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TI Designs
LIDAR Pulsed Time of Flight Reference Design

Description
This reference design documents how to design the
time measurement back-end for LIDAR based on the
time-to-digital converter (TDC) as well as associated
front-end.

Resources

TIDA-00663 Design Folder
TDC7200 Product Folder
OPA857 Product Folder
TLV3502 Product Folder
UCC27321 Product Folder
TPL0202 Product Folder
TPS22968 Product Folder
SN74LVC2G14 Product Folder
SN74LVC1G08 Product Folder

ASK Our E2E™ Experts

Features
• LIDAR Pulsed Time of Flight (ToF) Measurement
• Distance Resolution at System Level < 1 cm
• TDC Resolution of 1.65 cm and White Noise of

1.05-cm RMS
• TX Energy: 70-W Peak Over 40 ns

Applications
• Factory Automation Optical Proximity Sensor
• Factory Automation Optical Level Sensor
• Factory Automation Volume Scanners
• Drones
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important disclaimers and information.
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1 System Description
Many applications cannot measure distance to the target by establishing a physical contact. Typical
examples include measuring presence of objects on a conveyor belt in logistic centers, ensuring safety
distances around moving robot arms, and many others. Possible options for contactless distance
measurement are eddy currents, ultrasounds, and light.

Light distance and ranging (LIDAR) systems use the time taken by the light to fly back and forth to an
object in an effort to measure the distance to this target. Building a LIDAR system can be made with either
a high-speed analog-to-digital converter (ADC) or a time-to-digital converter (TDC).

This reference design shows how to design the time measurement back-end for LIDAR based on a TDC
as well as an associated front-end.

1.1 Key System Specifications

(1) End system performance may vary depending on optics selected.

Table 1. Key System Specifications

PARAMETER SPECIFICATIONS DETAILS
ToF measurement Pulse ToF Section 2.3.1
ToF resolution 55 ps Single shot
ToF accuracy Section 2.3.3
ToF repeatability 35 ps Section 2.3.3
TX power peak 70 W
TX pulse width 40 ns
TX pulse rise time 10 ns
Max distance > 100 m (1) Section 2.3.2
Sampling rate > 50 kHz
SNR 88 dB By design (Section 2.3.4)

http://www.ti.com
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2 System Overview

2.1 Block Diagram

Figure 1. TIDA-00663 Block Diagram

2.2 Highlighted Products

2.2.1 TDC7200
Features:
• Resolution: 55 ps
• Standard deviation: 35 ps
• Measurement range:

– Mode 1: 12 ns to 500 ns
– Mode 2: 250 ns to 8 ms

• Low power consumption: 0.5 µA (2 SPS)
• Supports up to five STOP signals
• Autonomous multi-cycle averaging mode for low power consumption
• Supply voltage: 2 to 3.6 V
• Operating temperature –40°C to +85°C
• SPI host interface for configuration and register access

The TDC7200 is a TDC for ultrasonic sensing measurements such as water flow meters, gas flow meters,
and heat flow meters. When paired with the TDC1000 (ultrasonic analog-front-end), the TDC7200 can be
a part of a complete TI ultrasonic sensing solution that includes the MSP430™, power, wireless, and
source code.

The TDC performs the function of a stopwatch and measures the elapsed time (time of flight or ToF)
between a START pulse and up to five STOP pulses. The ability to measure from a START pulse to
multiple STOP pulses gives users the flexibility to select which STOP pulse yields the best echo
performance.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUCM1B


Copyright © 2016, Texas Instruments Incorporated

Input buffers 

LDO and reference 
subsystem

VREG

TRIG

START

STOP

CLOCK

INTB

SDOUT

CSB

SDIN

SCLK

ENABLE

VDD

TDC core

Ring 
osc

Digital Core

SPI 
slave

Configuration regs

Clock counter 
and decode

Measurement sequencer

Coarse 
count

GND

System Overview www.ti.com

4 TIDUCM1B–December 2016–Revised January 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

LIDAR Pulsed Time of Flight Reference Design

The device has an internal self-calibrated time base, which compensates for drift over time and
temperature. Self-calibration enables time-to-digital conversion accuracy in the order of picoseconds (ps).
This accuracy makes the TDC7200 ideal for flow meter applications, where zero and low flow
measurements require high accuracy.

When placed in the Autonomous Multi-Cycle Averaging Mode, the TDC7200 can be optimized for low
system power consumption, making it ideal for battery powered flow meters. In this mode, the host can go
to sleep to save power, and it can wake up when interrupted by the TDC upon completion of the
measurement sequence.

Figure 2. TDC7200 Block Diagram

http://www.ti.com
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2.2.2 OPA857
Features:
• Internal midscale reference voltage
• Pseudo-differential output voltage
• Wide dynamic range
• Closed-loop transimpedance bandwidth:

– 125 MHz (5-kΩ transimpedance gain, 1.5-pF external parasitic capacitance)
– 105 MHz (20-kΩ transimpedance gain, 1.5-pF external parasitic capacitance)

• Ultra-low input-referred current noise (Brickwall filter BW = 135 MHz):
15 nARMS (20-kΩ Transimpedance)

• Very fast overload recovery time: < 25 ns
• Internal input protection diode
• Power supply:

– Voltage: 2.7 to 3.6 V
– Current: 23.4 mA

• Extended temperature range: –40°C to +85°C

The OPA857 is a wideband, fast overdrive recovery, fast-settling, ultra-low-noise transimpedance amplifier
targeted at photodiode monitoring applications. With selectable feedback resistance, the OPA857
simplifies the design of high-performance optical systems. Very fast overload recovery time and internal
input protection provide the best combination to protect the remainder of the signal chain from overdrive
while minimizing recovery time. The two selectable transimpedance gain configurations allow high
dynamic range and flexibility required in modern transimpedance amplifier applications. The OPA857 is
available in a 3-mm×3-mm VQFN package.

The device is characterized for operation over the full industrial temperature range from –40°C to +85°C.

Figure 3. OPA857 Block Diagram

http://www.ti.com
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2.2.3 TLV3502
Features:
• High speed: 4.5 ns
• Rail-to-rail I/O
• Supply voltage: 2.7 to 5.5 V
• Push-pull CMOS output stage
• Shutdown (TLV3501 only)
• Micro packages: 6-pin SOT-23 (single), 8-pin SOT-23 (dual)
• Low supply current: 3.2 mA

The TLV350x family of push-pull output comparators feature a fast 4.5-ns propagation delay and operation
from 2.7 to 5.5 V. Beyond-the-rails input common-mode range makes it an ideal choice for low-voltage
applications. The rail-to-rail output directly drives either CMOS or TTL logic.

Microsize packages provide options for portable and space-restricted applications. The single (TLV3501)
is available in 6-pin SOT-23 and 8-pin SO packages. The dual (TLV3502) comes in the 8-pin SOT-23 and
8-pin SO packages.

Figure 4. TLV3502 Block Diagram

http://www.ti.com
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2.3 System Design Theory
From a very high level, the system measures the distance between the sensor and the first obstacle
ahead of it. The distance is measured by counting the time between the emission of a pulse of light and
the reception of the echo. The time measurement is realized by a TDC that can be seen as a stopwatch
integrated in a device. The TDC has a timing resolution of 50 ps.

2.3.1 LIDAR System Options

2.3.1.1 Phase Shift Method for ToF Estimation
The phase shift method relies on modulating the amplitude of the light emitted and measuring the phase
difference between the emitted light and the received light. Given the speed of light (c) and the modulation
frequencies (f), aliasing will happen at distances (d) that are a multiple of d = c × f/2.

To reduce the impact of this effect, multiple frequencies can be used to increase the sensing range. Phase
shift measurement can be either direct sampling, heterodyne (because the phase of the signal is not
changed at intermediate frequency) or under sampled with I/Q demodulation.

2.3.1.2 Pulse ToF Estimation
The pulse ToF estimation makes a direct measure of the ToF between emission of the laser light and
receiving it.

2.3.2 Optical Design
At a high level, the optic design needs to fulfill the following requirements:
• The field of view common between the transmit path and the receive path needs to be as big as

possible.
• The optics need to maximize the energy received by the target before it is reflected back to the sensor.
• The optics need to maximize the energy received by the photodiode.
• The optics may have a function of filtering ambient light to reduce the background noise seen by the

system.

2.3.2.1 Laser Diodes, LEDs, and Photodiodes and Considerations for Maximum Range
One of the most fundamental questions when designing a LIDAR system is to estimate the amount of
energy that the sensing element will receive as a function of the transmitted power.

Similarly to the radar equation, Equation 1 is a LIDAR equation:

(1)

Where:
• Gt is the efficiency of the transmitting element
• Gr is the efficiency of the receiving element
• R is the half-diameter of the optical receiving element (and π ×r2, the surface)
• 2 × π is the solid angle at which light is diffracted by the target
• D is the distance between the target and the sensing element

For Equation 1 to hold true, assume that the transmitted light hits entirely the target. This is the role of the
lenses, which are fitted in front of the laser diode or the LED.

http://www.ti.com
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However, keep in mind that in most industrial (and automotive) designs, the laser diode is a
semiconductor diode because of their mechanical structure force the light to diffract as it leaves the
semiconductor substrate (see Figure 5).

Figure 5. Diffraction Angles of Semiconductor Laser Diode

Most diodes being vertically stacked, the horizontal slit creates a diffracting beam that has a wider vertical
angle than the horizontal angle.

As a first approximation, consider 30 to 40 degrees on the perpendicular axis and 10 degrees for the
parallel axis can be considered. The lens has to be designed to fix this astigmatism; otherwise, the focal
point of the perpendicular axis will not be on the same point as the focal point of the parallel axis (see
Figure 6).

Figure 6. Possible Astigmatism Problem With Standard Lense in Front of Semiconductor Laser Diode

For systems using LEDs instead of a laser diode, Equation 1 needs to be corrected to factor the broad
diffusion of the light. The received power is then a function of 1/d4 instead of 1/d2 for lasers.

http://www.ti.com
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2.3.2.2 Background Light, Wavelength, and Maximum Sensing Range
The ability to detect the echo is determined by the ability to illuminate the target and by the ability to see
the illumination against background light. Background light can be inside factories, the light emitted, and
diffracted by other sensors, but it could also be the light emitted by the factory lights. In outdoor
environments, the background light is dominated by sunlight, whose energy density profile is given by the
ASTMG173 whose profile is shown in Figure 7:

Figure 7. Sunlight Energy Density Profile

For indoor lighting infrared being low in LED lighting and also relatively lower than visible light, infrared is
often selected as the wavelength for distance measurement.

For the outdoors, frequencies are selected as a mix between frequencies where sunlight is relatively low
and availability of cost effective emitters. At the time of writing this design guide, 905 nm is the best
compromise between low background light and broad availability of mass manufactured diodes and
photodiodes.

When looking in the tables given by the ASTMG173, the power density at 905 nm is 0.76337 W/m 2.
Assuming a lense of 1.5 cm in diameter, the sensing element receives 134 µW when facing the sunlight
directly.

This value though unrealistic (the uses cases for pointing a laser towards the sun are pretty thin) gives a
good boundary condition for other considerations in the design.

2.3.2.3 Attenuation Through the Air
While 905 nm is absorbed by water vapor, the contribution of attenuation through the air due to water
vapor compared to the diffraction on the target is neglectable and thus is not mentioned further in this
design guide.

http://www.ti.com
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2.3.2.4 Reflection and Diffraction Considerations
Many different studies focus on researching reflection and diffraction values, being dependent on the
target, for different material relevant to different industries. Amongst all possible sources, this reference
design cites the ISO16331, which gives boundaries for reflection to be between 20% and 80%. Riegl study
gives at 905 nm, asphalt as the material with lowest relative reflectance (10%), and snow as the material
with the highest relative reflectance (90%)[5].

2.3.2.5 Field of View Considerations for Minimum Sensing Distance
At short distances, the optics may play a strong role in defining the minimum distance that can be sensed.
To ensure that the optics are designed according to the system level requirements, see Figure 8.

Figure 8. Minimum Sensing Distance

On the left of Figure 8 is the laser diode, which emits a red beam. The field of view of the sensor is drawn
in blue.

On the middle diagram, it is clear that the red and blue disc do not overlap. This is because the field of
view of the sensor is not the same as the one of the laser emitter. As a result, no ToF computation can
take place as the echo is not received by the sensor.

On the right diagram, as the field of view of both transmit and receive overlap, the sensor receives the
echo and a ToF computation may be possible (assuming all other constraints are respected).

2.3.2.6 Sensing Element
Sensing elements are elements that convert optical power into electrical power. For a LIDAR design, the
key parameters of relevance are:
• Sensing wavelength (nm): Needs to be matched to the transmit wavelength
• Responsivity (A/W): The amount of electrical current generated as a function of the optical power

received. Typical values can be considered of 0.5 A/W (though varies from 0.4 to 0.7[6])
• Dark current: Because photo sensors generate current as a function of the power of light received,

dark current is the current that will be generated even in absence of light.
• Rise time: The speed at which a photo sensor reacts to the optical light being received

2.3.2.7 Eye Safety
IEC 60825 is a key consideration for eye safety when designing with laser. Do not start a design without
familiarizing with this standard.

http://www.ti.com
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2.3.3 Electronics for Pulse ToF
To estimate the electronics using Equation 1, assume that:
• Light is perfectly collimated and 100% reaches target
• Light is perfectly diffused and 2π solid angle from the target back to the RX lense (energy density

constant over 2 × π × d2 with d distance from target)
• RX lense r diameter (lense surface: π × r2)
• RX lense then capture Equation 2:

(2)
• Ptx = 70 W
• Photo-element sensitivity of 0.5 A/W

One can compute Table 2:

Table 2. Comparison of Received Power by Photo Sensor for Different
Distances to Target and Associated Current Generated

d P_RX IIN
10 80 µW 40 µA
30 9 µW 4.5 µA
100 0.8 µW 0.4 µA

From Table 2, if the assumptions listed are verified, a sensing distance of 100 m is considered achievable.

Beyond the optics, at a high-level the electronics need to fulfill the following requirements:
• Send a pulse of optical energy of the maximum amount of energy over the smallest amount of time.
• Discriminate the smallest possible amount of energy from the echo from the background noise.
• Be the most accurate possible on the time measure between the moment the light pulse is transmitted

and the moment it is received.

2.3.3.1 Maximum Sensing Distance as a Function of TDC
TDCs by construct are less limited in terms of range than ADCs, which are limited to a maximum voltage
and is often the supplied one. Nonetheless, TDCs have a maximum measuring range, which is their
registered width. In the case of the TDC7200, its datasheet gives that the maximum range is a function of
the clock fed to it.

Computing this for a few values gives:
• F = 1.0 MHz ↔ Tmax = 65.5 ms
• F = 2.0 MHz ↔ Tmax = 32.8 ms
• F = 5.0 MHz ↔ Tmax = 13.1 ms
• F = 10.0 MHz ↔ Tmax = 6.6 ms
• F = 16.0 MHz ↔ Tmax = 4.1 ms

With 4.6 ms being equivalent to 1379 km, the range of the LIDAR design is not impacted by the
measurement range of the TDC.

2.3.3.2 Resolution, Accuracy, and Repeatability
As with any measurement system, its performances are characterized by its resolution, accuracy, and
repeatability.

2.3.3.2.1 Resolution
The resolution of the LIDAR system is the smallest difference between two reported distances. For a TDC-
based system, the resolution is determined by the LSB of the TDC.

http://www.ti.com
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2.3.3.2.2 Accuracy
Accuracy is impacted by timing delays introduced over the signal chain. Those timing errors are
predominantly driven by the propagation delays of the different devices. Those propagation delays vary
with the following parameters: from device to device, over temperature, over supply voltage, and over
input drive.

2.3.3.2.2.1 Walk Error
A specific accuracy error for the pulse ToF measurement is called in the literature as the "walk error." A
walk error is an intrinsic source of inaccuracies resulting from combining the following factors:
• The pulse of light has a limited slope from its start until it reaches its peak of energy.
• Materials will reflect light with ratios varying between 0% and 100%.
• Pulse ToF measurement uses a threshold to detect arrival of a signal.

Given the variation of energy received, which varies with the target object and independent of the
distance, the threshold will be crossed at varying times which can cause error in the estimated ToF.

This is illustrated in Figure 9. The comparator input is set to the threshold voltage, VTH. The bigger signal,
which clips very fast, passes the threshold at t1; another signal, which barely reaches the clipping signal,
will pass the threshold at time t2 (with t2 > t1); and a very attenuated signal will pass the threshold at time
t3 with t3 > t2 > t1.

Those echoes are from target situated at the same distance because they peak at the same time, so the
light has traveled the same distance, hence the walk error being a systematic error.

Figure 9. Impact of Received Amplitude on Estimated ToF and Associated Denomination of "Walk Error"

2.3.3.2.3 Repeatability
Repeatability is the ability of the system to provide the same result when measuring the same quantity (in
other words, the relative weight of noise in the reported final value). The sources of noise in a pulse ToF
system are:
• Cycle-to-cycle period jitter
• Long-term jitter
• Phase jitter
• Time interval error and maximum time interval error

It is often considered that the noise is determined by the first stage of the amplification. As most TDC
architecture relies on an external clock for the "slow" counting, the external clock will contribute.

Clock noise as defined per JEDEC standard 65B JESD65V and industry best practices can be listed as:
• The background noise of the TDC component itself
• The jitter at the output of the comparator, which itself is a function of the noise at the input signal

divided by the slope of the input signal

http://www.ti.com
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To identify the most relevant noise definition, keep in mind that the design goal for this LIDAR system is
for ranges up to 100 m, which is a total ToF of 333 ns. Clocks frequencies are between 1 and 10 MHz,
which means periods between 1 µs and 100 ns.

Therefore the noise contribution from the clock is the noise over one to three periods.

2.3.3.2.4 Cycle-to-Cycle Period Jitter
Cycle-to-cycle period jitter is defined in JEDEC Standard JESD65B as the variation in period between
adjacent period, over a random sample of adjacent period pairs. While cycle to cycle is used for spread
spectrum clocks rather than period jitter, it is relevant to measure the contribution of the clock to the
system accuracy.

2.3.3.2.5 Long-Term Jitter
Long-term jitter though is not defined in JESD65B; however, it is often mentioned in literature for distance
and ranging applications (sonar, LIDAR, and so on). Long-term jitter is important if the total measurement
time is significantly longer than the clock period.

Given the system level requirement for this TI Design, long-term jitter is not relevant.

2.3.3.2.6 Phase Jitter, Time Interval Error, and Maximum Time Interval Error
Phase noise is usually specified in clocking systems, and this information is often used to derive the phase
jitter or time interval error.

Phase noise is specified in dBc/Hz (where dBc is the dB relative to the carrier) and once integrated over a
range of frequencies will give the noise power.

(3)

From the noise power, the RMS jitter can be calculated:

(4)

From which the jitter in seconds can be calculated as:

(5)

2.3.3.2.7 Allan Variance
The generic problem of clock stability and impact on measurement has been a theoretical problem for a
long time, which was eventually solved by D.W. Allan. While the considerations of the definition and
applicability is beyond the scope of this reference design, find more information in the original
publication[7].
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2.3.4 Signal Processing for TDC
At a high level given the relative lack of publication on signal processing for TDC, this section elaborates
on a few basic concepts. Some of these concepts are leveraged for this reference design, others are
considered for future versions but could be used by engineers willing to start with this first reference
design for LIDAR.

2.3.4.1 Review of State of the Art
Several publications[1][2][3] are using the same scheme: The received signal from the photo-detector is
amplified and compared to a validating threshold of a comparator whose output triggers the STOP input of
the TDC.

More advanced schemes recommend measuring the falling edge[1] to provide a compensation scheme for
the walk error.

Other documents show how to make multiple ToF measurements to reduce the uncertainty of the
measure (similar to oversampling and dithering techniques with ADCs).

2.3.4.2 Proposed Signal Chain for TDC-Based Setup
ADC signal processing is taught in all electronic classes and is based on the sampling theory of Harry
Nyquist and the later work of Claude Shannon, published in 1948 in the paper "A Mathematical Theory of
Communication," resulting in the Nyquist-Shannon sampling theorem.

To work with the digital samples coming from the TDC, one has to look at the problem from another angle.
Table 3 gives an overview of the differences and similarities.

Table 3. Comparing ADC-Based Sampling and TDC-Based Sampling

PARAMETER ADC-BASED SAMPLING TDC-BASED SAMPLING

Conversion trigger Clock input (either internal or external) or
trigger Level crossing

Analog signal amplitude information Exact to the quantization error Exact but lower number of steps

Digital output Digital image of the input voltage Digital image of the time at the instant of
crossing the threshold

Main noise characteristics Voltage noise Jitter

Before looking into the signal processing specifics of the TDC generated samples, another important
consideration is to get familiar with a lesser known publication from the Bell Labs. In 1976, B.F. Logan
published the article "Information in the Zero Crossings of Bandpass Signals" in which he demonstrated
that at the zero crossings of h determine h within a multiplicative constant.

In other words, if one has a bandpass signal and captures the instant at which the signal crosses zero,
one has all the required information to reconstruct the signal except for the amplitude.

Based on this, one can reasonably start building a TDC based system that captures rising edges and
falling edges when crossing the zero and, knowing that all the information is given, process it to extract
the desired ToF.
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2.3.4.3 Time Domain Correlation
not having found an existing name for the described method, the author offers that the following be called
"time domain correlation." Time domain correlation takes the samples from the TDC (having sampled
rising and falling edges at the zero cross) for both the transmit and for the receive signal.

Time domain correlation has the following benefits:
• Optical multi-path detection
• Increased SNR

To reject optical multi-path (or to detect them), the transmit pattern must be a form of orthogonal codes
and the receiver only needs to correlate with the last transmitted pattern.

To detect optical multi-path, the receiver needs to store in a buffer the patterns and try the patterns that
are stored in the buffer.

This concept is illustrated in the following diagrams.

Figure 10. Transmit Pattern (Time Unit is Arbitrary): 1-1-0-0-1-1-1-1

In absence of any noise, the output of the comparator would be the one shown in Figure 11.

Figure 11. Output of the Comparator in Absence of Noise

Once the MCU reads the TDC values, the memory will hold [10,+],[14,–],[17,+]… where the number is the
time stamp and the symbol is the rising or falling edge. A very simple subroutine could expend this into an
array, which would resemble Figure 11.
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Assuming now that the signal chain is noisy, look at a possible output of the comparator as shown in
Figure 12.

Figure 12. Output of the Comparator Feeding the TDC in Presence of Noise

Typically, the threshold of the comparator is selected three times above the RMS noise floor (or six times
depending on the compromise between false positive and false negatives). With the proposed approach,
the threshold can be lowered significantly, thus reducing the amount of false negatives. With a classical
approach, however, the MCU subroutine may consider a ToF of 5 of the arbitrary time unit.

However, after computing a simple cross correlation between both the noise free received signal and the
noisy received signal (see Figure 13), the correct ToF (10 arbitrary units) is correctly computed in both
cases.

Figure 13. Correlation Between Received Signals and Transmitted Signals (Respectively Noise Free and
Noisy)
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2.3.4.4 Signal-to-Noise Ratio
A signal-to-noise ratio is defined as the ratio of the power of the signal to the power of the background
noise (or unwanted signal).

For a TDC-based signal chain, take care when selecting the detection threshold when the electrical level
passes it, meaning that the signal has being detected.

When a single event is to be detected (the generating and processing of a single STOP signal), the
threshold needs to be selected so that the probability of a false positive is acceptable for system
performances.

As a reminder, the instant value of a white Gaussian noise is higher than its standard deviation (also
called RMS value) such that a signal is 16%. Therefore, if a system can accommodate more than 16% of
false ToF results (either through averaging or through robustness at other levels of the system), the
threshold at the input can be set to the background noise level average plus its RMS value.

Assuming that the background noise has a mean value of zero, in the following table is summarized the
system robustness.

Table 4. False Trigger

VTH AS A FUNCTION OF RMS PROBABILITY OF FALSE TRIGGERING OF TDC
1 16%
2 2.3%
3 0.13%

Given the white Gaussian nature of the considered noise, the time of triggering will be equally distributed
between 0 and the theoretical ToF arrival.

Being able to measure multiple STOP pulses can help to increase robustness because sets of pulses that
are not spaced by the transmit pattern can be rejected.

Moving from detecting a single pulse rising edge to detecting all the zero cross can further improve the
SNR. It is possible to use the theoretical framework setup by Logan by selecting an arbitrary amplitude of
one for all signal. The SNR, which is beyond the ratio of power, is the ratio of the square of the amplitude.
Having selected an arbitrary amplitude of '1' (one), the SNR then becomes the ratio of the square of the
pulse widths:

(6)

In other words, in the time domain, the SNR is the ratio of the square of the pulse width time of signals to
the square of the pulse width of the noise.

2.3.4.5 Additional Benefit of Time Domain Correlation
An additional benefit of the proposed scheme is that it also allows to compute a compensation scheme for
the walk error[1].
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3 Testing Requirements and Test Results

3.1 Test Setup
This reference design is in a BoosterPack™ form factor. This allows the design to connect to a TI
LaunchPad™ to use and evaluate easily. The chosen LaunchPad is the one that contains the
MSP430FR5969, which is a 16-MHz ultra-low-power microcontroller featuring a 60KB FRAM, a 2KB
SRAM, and 40IO. The microcontroller initiates the sequence that triggers the two TDC7200 devices, which
measure the time taken by the light to fly back and forth to an object, and the UCC27321, which drives the
laser.

In this reference design, the main focus has been to characterize the differential ToF measurements
approach using two TDC7200 devices. To do that, the error of the differential measurement of the two
TDC7200 devices has to be calculated. The error is nothing else than the difference of the ToF, which is
the time passed between the START and the STOP pulses, of the two TDC7200 devices once they
receive exactly the same START and STOP pulse.

The TDC7200 has a blanking time of 12 ns. This blanking time is too big for small distance sensing. This
reference design allows virtually no blanking time for TDC measurement.

Figure 14 shows the test setup. A pulse trigger is generated by a GPIO pin of the LaunchPad. This pin is
connected to the START pin of the two TDC7200 devices and to the TRIG input of a waveform generator,
HP33250A.

After receiving a START pulse, the clock counter of the TDC7200 starts after the next rising edge of the
external clock signal that comes from the MSP430FR5969. This can be set to 1 MHz, 4 MHz, and 16
MHz.

At the same time, the waveform generator, after receiving the START pulse, generates a delay set by the
user and outputs a STOP trigger, which is sent back to the STOP pin of the two TDC7200 devices through
SMA cables of the same length.

After the STOP trigger has been received, the TDC signals to the MCU through interrupt (INTB pin) that
there are new measurement results waiting in the registers. If no STOP signal is received, either the Clock
Counter or Coarse Counter overflow and generate an interrupt.

Depending on the expected ToF, the TDC7200 can be configured in two different modes. Measurement
mode 1 is for an expected ToF that is smaller than 500 ns while measurement mode 2 is for an expected
ToF that is bigger than 500 ns. Depending on the chosen measurement mode, there are two different way
to calculate the ToF:

(7)

(8)

For more information about these measurement modes, see TDC7200 Time-to-Digital Converter for Time-
of-Flight Applications in LIDAR, Magnetostrictive and Flow Meters.
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To measure the differential measurements of the two TDC7200 devices for this reference design, use
measurement mode 2 even for a ToF below 500 ns.

Calibrate to know the actual value of the LSB, normLSB. Keep in mind that the actual value of the LSB
can vary depending on environmental variables (temperature, systematic noise, and so on). This variation
can introduce significant errors into the measurement result. There is also an offset error in the
measurement due to certain internal delays in the device.

Figure 14. Test Setup
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3.2 Test Results
The interrupt status of the two TDCs has been monitored through an oscilloscope to check that the TDC
signals the MCU correctly MCU once the STOP trigger has been received.

The counter overflow threshold have been set to 250 µs. In Figure 15, the threshold is not exceeded,
meaning that the interrupt (green line) is generated once the TDCs receive the STOP trigger. In Figure 16,
the threshold is exceeded, meaning the interrupt is generated once the clock reaches 250 µs and no
STOP (red line) trigger is received yet.

Figure 15. Interrupt Behavior When Counter Overflow Threshold is Not Exceeded

Figure 16. Interrupt Behavior When Counter Overflow Threshold is Exceeded
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The delay between the START and STOP trigger varies from 20 up to 140 µs with steps of 20 µs with the
waveform generator, and for each step, the error as a difference between the measured ToF of the two
TDCs is calculated.

This calculation has been done feeding to the TDC three different clock frequency coming from the
MSP430FR5969 (1 MHz, 4 MHz, and 16 MHz). The results are shown in Figure 17, Figure 18, and
Figure 19, where on the y axis is represented the error and on the x axis is represented the delay
generated by the waveform generator.

Figure 17. Differential Error With 1-MHz Clock Figure 18. Differential Error With 4-MHz Clock

Figure 19. Differential Error With 16-MHz Clock

As shown in these graphs, the error decreases as the clock frequency increases. This is true because the
standard deviation of the TDC decreases as the clock frequency increases. At 16 MHz, the system
differential error related to the hardware itself is 800 ps peak to peak. It is important to notice that the
following contributed to this error: the HP33250A, which has a trigger input burst jitter (RMS) of 1 ns, the
accuracy of the internal clock of the MSP430FR5969, and some cabling mismatch.

The jitter accumulates on each clock cycle, so the uncertainty associated to a time measurement is a
function of the clock jitter and the number of clock cycles measured. Averaging can be improved by
reaching an error below 30 ps, which corresponds to less than 1 cm.
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4 Design Files

4.1 Schematics
To download the schematics, see the design files at TIDA-00663.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-00663.

4.3 PCB Layout Recommendations

4.3.1 Layout Prints
To download the layer plots, see the design files at TIDA-00663.

4.4 Altium Project
To download the Altium project files, see the design files at TIDA-00663.

4.5 Gerber Files
To download the Gerber files, see the design files at TIDA-00663.

4.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-00663.

5 Software Files
To download the software files, see the design files at TIDA-00663.
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4. Chalmers University of Technology, Development of a low-cost laser range-finder (LIDAR): Master’s
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7 Terminology

TDC— Time-to-digital convertor
To better understand the TDC name, consider an ADC as being a "voltage-to-digital converter."
ADCs are used to convert the physical unit "volts" into a digital image, which is usually proportional
to an absolute reference. Similarly, TDCs are a sub-branch of the ADC realm that focus on
converting the physical unit "time" into a digital value.
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