is used by more than one device
connecting to the AWS cloud, connectivity issues can occur as the connection may timeout or be
refused.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

16 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.7.3 Starting the Application
The {demo software directory}/prebuilt/ directory has a simple shell script called run_demo.sh. Type the
following at the BeagleBone Black console to run the IoT Gateway application:

cd {demo software directory}/prebuilt/

chmod +x bin/bbb_collector

bash run_demo.sh

The shell script will start all of the necessary programs in order to get the full demonstration application up
and running. The script will also print the URL to the IoT dashboard to the console. Navigate to the URL
from the console output using the web browser on the host machine. If no arguments are provided to this
script it will launch the default AWS IoT gateway; however, it is possible to use this script to launch AWS,
IBM, IBM Quickstart, and Localhost gateways. To do this provide a single argument when executing the
script specifying which gateway to launch. The argument should be one of the following: 'aws', 'ibm',
'quickstart', or 'localhost' (for example: 'bash run_demo.sh localhost').

3.1.2.7.3.1 Common Issues
The following is a list of common issues that might be seen while starting or running the application:

• Error: Rcvd Error on the socket connection with AppServer (ECONNREFUSED 127.0.0.1:5000)
This error occurs when the AppClient (which is started by the IoT Gateway) is not able to make a local
socket connection with the AppServer (which is started by the bbb_collector). Make sure that the
bbb_collector application is up and running before starting the IoT Gateway. The run_demo.sh script in
the prebuilt directory gives an example on how to start the demonstration in the correct order. This
script starts up the bbb_collector application and then starts the IoT Gateway.

• Error: getaddrinfo ENOTFOUND <your unique AWS URL> (AWS Cloud Adapter error)
This error can happen if the BeagleBone Black is behind a firewall and cannot connect to the servers
at the AWS URL. This issue can be resolved by using a mobile hotspot to connect the BeagleBone
Black to the Internet or possibly by configuring the local network settings to allow the BeagleBone
Black to access outside servers.

• Error: certificate is not yet valid (AWS Cloud Adapter error)
This issue can occur if the date and time on the BeagleBone Black are set incorrectly to a time before
the AWS certificates were generated by stackArmor. Setting the date of the BeagleBone Black to the
current date and time should resolve this issue.

• Removing Sensor Nodes from the Sub-1 GHz Wireless Network
The current demonstration does not provide a method in the user interface to remove sensor nodes
from the Sub-1 GHz wireless network. The bbb_collector application uses a file named nv-
simulation.bin (that can be found in the prebuilt/bin/ directory) to save the information of the sensor
nodes that have connected to the Sub-1 GHz wireless network. Delete the nv-simulation.bin file and
restart the demonstration in order to remove sensor nodes. This process also means the remaining
sensor nodes must reconnect to the Sub-1 GHz wireless network before they will show up in the user
interface again.

• Error: Cannot find module moduleName (or any other Node-JS error)
Cloning the TIDEP0084 Git repository to a Windows machine and then copying it to the BeagleBone
Black might produce Node-JS errors when starting the demonstration. These errors appear to be
caused by the line endings in the repository getting changed by Windows before being copied to the
BeagleBone Black. To correct this issue, the TIDEP0084 Git repository can be cloned directly to the
BeagleBone Black. To accomplish this, make sure your BeagleBone Black has an internet connection
and then run the following command from the terminal:
git clone git://git.ti.com/apps/tidep0084.git.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

17TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.7.4 IoT Dashboard Web Page—Open Network for New Device Joins
Figure 10 shows the IoT dashboard provided by stackArmor. Navigate to the dashboard by following the
URL provided by the console output in the previous step. Initially, the application starts with no devices
present (not shown), the network is closed to new devices joining (not shown), and the network will not
accept new devices.

Figure 10. IoT Dashboard

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

18 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.7.5 Joining the Sensor Devices to the Network
At start up, the collector example application initially has the network closed; therefore, sensor devices
cannot join. To open the network, switch the On/Off button on the web browser to the On state. Within a
few seconds (time depends on the polling interval and other configuration settings), the sensor joins the
network. When the device joins the network, the red LED turns on. If the sensor LaunchPad Development
Kit has an LCD module, the device indicates the current state on the LCD. See Figure 11.
• State 1 = Not joined
• State 3 = Joined
• State 4 = Restored
• State 5 = Orphan condition

More details can be found in the CC13x0 SimpleLink TI 15.4-Stack 2.x.x Embedded Developer's Guide
[6].

Figure 11. Sensor LaunchPad™ Development Kit State Change LCD

3.1.2.7.6 Data Communication
After the new device appears, initially only the short and extended addresses appear. The data fields will
not show any data as none have been reported yet.

Sensor Data Reports:
After about one minute data appears on the screen (the exact interval is configured in the collector
application using a #define value), see the CC13x0 SimpleLink TI 15.4-Stack 2.x.x Embedded Developer's
Guide [6] or the Linux example collector source code for more details. After this time, the sensor nodes
periodically report the sensor data.

Actuation:
Clicking on the toggle LED button sends a message to the sensor module to toggle the LED. There may
be a slight delay (a few seconds) in toggle operation on the desired sensor LaunchPad Development Kit.
This delay is because the sensor nodes are in sleep mode and only wake up periodically to get the
command buffered on the collector.

See Figure 10 for an example of the IoT dashboard with multiple sensors and reported data.

3.1.2.8 Interactive GUI

TI’s Sensor-to-Cloud design now includes a web interface that can be used to setup, connect to a
network, and launch a cloud connected gateway. Wireless functionality is enabled with the use of
element14 wireless cape, which allows the user to easily get a gateway up and running without knowing
Linux, networking, or terminal commands. Refer to the TI 15.4-Stack CC13x0 SimpleLink Embedded
Applications Quick Start Guide [7] for more information on getting started with the Sensor-to-Cloud web
interface.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

19TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9 IoT-Gateway and Collector Application Interface API
The purpose of this section is to provide a description of the application programming interface between
the TI 15.4-Stack Linux collector example application and the IoT gateway application. The collector
example application implements an appsrv module, which opens up a server socket to which a client
application can connect. The interface allows management and data interface to the client application,
connecting to the socket server, to monitor and control the TI 15.4-Stack-based network. Management
functionalities include the ability to open and close the network for new device joins, whereas the data
interface allows sending and receiving data to and from the network devices. It is easy to add new APIs or
modify the current implementation.

This API is defined at a specific interface level, which is a TCP socket pipe.

For transport using a TCP socket, the packets are preceded by a 4-byte header, containing the following
fields (in this order):
1. len – 16-bit number that specifies the actual length (in bytes) of the protobuf-packed packet
2. Subsystem – 1 byte: specifies the subsystem to or from which the packet is sent or received. The

value '10' is reserved for TI 15.4-Stack application server interface.
3. cmd_id – 1 byte: The command ID of the actual command being sent. This value is also available

inside the packed packet. The actual command ID numbers are provided in the protobuf definition files
that are part of the TI 15.4-Stack Linux SDK (collector example application and the gateway example
application). When using command IDs in code, always use the defined names (never hardcode the
command ID numbers), as the numbers may change between releases.

3.1.2.9.1 Management Interface

3.1.2.9.1.1 APPSRV_SET_JOIN_PERMIT_REQ

3.1.2.9.1.1.1 Description
Allows client application to enable or disable network for join for new devices.

3.1.2.9.1.1.2 Parameter List

Table 2. APPSRV_SET_JOIN_PERMIT_REQ Parameter List

PARAMETER TYPE DESCRIPTION

Duration INT32

Duration for join permit to be turned on in
milliseconds:

• 0 sets the join permit pff, and 0xFFFFFFFF
sets the join permit on indefinitely.

• Any other non-zero value sets the join permit
on for that duration.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

20 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9.1.2 APPSRV_SET_JOIN_PERMIT_CNF

3.1.2.9.1.2.1 Description
The application server notifies the client of the result of processing of permit join request message.

3.1.2.9.1.2.2 Parameter List

Table 3. APPSRV_SET_JOIN_PERMIT_CNF Parameter List

PARAMETER TYPE DESCRIPTION
Status INT32 0 if success

3.1.2.9.1.3 APPSRV_NWK_INFO_IND

3.1.2.9.1.3.1 Description
The application server notifies the client of the network information when a network is formed using this
API.

3.1.2.9.1.3.2 Parameter List

Table 4. APPSRV_NWK_INFO_IND Parameter List

PARAMETER TYPE DESCRIPTION
Fh UINT32 True if network is frequency hopping

channel UINT32 Channel number used, if non-frequency hopping network configuration
panID UINT32 The 16-bit PAN identifier of the network

shortAddress UINT32 The 16-bit short address of the PAN coordinator
extAddress INT64 The 64-bit IEEE extended address of the PAN coordinator device

securityEnabled INT32 true if security enabled, false otherwise

nwkMode ENUM

Network operation mode
BEACON_ENABLED = 1

NON_BEACON = 2
FREQUENCY_HOPPING = 3

state ENUM

PAN coordinator state values
STATE VALUE

Initialized waiting for user to start 1
Starting coordinator 2

Restoring coordinator (from NV) 3
Started 4

Restored 5
Joining allowed for new devices 6

Joining not allowed for new devices 7

3.1.2.9.1.4 APPSRV_GET_NWK_INFO_REQ

3.1.2.9.1.4.1 Description
The application server’s client can use this API to get the current network information

3.1.2.9.1.4.2 Parameter List
There is no parameter in the command message.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

21TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9.1.5 APPSRV_GET_NWK_INFO_CNF

3.1.2.9.1.5.1 Description
The application server sends the current network information as a response to the get network information
request from the client using this API.

3.1.2.9.1.5.2 Parameter List

Table 5. APPSRV_GET_NWK_INFO_CNF Parameter List

PARAMETER TYPE DESCRIPTION
Status INT32 0 if success

Fh UINT32 True if network is frequency hopping (optional)

channel UINT32 Channel number used, if non-frequency hopping network configuration
(optional)

panID UINT32 The 16-bit PAN identifier of the network (optional)
shortAddress UINT32 The 16-bit short address of the PAN coordinator (optional)
extAddress INT64 The 64-bit IEEE extended address of the PAN coordinator device (optional)

securityEnabled INT32 true if security enabled, false otherwise (optional)

nwkMode ENUM

Network operation mode (optional)
BEACON_ENABLED = 1

NON_BEACON = 2
FREQUENCY_HOPPING = 3

state ENUM

PAN coordinator state values (optional)
STATE VALUE

Initialized waiting for user to start 1
Starting coordinator 2

Restoring coordinator (from NV) 3
Started 4

Restored 5
Joining allowed for new devices 6

Joining not allowed for new devices 7

3.1.2.9.1.6 APPSRV_GET_DEVICE_ARRAY_REQ

3.1.2.9.1.6.1 Description
The application client requests the current list of connected device using this API.

3.1.2.9.1.6.2 Parameter List
There is no parameter in the command message.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

22 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9.1.7 APPSRV_GET_DEVICE_ARRAY_CNF

3.1.2.9.1.7.1 Description
The application server sends the current list of connected device as a response to the get device array
request message using this API.

3.1.2.9.1.7.2 Parameter List

Table 6. APPSRV_GET_DEVICE_ARRAY_CNF Parameter List

PARAMETER TYPE DESCRIPTION
Status INT32 0 if success

devInfo Csf_deviceInformation
Multiple entries of this structure element. Number

of entries is equal to the number of connected
devices in the network.

panID UINT32 The 16-bit PAN identifier of the network
shortAddress UINT32 The 16-bit short address of the network device

extAddress INT64 The 64-bit IEEE extended address of the network
device

panCoord UINT32 True if the device is PAN coordinator
ffd UINT32 True if the device is a full function device

mainsPower UINT32 True if the device is mains powered

rxOnWhenIdle UINT32 True if the device's RX is on when the device is
idle

security UINT32 True if the device is capable of sending and
receiving secured frames

allocAddr UINT32 True if allocation of a short address in the
associate procedure is needed.

3.1.2.9.1.8 APPSRV_DEVICE_JOINED_IND

3.1.2.9.1.8.1 Description
The application server informs the client of a new device join in the network using this API.

3.1.2.9.1.8.2 Parameter List

Table 7. APPSRV_DEVICE_JOINED_IND Parameter List

PARAMETER TYPE DESCRIPTION
panID UINT32 The 16-bit PAN identifier of the network

shortAddress UINT32 The 16-bit short address of the network device

extAddress INT64 The 64-bit IEEE extended address of the network
device

panCoord UINT32 True if the device is PAN coordinator
ffd UINT32 True if the device is a full function device

mainsPower UINT32 True if the device is mains powered

rxOnWhenIdle UINT32 True if the device's RX is on when the device is
idle

security UINT32 True if the device is capable of sending and
receiving secured frames

allocAddr UINT32 True if allocation of a short address in the
associate procedure is needed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

23TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9.1.9 APPSRV_DEVICE_NOTACTIVE_UPDATE_IND

3.1.2.9.1.9.1 Description
The application server informs the client of an inactive device using this API.

3.1.2.9.1.9.2 Parameter List

Table 8. APPSRV_DEVICE_NOTACTIVE_UPDATE_IND Parameter List

PARAMETER TYPE DESCRIPTION
panID UINT32 The 16-bit PAN identifier of the network

shortAddress UINT32 The 16-bit short address of the network device

extAddress INT64 The 64-bit IEEE extended address of the network
device

timeout UINT32
True if not active because of tracking timeout.
meaning that the device didn't respond to the

tracking request within the timeout period.

3.1.2.9.1.10 APPSRV_COLLECTOR_STATE_CNG_IND

3.1.2.9.1.10.1 Description
The application server informs the client of change in the state of the collector application using this API.

3.1.2.9.1.10.2 Parameter List

Table 9. APPSRV_COLLECTOR_STATE_CNG_IND Parameter List

PARAMETER TYPE DESCRIPTION

state ENUM

STATE VALUE
Initialized waiting for user to start 1

Starting coordinator 2
Restoring coordinator (from NV) 3

Started 4
Restored 5

Joining allowed for new devices 6
Joining not allowed for new devices 7

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

24 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9.2 Data Interface

3.1.2.9.2.1 APPSRV_DEVICE_DATA_RX_IND

3.1.2.9.2.1.1 Description
The application server informs the client of receipt of sensor data from a network device using this API.

3.1.2.9.2.1.2 Parameter List

Table 10. APPSRV_DEVICE_DATA_RX_IND Parameter List

PARAMETER TYPE DESCRIPTION
srcAddr UINT32 The 16-bit PAN identifier of the network

Rssi SINT32 RSSI of the message received
sDataMsg Smsgs_sensorMsg Received sensor message (optional)

sConfigMsg Smsgs_configRspMsg Received config response message (optional)

Table 11. Smsgs_sensorMsg

PARAMETER TYPE DESCRIPTION

cmdId ENUM

Sensor message command ID
COMMAND ID DESCRIPTION VALUE

Smsgs_cmdIds_configReq Configuration message, sent from
the collector to the sensor 1

Smsgs_cmdIds_configRsp
Configuration response message,

sent from the sensor to the
collector

2

Smsgs_cmdIds_trackingReq Tracking request message, sent
from the collector to the sensor 3

Smsgs_cmdIds_trackingRsp Tracking response message, sent
from the sensor to the collector 4

Smsgs_cmdIds_sensorData Sensor data message, sent from
the sensor to the collector 5

Smsgs_cmdIds_toggleLedReq Toggle LED message, sent from
the collector to the sensor 6

Smsgs_cmdIds_toggleLedRsp Smsgs_cmdIds_toggleLedRsp 7

Framecontrol UINT32

Frame control field states what data fields are included in reported sensor data, each value is a
bit mask value so that they can be combined (OR'd together) in a control field. When sent over-

the-air in a message this field is 2 bytes.
PARAMETER DESCRIPTION VALUE

Smsgs_dataFields_tempSensor Bit mask for temperature sensor 0x0001
Smsgs_dataFields_lightSensor Bit mask for light sensor 0x0002

Smsgs_dataFields_humiditySens
or Bit mask for humidity sensor 0x0004

Smsgs_dataFields_msgStats Bit mask for stats message 0x0008
Smsgs_dataFields_configSettings Bit mask for configuration settings 0x0010
Smsgs_dataFields_pressureSens

or Bit mask for pressure sensor 0x0020

Smsgs_dataFields_toggleSettings Bit mask for toggle settings 0x0030

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

25TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

Table 11. Smsgs_sensorMsg (continued)
PARAMETER TYPE DESCRIPTION

tempSensor Smsgs_tempSe
nsorField

Lists the reported temperature sensor data (optional)
Smsgs_tempSensorField:

PARAMETER TYPE DESCRIPTION

ambienceTemp UINT32

Ambience chip
temperature - each
value represents a

0.01° C, so a value of
2475 represents 24.75°

C.

objectTemp UINT32

Object temperature -
each value represents
a 0.01° C, so a value
of 2475 represents

24.75° C.

lightSensor Smsgs_lightSen
sorField

Lists the reported light sensor data (optional)
Smsgs_lightSensorField:

PARAMETER TYPE DESCRIPTION

rawData UINT32
Raw sensor data read
out of the OPT2001

light sensor

humiditySensor Smsgs_humidity
SensorField

Lists the reported humidity sensor data (optional)
Smsgs_humiditySensorField:

PARAMETER TYPE DESCRIPTION

temp UINT32 Raw temperature
sensor data

humidity UINT32 Raw humidity sensor
data

configSettings Smsgs_configSe
ttingsField

Lists the reported configuration settings (optional)
Smsgs_configSettingsField:

PARAMETER TYPE DESCRIPTION

reportingInterval UINT32

Reporting interval - in
milliseconds, how often
to report sensor data to
the pan-coordinator, 0
means reporting is off

pollingInterval UINT32

Polling interval - in
milliseconds (32 bits) -
If the sensor device is

a sleep device, this
states how often the

device polls its parent
for data. This field is 0
if the device does not

sleep.

pressureSenso
r

Smsgs_pressure
SensorField

Lists the reported pressure sensor data (optional)
Smsgs_pressureSensorField:

PARAMETER TYPE DESCRIPTION
tempValue UINT32 Temperature value

pressureValue UINT32 Pressure value

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

26 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

Table 12. Smsgs_configRspMsg

PARAMETER TYPE DESCRIPTION
cmdId Smsgs_cmdIds Sensor message command ID
Status Smsgs_statusValues Status of the processing of the request message

Framecontrol Smsgs_dataFields Bit mask of Smsgs_dataFields
treportingInterval UINT32 Sensor data reporting interval

pollingInterval UINT32 Polling interval if the device is a sleepy device

3.1.2.9.2.2 APPSRV_TX_DATA_REQ

3.1.2.9.2.2.1 Description
The application client uses this to send data to a network device.

3.1.2.9.2.2.2 Parameter List

Table 13. APPSRV_TX_DATA_REQ Parameter List

PARAMETER TYPE DESCRIPTION
msgId Smsgs_cmdIds Sensor message command ID
panID UINT32 The 16-bit PAN identifier of the network

shortAddress UINT32 The 16-bit short address of the network device
extAddress INT64 The 64-bit IEEE extended address of the network device

configReqMsg Smsgs_configReq
Msg

Configuration request message parameters (optional)
PARAMETER TYPE DESCRIPTION

cmdId Smsgs_cmdIds
The value will be

Smsgs_cmdIds_configReq (
= 1).

frameControl UINT32

Frame control field states
what data fields are included

in reported sensor data,
each value is a bit mask
value so that they can be

combined (OR'd together) in
a control field. When sent
over the air in a message

this field is 2 bytes.

reportingInterval UINT32 Sensor data reporting
interval

pollingInterval UINT32 Polling interval if the device
is a sleepy device

toggleLedReq Smsgs_toggleLedR
eqMsg Toggle led request message parameters (optional)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

27TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.9.2.3 APPSRV_TX_DATA_CNF

3.1.2.9.2.3.1 Description
Thepplication server informs the client of result of the transmit data request

3.1.2.9.2.3.2 Parameter List

Table 14. APPSRV_TX_DATA_CNF Parameter List

PARAMETER TYPE DESCRIPTION
Status INT32 0 if success

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

28 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.10 TI IoT Gateway-to-Cloud Interface
The purpose of this section is to provide a description of the message types and expected data flows that
will be shared between the TI IoT gateway and an IoT cloud server. The interface is designed to be
flexible to support multiple cloud vendors. For this purpose, the Sub-1 GHz wireless network and node
information will be exchanged between the gateway and the cloud using the long-established JavaScript
object notation (JSON) format. Additionally, IPSO alliance smart object definitions will be used to define
sensors (and their data) that are connected to each node in the wireless networks.

3.1.2.10.1 Message Types
To fully specify the Sub-1 GHz wireless network information, as well as the Sub-1 GHz sensors and their
data, two distinct message types have been defined for the IoT gateway to update the cloud. In order to
allow the cloud to send messages back to the TI IoT gateway, two additional message types are defined
that allow the cloud to update the wireless network state and also send actuation messages to specific
devices in the network.

3.1.2.10.1.1 Network Information Message Type (From TI IoT Gateway to Cloud)
This message type presents information about the wireless network, its current state, and a list of devices
that are connected to the network. As shown later in this document, this will be the first message type sent
after the network is initialized, and it contains all the information necessary to prepare for receiving sensor
data from devices. This message type contains the following fields:

• name: begins as the short address of the network but allows for the cloud to provide a more specific
name

• channels: list of channels that the wireless network is operating on
• pan_id: the 16-bit PAN identifier of the network
• short_addr: the 16-bit short address of the pan-coordinator
• ext_addr: the 64-bit IEEE extended address of the pan-coordinator device
• security_enabled: yes if security enabled, no otherwise
• mode: network operation mode (beacon, non-beacon, frequency hopping)
• state: PAN coordinator state values (waiting, starting, restoring, started, open, closed)
• devices: list of wireless nodes in the network

– name: begins as the short address of the device but allows cloud to update
– active: whether or not the wireless node is active
– rssi: received signal strength indicator of the last message received
– last_reported: timestamp of the last message received
– short_addr: the 16-bit short address of the pan-coordinator
– ext_addr: the 64-bit IEEE extended address of the PAN coordinator device
– topic: the topic that the device will send its sensor data updates to
– smart_objects: list of IPSO alliance smart objects (sensors) attached to this device

• object ID description: type of sensor (as defined in the IPSO standard); can be multiple types
of sensors connected to each device ('temperature' for example)
• instance ID: the instance ID for the parent object type; can be multiple sensors of the same

type (is usually '0' and counts up with each instance added
• resource ID description list: sensor data name value pairs (for example, sensorValue:

32.5, units:Celsius, dInState: true, and so forth); these resources match what is specified
for the given object ID in the IPSO standard

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

29TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.10.1.2 Device Information Message Type (From TI IoT Gateway to Cloud)
This message type provides information about the wireless device as well as the latest data for all of the
sensors connected to the device. This message type will be sent when a device reports sensor data or
switches between an active or inactive state. The following fields are contained in this message type:

• active: whether or not the wireless node is active
• short_addr: the 16-bit short address of the device
• ext_addr: the 64-bit IEEE extended address of the PAN coordinator device
• rssi: received signal strength indicator of the last message received
• last_reported: timestamp of the last message received
• smart_objects: list of the IPSO alliance smart objects connected to this wireless device

– object ID description: type of sensor (as defined in the IPSO standard); can be multiple types of
sensors connected to each device
• instance ID: the instance ID for the parent object type; can be multiple sensors of the same

type
• resource ID description list: sensor data name value pairs (for example, sensorValue: 32.5,

units:Celsius, and so forth); these resources match what is specified for the given object ID in
the IPSO standard

3.1.2.10.1.3 Update Network State Message Type (From Cloud to TI IoT Gateway)
In the current implementation of the TI IoT gateway, this message type is intended to be able to open or
close the wireless network to new devices joining. The cloud’s front end user interface can allow a user to
click a button to open or close the network and then generate this message type and send it to the TI IoT
gateway. The gateway will then notify the network on whether it needs to open or close to new device
joins. This message type only includes the desired state of the network and should be sent to the same
topic that the cloud is receiving the network information messages from. The following field is all that is
required:
• state: should be set to either open or closed

3.1.2.10.1.4 Device Actuation Message Type (From Cloud to TI IoT Gateway)
This message type is added to allow the cloud to send actuation messages to specific devices in the
wireless network. The current implementation only supports toggling an LED on the wireless device’s
board. The device actuation message should be sent to the topic of the device as given in the devices list
of the network information message. The following field is the only requirement for this message:
• toggleLED: should be set to true

3.1.2.10.2 Data Flows
This section of the document specifies the expected data flow when different events occur within the
wireless network and also when the cloud must send configuration or commands to the TI IoT gateway.

3.1.2.10.2.1 Network Information Sent to the Cloud
The following items are the list of events that can occur on the TI IoT gateway that will cause a network
information message type to be sent to the cloud. A description is given with each event, and the end of
this section describes the expected behavior from the cloud upon receipt of this type of message.
• Network Startup

This is the initial event in the TI IoT gateway. The TI IoT gateway will aggregate the information about
the wireless network as well as the list of connected devices and their sensor types. The TI IoT
gateway will then make a connection to the cloud and will send the aggregated data encapsulated in
the network information message type.

• Network Information Update
This event can occur if any of the information about the wireless network changes. For example, if the
network operation mode of the wireless network was changed, the TI IoT gateway would once again

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

30 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

aggregate all the information needed (network information and device list) and send the network
information message type to the cloud.

• Network State Change
This event occurs if the state of the wireless network changes. For example, if the network state
changes from open to closed, the TI IoT gateway will send a network information message type to the
cloud.

• Device Joins the Wireless Network
When a new device joins the network, after the network is up and running, this event will occur. In this
case, the TI IoT gateway will add the new device and its information to the devices list within the
network information message type and then send the updated information to the cloud

Expected Cloud Behavior
It is expected that the cloud will be prepared for the network startup event and will be able to receive the
network information message type (using a wildcard and then filtering or by having prior knowledge about
the destination or topic of the message). Once the cloud receives the network information message, the
wireless network information (PANID, security, mode, and so forth) can be displayed to users and the
device list information (topic, object list, and so forth) can be used to prepare itself to receive and display
device and sensor data.

3.1.2.10.2.2 Device Information Sent to the Cloud
The following is the list of events that will cause the TI IoT gateway to send a device information message
type to the cloud. A description is given with each event and the end of this section describes the
expected behavior from the cloud upon receipt of this type of message.
• Device Becomes Inactive

This event occurs when the TI IoT gateway detects that one of the devices in the connected devices
list has stopped sending sensor data updates. The TI IoT gateway will update the active field and send
a device information message type to the cloud for the inactive device.

• Device Reports Sensor Data
Each time a sensor on a connected device reports sensor data this event occurs. The TI IoT gateway
updates the IPSO alliance smart object list in the device for each sensor and then sends a device
information message type to the cloud.

Expected Cloud Behavior
It is expected that the Cloud will be alert on each topic given in the connected devices list from the
network information message. When one of the two events occur in this section, the TI IoT gateway will
send the device information message to the topic (corresponding to the device being update) that the
cloud should be listening on or subscribed to. When the device information message arrives at the cloud,
the cloud should display the latest device information and sensor data to users.

3.1.2.10.2.3 Update Network State Message Sent to the TI IoT Gateway
This message is used to open or close the wireless network to new devices joining. This should be an
option provided to users in the front end user interface that the cloud presents. When the user decides to
update the network state, the cloud should send an update network state message type to the TI IoT
gateway on the same topic that the network information messages are arriving on.

Expected TI IoT Gateway Behavior
The TI IoT Gateway will receive the update network state message and will generate the correct
command (either open or close) to the wireless network. This command should, in turn, cause a network
state change event (from Section 3.1.2.10.2.1) that will send a network information message back to the
cloud, which can confirm the successful completion of the update network state command.

3.1.2.10.2.4 Device Actuation Message Sent to the TI IoT Gateway
This method is used to toggle the LED on the board of the connected devices. This is meant to be a proof-
of-concept on the current device setup and will change for customer use-case specific actuations. A toggle
LED button for each device will be provided to users of the cloud’s front end interface. When the toggle
LED button is clicked, the cloud should send a device actuation message to the TI IoT gateway on the
same topic that the device information messages are arriving on.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

31TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

Expected TI IoT Gateway Behavior
The TI IoT Gateway will generate a toggle LED command and send it to the device corresponding to the
topic that the device actuation message was received on. This will cause the LED to toggle. Because the
state of the LED is not captured in the device information message type, there will be no feedback to the
cloud that the LED actually toggled.

3.1.2.11 AWS IoT
Section 3.1.2.10 of this document was generic to any cloud host or vendor. This section will give specific
implementation details when using AWS IoT as the Cloud vendor. The numbering and header names of
this section will be the same as Section 3.1.2.10, but additional information specific to the AWS IoT
implementation is added here.

3.1.2.11.1 Message Types
The message types from Section 3.1.2.10.1 will remain the same for messages traveling in both
directions. However, the message payload sent to and from the AWS cloud will be wrapped with some
additional information specific to the use of the Amazon® thing shadow interface.

3.1.2.11.1.1 Network Information Message Type (From TI IoT Gateway to the Cloud)
The network information message type will be sent to the AWS cloud using a thing name that includes the
extended address of the wireless collector node that is attached to the TI IoT gateway. For example, the
thing name could be ti_iot_0x124b000a27dda1_network and would use the base thing shadow topic of
$aws/things/ti_iot_0x124b000a27dda1_network/shadow where 0x124b000a27dda1 is the extended
address of the collector node. Because all of the initial information needed to describe a network will be
sent to this thing shadow, the thing name will either require to be known beforehand or the cloud front end
must subscribe to an MQTT wildcard topic and then filter on the _network keyword in order to receive the
initial message containing the network Information.

The message payload shown in Section 3.1.2.10.1.1 will remain the same, but the message will be in
JSON format and will be encapsulated in a state JSON object to comply with the Amazon thing shadow
interface. Further, all messages sent from the TI IoT gateway toward the AWS cloud will be sent to the
state.reported property of the thing shadow document. Sending data to the state.reported property is how
the AWS cloud receives and stores the latest state of the thing.

The only other note that should be made on this message type is that the topic property given in each
connected device will be the base topic for the thing device shadow in the following format:
"topic" : "$aws/things/ti_iot_0x124b000a27dda1_0x124b000a27d849/shadow"
where the thing name is ti_iot_0x124b000a27dda1_0x124b000a27d849. This name is comprised of first
the wireless network’s extended address (0x124b000a27dda1) and second the extended address of the
device connected to the wireless network (0x124b000a27d849). This naming convention guarantees a
distinct thing name and also makes it easy to determine the wireless network that the device is connected
to.

3.1.2.11.1.2 Device Information Message Type (From TI IoT Gateway to the Cloud)
The device information message type messages will be sent to the thing shadows or MQTT topics that are
provided in the devices list from the network information message type. It is recommended that things are
registered (or MQTT topics are subscribed to) for each device once the network Information message is
received. This registration will allow the cloud front end to receive all sensor and information updates from
all devices.

Similar to the network information message type above, the device information message type will be sent
in JSON format and will be wrapped in a state JSON object to comply with the Amazon thing shadow
interface. Once again, when this message type is sent from the TI IoT Gateway to the AWS Cloud, the
message will be sent to the state.reported property of the thing shadow document.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

Hardware, Software, Testing Requirements and Test Results www.ti.com

32 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.11.1.3 Update Network State Message Type (From Cloud to TI IoT Gateway)
The update network state message type messages will be sent to the same thing shadow or MQTT topic
that the cloud receives network information messages on. This message type will also be sent in JSON
format and will also be wrapped in a state JSON object to comply with the Amazon Thing Shadow API.

The major difference is that this message (from the Cloud to the TI IoT Gateway) will send its data to the
state.desired property of the thing shadow. This is the method that the Amazon thing shadow provides to
request a thing to make a state or property change. In this case, the only currently supported wireless
network change that can be requested is to either open or close the network for new device joins. The
following is an example of the message in JSON format that should be sent to the thing shadow:
{ “state” : { “desired” : { “state” : “open” } } }

3.1.2.11.1.4 Device Actuation Message Type (From Cloud to TI IoT Gateway)
The device actuation message type messages will be sent to the same thing shadow or MQTT topic that
the Cloud receives device information messages on. This message type will also be sent in JSON format
and will also be wrapped in a state JSON object to comply with the Amazon thing shadow API.

Similar to the update network state messages, this message type will also be sent to the state.desired
property of the thing shadow. The only currently supported actuation message that can be sent is to
request that the wireless device toggle an onboard LED. The following JSON object is the only currently
supported device actuation message type that should be sent from the AWS cloud to the TI IoT gateway:
{ “state” : { “desired” : { “toggleLED” : “true” } } }

3.1.2.11.2 Data Flows
The data flows for the AWS cloud remain the same as in Section 3.1.2.10.2. The only AWS specific
information is that the data is being sent to thing shadows and that the messages are wrapped in either
state.reported or state.desired JSON objects as described in Section 3.1.2.11.1.

3.1.2.12 IBM® Cloud

Section 3.1.2.10 of this document was generic to any cloud host or vendor. This section will give specific
implementation details when using IBM® Watson IoT™ as the cloud vendor. The numbering and header
names will be the same as Section 3.1.2.10.

3.1.2.12.1 Message Types
The message types from Section 3.1.2.10.1 will remain the same for messages traveling in both
directions. However, the message payload sent to and from the AWS cloud will be wrapped with some
additional information specific to the use of the Amazon thing shadow interface.

3.1.2.12.1.1 Network Information Message Type (From TI IoT Gateway to Cloud)
The network information message type will be sent to the IBM cloud by publishing the nwkUpdate gateway
event. This publishes an MQTT topic with the gateway’s device type and device ID as identifiers. This
means the application running on IBM cloud must subscribe to this particular gateways nwkUpdate event
to receive this publication. The message payload shown in Section 3.1.2.10.1.1 will remain the same, but
will be in JSON format.

3.1.2.12.1.2 Device Information Message Type (From TI IoT Gateway to Cloud)
The device information message type will be sent to the IBM cloud by publishing the deviceUpdate
gateway event. This publishes an MQTT topic with the gateway’s device type and id. This means the
application running on IBM cloud must subscribe to this particular gateways deviceUpdate event to receive
this publication. The message payload shown in Section 3.1.2.10.1.1 will remain the same, but will be in
JSON format.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Hardware, Software, Testing Requirements and Test Results

33TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.1.2.12.1.3 Update Network State Message Type (From Cloud to TI IoT Gateway)
The update network state message type messages will be sent to the same MQTT topic that the cloud
receives network information messages on. This message will also be sent in JSON format. The gateway
will receive the message as part of the “command” event. This event will include a command name and
payload. The command name for this message will be nwkUpdate and the payload will be a JSON object.
The payload JSON object specifies the new network state in an action field like so {action: “open”}.

3.1.2.12.1.4 Device Actuation Message Type (From Cloud to TI IoT Gateway)
The device actuation message type message will be sent to the same MQTT topic that the cloud receives
device information messages on. This gateway will receive this message through a “command” event.
This event includes command name and payload data parameters. The command name for this message
type is deviceUpdate and the payload is a JSON object. The JSON object specifies the target device in a
dstAddr field like so {dstAddr: ‘0x0001’}.

3.1.2.12.2 Data Flows
The data flows for IBM cloud remain the same as in Section 3.1.2.11.1.

3.1.2.12.3 IBM Cloud Application
In order to use IBM as the cloud provider, an application must be created and configured on the cloud.
There is an example application ibm-frontend that can be used located in the examples directory of the
sensor to cloud repository. This example application can be uploaded using the cf command-line utility
provided by IBM. For a step by step walkthrough of setting up this application please refer to the Sensor
To Cloud Quickstart guide.

3.1.2.13 IBM® Quickstart

TI's Sensor To Cloud supports the IBM Quickstart cloud platform as a way to quickly see sensor data and
network metadata on the cloud without any cloud-side overhead. This gives a good idea as to the types of
messages being sent to the cloud application. The gateway reports two types of messages on the IBM
Quickstart dashboard nwkUpdates and deviceUpdates. A nwkUpdate is emitted when something in the
network changes, such as a device joining or leaving. A deviceUpdate is reported whenever a sensor
node reports data to the collector. Using the IBM Quickstart platform is a great way to get started and get
a feel for how data is sent to the cloud. More information on IBM Quickstart can be found here.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
https://quickstart.internetofthings.ibmcloud.com/#/

Hardware, Software, Testing Requirements and Test Results www.ti.com

34 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

3.2 Testing and Results
During the development process of this reference design, the full hardware and software portions
described in earlier sections were used for testing. Multiple CC1310 and CC1350 sensor nodes and a
BeagleBone Black (connected to a CC1310 coprocessor) were used to verify the IoT gateway functionality
with the AWS cloud enabled by stackArmor. The culmination of this reference design can be visualized by
the IoT dashboard described in Section 3.2.1.

3.2.1 Internet of Things Dashboard
Figure 12 shows an example of the IOT Dashboard being displayed on the web interface. Observe that
the current network information is shown, the network chart displays the number of connected devices,
and that the sensor nodes section shows the device and current sensor information for all the devices in
the network.

Figure 12. IOT Dashboard

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Design Files

35TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

4 Design Files
This reference design showcases the connectivity between AM335x and CC13x0 devices. The AM335x
acts as a gateway processor and CC13x0 as communication node.

The AM335x-based BeagleBone Black is used as a platform for gateway processor, and the CC13x0-
based LaunchPad Development Kit acts as communication node. The schematic for this reference design
shows how to map one UART port and backdoor signals from BeagleBone Black to the LaunchPad
Development Kit.

For software flexibility, the schematic also maps various SPI, I2C, and GPIOs from BeagleBone Black to
the LaunchPad Development Kit; however, for this IoT gateway reference design only one UART port and
backdoor signals are valid.

4.1 Schematics
To download the schematics for each board, see the design files at TIDEP0084.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDEP0084.

4.3 PCB Layout Recommendations

4.3.1 Layout Prints
To download the layout prints, see the design files at TIDEP0084.

4.4 Altium Project
To download the Altium Designer® project files, see the design files at TIDEP0084.

4.5 Gerber Files
To download the Gerber files, see the design files at TIDEP0084.

4.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDEP0084.

5 Software Files
To download the software files for this reference design, please see the link at
https://git.ti.com/apps/tidep0084.

6 Related Documentation
1. Texas Instruments, TI 15.4-Stack: IEEE802.15.4e/g Standard Based Star Networking Software

Development Kit (SDK)
2. Texas Instruments, Processor SDK for AM335x Sitara™ Processors - Linux® and TI-RTOS support
3. Texas Instruments, TI 15.4-Stack Wiki
4. Texas Instruments, Processor SDK Linux Creating an SD Card with Windows
5. Texas Instruments, CC13x0 SimpleLink™ TI 15.4-Stack 2.x.x Linux® Developer’s Guide
6. Texas Instruments, CC13x0 SimpleLink™ TI 15.4-Stack 2.x.x Embedded Developer's Guide
7. Texas Instruments, TI 15.4-Stack CC13x0 SimpleLink™ Embedded Applications Quick Start Guide
8. stackArmor, Industrial IoT Gateway Demonstration Request Form

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C
http://www.ti.com/tool/TIDEP0084
http://www.ti.com/tool/TIDEP0084
http://www.ti.com/tool/TIDEP0084
http://www.ti.com/tool/TIDEP0084
http://www.ti.com/tool/TIDEP0084
http://www.ti.com/tool/TIDEP0084
https://git.ti.com/apps/tidep0084
http://www.ti.com/tool/ti-15.4-stack
http://www.ti.com/tool/ti-15.4-stack
http://www.ti.com/tool/PROCESSOR-SDK-AM335X
http://www.ti.com/ti154stack-wiki
http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Creating_a_SD_Card_with_Windows
http://www.ti.com/lit/pdf/SWRU490
http://www.ti.com/lit/pdf/swru489
http://www.ti.com/lit/pdf/swru488
https://www.stackarmor.com/iotdemo/

About the Authors www.ti.com

36 TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway
Reference Design

6.1 Trademarks
Sitara, SimpleLink, Texas Instruments, LaunchPad are trademarks of Texas Instruments.
Altium Designer is a registered trademark of Altium LLC or its affiliated companies.
Amazon Web Services is a trademark of Amazon Web Services, Inc.
Amazon is a registered trademark of Amazon Web Services, Inc.
Arm, Cortex are registered trademarks of Arm Limited.
LINKSYS, BELKIN are trademarks of Belkin International, Incorporated.
Ethernet Powerlink is a registered trademark of Bernecker + Rainer Industrie-ElektronikGes.m.b.H.
Bluetooth is a registered trademark of Bluetooth SIG, Incorporated.
EtherCAT is a registered trademark of EtherCAT Technology Group.
Watson IoT is a trademark of IBM Corporation.
IBM is a registered trademark of IBM Corporation.
PowerVR SGX is a trademark of Imagination Technologies Limited.
IBM is a registered trademark of International Business Machines Corporation.
Linux, Yocto Project are registered trademarks of Linux Foundation.
Windows is a registered trademark of Microsoft Corporation.
NETGEAR is a registered trademark of NETGEAR, Incorporated.
EtherNet/IP is a registered trademark of ODVA, INC.
PROFIBUS, PROFINET are registered trademarks of PROFIBUS and PROFINET International (PI).
Sercos is a registered trademark of Sercros International e.V.
FileZilla is a registered trademark of Tim Kosse.
stackArmor is a trademark of stackArmor.
All other trademarks are the property of their respective owners.

7 About the Authors
SUYASH JAIN is an Applications Engineer at Texas Instruments, where he is responsible for supporting
customers designing low power wireless systems. Suyash earned his Master of Science in Electrical
Engineering (MSEE) from Texas Tech University in Lubbock, TX.

JASON REEDER is a Software Applications Engineer at Texas Instruments, where he is responsible for
supporting customers using Linux on TI’s Sitara family of devices. Jason earned his Bachelor of Science
in Computer Software Engineering and his Master of Science in Electrical Engineering at the University of
Florida in Gainesville, FL.

AMRIT MUNDRA is a part of the Systems Team in Catalog Processors business unit. He has been with
TI for 13 years and has worked on multiple IPs and SoCs. He is the security architect for Keystone3 and
security lead for the Catalog business unit. Amrit also is system lead for IoT EE initiative in the business
unit.

BROCK ALLEN is a Wireless Applications Engineer at Texas Instruments. He is responsible for
supporting customers designing low power and long range wireless systems using a Sub-1 GHz radio.
Brock earned his Bachelor of Science in Computer Engineering from Virginia Polytechnic Institute and
State University (Virginia Tech).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

www.ti.com Revision History

37TIDUCI9C–November 2016–Revised February 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from B Revision (October 2017) to C Revision ... Page

• Updated the document to support the CC13x2 device... 1
• Updated the IoT Gateway Reference Design Block Diagram ... 3
• Changed the AM335x Block Diagram .. 6
• Added This step requires an active internet connection in order to download and install the required Node.Js

dependencies .. 11
• Added It is also possible to clone the repository directly on the BeagleBone Black.. 12
• Changed from "Flash Programmer 2" to "UniFlash" throughout the document ... 13
• Deleted the troubleshooting note .. 13
• Added If no arguments are provided to this script it will launch the default AWS IoT gateway; however, it is possible to use

this script to launch AWS, IBM, IBM Quickstart, and Localhost gateways. To do this provide a single aregument when
executing the script specifying which gateway to launch. The argument should be one of the following: 'aws', 'ibm',
'quickstart', or 'localhost'. example: 'bash run_demo.sh localhost' .. 16

• Changed IoT-Gateway and Collector Application Interface API ... 19

Changes from A Revision (April 2017) to B Revision .. Page

• Changed order of sections to adhere to current design guide template ... 1
• Added and 433-MHz China bands to tenth bulleted list item. ... 8
• Added the following list items: SimpleLink long range mode for all supported frequency bands, Support for SimpleLink

CC1190, and Bluetooth low energy beacon advertisement support ... 8
• Added Section 3.1.2.2.1 .. 11
• Changed location of Note and Figure 6 from Section 3.1.2.2 to Section 3.1.2.2.1 ... 11
• Added , 863-MHz, and 433-MHz bands of operation at 50 kbps. .. 13
• Changed To rebuild the hex files for other bands (for example, 868 MHz ETSI band) to To rebuild the hex files for other

bands (for example, SimpleLink Long Range mode), .. 13
• Added Section 3.1.2.8 .. 18
• Added the following bullet items: active: whether or not the wireless node is active, rssi: received signal strength

indicator of the last message received, last_reported: timestamp of the last message received, smart_objects: list of
IPSO alliance smart objects (sensors) attached to this device, object ID description: type of sensor (as defined in the
IPSO standard); can be multiple types of sensors connected to each device ('temperature' for example), instance ID: the
instance ID for the parent object type; can be multiple sensors of the same type (is usually '0' and counts up with each
instance added, and resource ID description list: sensor data name value pairs (for example, sensorValue: 32.5,
units:Celsius, dInState: true , and so forth); these resources match what is specified for the given object ID in the IPSO
standard .. 28

• Added the following bullet items: short_addr: the 16-bit short address of the device and last_reported: timestamp of the
last message received ... 29

• Added Section 3.1.2.12 and all child subsections ... 32
• Added Section 3.1.2.13 .. 33
• Added About the Author for Brock Allen .. 36

Changes from Original (November 2016) to A Revision .. Page

• Added Cannot find module error to Section 2.3.3.1 Common Issues... 16

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCI9C

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Sub-1 GHz Sensor-to-Cloud Industrial Internet-of-Things (IoT) Gateway Reference Design
	1 System Description
	2 System Overview
	2.1 Block Diagram
	2.1.1 Software Block Diagram

	2.2 Highlighted Products
	2.2.1 AM335x
	2.2.2 SimpleLink™ Ultra-Low-Power CC13x0 or CC13x2
	2.2.3 TI 15.4-Stack
	2.2.4 TI Processor Linux® SDK for AM335x

	3 Hardware, Software, Testing Requirements and Test Results
	3.1 Required Hardware and Software
	3.1.1 Required Hardware
	3.1.2 Required Software
	3.1.2.1 BeagleBone Black SD Card
	3.1.2.2 Booting BeagleBone Black
	3.1.2.3 Determining BeagleBone Black Network Address
	3.1.2.4 Get Sub-1 GHz IoT Gateway Demonstration Software
	3.1.2.5 Logging in to BeagleBone Black Using Secure Shell (SSH) Protocol
	3.1.2.6 Programming CC13x0 or CC13x2 LaunchPad™ Development Kit
	3.1.2.7 Running the Demonstration
	3.1.2.8 Interactive GUI
	3.1.2.9 IoT-Gateway and Collector Application Interface API
	3.1.2.10 TI IoT Gateway-to-Cloud Interface
	3.1.2.11 AWS IoT
	3.1.2.12 IBM® Cloud
	3.1.2.13 IBM® Quickstart

	3.2 Testing and Results
	3.2.1 Internet of Things Dashboard

	4 Design Files
	4.1 Schematics
	4.2 Bill of Materials
	4.3 PCB Layout Recommendations
	4.3.1 Layout Prints

	4.4 Altium Project
	4.5 Gerber Files
	4.6 Assembly Drawings

	5 Software Files
	6 Related Documentation
	6.1 Trademarks

	7 About the Authors

	Revision History
	Important Notice

