PMP20637 RevA

Test Report

- 390V – 48V/1kW high frequency resonant converter
- 950kHz resonant frequency with less than 210g weight
- Utilize TI HV GaN FETs as input switches
- Optimized LLC SR conduction with UCD7138/UCD3138A
- Achieve peak 97.6% efficiency
- Power Stage dimension: 2” x 2.1” x 1.7”

Test Completion Date: May 1, 2017
Table of Contents

1. Board Photos ...1
 1.1 Whole board top view ...1
 1.2 Whole board bottom view ..2
 1.3 Whole board side view ..3
 1.4 Whole board - weight ..4
 1.5 Transformer structure ...5
 1.6 Transformer side view 1 ...6
 1.7 Transformer side view 2 ...7

2. Efficiency ..8
 2.1 Efficiency Data @ 380Vin ..8
 2.2 Efficiency Data @ 390Vin ..9
 2.3 Efficiency Data @ 400Vin ..9

3. Thermal Performance ..10
 3.1 380VDC input, 47.4V/21A output ...10
 3.2 390VDC input, 48.7V/21A output ...11
 3.3 400VDC input, 50V/21A output ..12

4. StartUp Transient ...13
 4.1 380VDC input, 48V no load ...13
 4.2 390VDC input, 48V no load ...14
 4.3 400VDC input, 48V no load ...14
 4.4 380VDC input, 48V/4A ...15
 4.5 390VDC input, 48V/4A ...15
 4.6 400VDC input, 48V/4A ...16
 4.7 380VDC input, 48V/6A ...17
 4.8 390VDC input, 48V/6A ...17
 4.9 400VDC input, 48V/6A ...18
 4.10 380VDC input, 48V/8A ...19
4.11 390VDC input, 48V/8A ...19
4.12 400VDC input, 48V/8A ...20
4.13 380VDC input, 48V/10A ..20
4.14 390VDC input, 48V/10A ..21
4.15 400VDC input, 48V/10A ..21

5. Turn Off Transient ...22
5.1 380VDC input, 48V/4A ...22
5.2 390VDC input, 48V/4A ...23
5.3 400VDC input, 48V/4A ...23
5.4 380VDC input, 48V/10A ...24
5.5 390VDC input, 48V/10A ...25
5.6 400VDC input, 48V/10A ...25

6. Key Waveforms ..26
6.1 380Vin, 48V no load ...26
6.2 390Vin, 48V no load ...27
6.3 400Vin, 48V no load ...27
6.4 380Vin, 48V/21A ...28
6.4 390Vin, 48V/21A ...28
6.4 400Vin, 48V/21A ...29
1. Board Photos

1.1 Whole board top view
1.2 Whole board bottom view
1.3 Whole board side view
1.4 Whole board - weight
1.5 Transformer structure

The LLC transformer of PMP20637Rev A consist of a “U” shape core with Hitachi ML91S core material, PMP20637 RevB windings, PMP20637 RevD load card. The transformer is gapped to have 28μH primary inductance (@1MHz measured frequency). Transformer structure is shown in the figure below. Notice the Winding sequence is 1-3-2-4 from very top.
1.6 Transformer side view 1
1.7 TRANSFORMER SIDE VIEW 2
2. Efficiency

The efficiency curves are shown in the tables and graph below. A 12V Fan (Delta FFB03612EHN at full speed) is applied to provide air cooling to the board. Bias (5V & 12V) power dissipations are excluded from the efficiency calculation.

![Efficiency Graph]

2.1 Efficiency Data @ 380Vin

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Pin(W)</th>
<th>Vout(V)</th>
<th>Iout(mV)</th>
<th>Iout(A)</th>
<th>Pout(W)</th>
<th>Eff(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>0.02</td>
<td>7.98</td>
<td>48.30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>380</td>
<td>0.28</td>
<td>104.50</td>
<td>48.20</td>
<td>3.96</td>
<td>1.98</td>
<td>95.56</td>
<td>91.44%</td>
</tr>
<tr>
<td>380</td>
<td>0.53</td>
<td>200.98</td>
<td>48.12</td>
<td>7.94</td>
<td>3.97</td>
<td>191.27</td>
<td>95.17%</td>
</tr>
<tr>
<td>379.9</td>
<td>0.78</td>
<td>297.54</td>
<td>48.04</td>
<td>11.93</td>
<td>5.97</td>
<td>286.92</td>
<td>96.43%</td>
</tr>
<tr>
<td>379.9</td>
<td>1.04</td>
<td>393.99</td>
<td>47.96</td>
<td>15.92</td>
<td>7.97</td>
<td>382.24</td>
<td>97.02%</td>
</tr>
<tr>
<td>379.8</td>
<td>1.29</td>
<td>490.40</td>
<td>47.89</td>
<td>19.91</td>
<td>9.97</td>
<td>477.34</td>
<td>97.34%</td>
</tr>
<tr>
<td>379.7</td>
<td>1.55</td>
<td>586.71</td>
<td>47.81</td>
<td>23.90</td>
<td>11.96</td>
<td>572.04</td>
<td>97.50%</td>
</tr>
<tr>
<td>379.7</td>
<td>1.80</td>
<td>683.16</td>
<td>47.73</td>
<td>27.69</td>
<td>13.96</td>
<td>666.43</td>
<td>97.55%</td>
</tr>
<tr>
<td>379.7</td>
<td>2.05</td>
<td>779.14</td>
<td>47.64</td>
<td>31.88</td>
<td>15.96</td>
<td>760.33</td>
<td>97.59%</td>
</tr>
<tr>
<td>379.6</td>
<td>2.31</td>
<td>875.36</td>
<td>47.55</td>
<td>35.87</td>
<td>17.96</td>
<td>853.87</td>
<td>97.55%</td>
</tr>
<tr>
<td>379.6</td>
<td>2.56</td>
<td>971.78</td>
<td>47.47</td>
<td>39.86</td>
<td>19.95</td>
<td>947.26</td>
<td>97.48%</td>
</tr>
<tr>
<td>379.5</td>
<td>2.70</td>
<td>1024.65</td>
<td>47.40</td>
<td>42.05</td>
<td>21.05</td>
<td>997.83</td>
<td>97.38%</td>
</tr>
</tbody>
</table>
2.2 Efficiency Data @ 390Vin

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Pin(W)</th>
<th>Vout(V)</th>
<th>Iout(mV)</th>
<th>Iout(A)</th>
<th>Pout(W)</th>
<th>Eff(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>389.7</td>
<td>2.70</td>
<td>1052.19</td>
<td>48.72</td>
<td>42.05</td>
<td>21.05</td>
<td>1025.62</td>
<td>97.47%</td>
</tr>
<tr>
<td>389.8</td>
<td>2.56</td>
<td>997.89</td>
<td>48.77</td>
<td>39.85</td>
<td>19.95</td>
<td>972.95</td>
<td>97.50%</td>
</tr>
<tr>
<td>389.8</td>
<td>2.33</td>
<td>909.01</td>
<td>48.85</td>
<td>36.26</td>
<td>18.15</td>
<td>886.76</td>
<td>97.55%</td>
</tr>
<tr>
<td>389.9</td>
<td>2.08</td>
<td>810.21</td>
<td>48.94</td>
<td>32.28</td>
<td>16.16</td>
<td>790.88</td>
<td>97.61%</td>
</tr>
<tr>
<td>389.9</td>
<td>1.82</td>
<td>710.79</td>
<td>49.02</td>
<td>28.27</td>
<td>14.15</td>
<td>693.76</td>
<td>97.60%</td>
</tr>
<tr>
<td>390</td>
<td>1.57</td>
<td>611.91</td>
<td>49.12</td>
<td>24.28</td>
<td>12.16</td>
<td>597.06</td>
<td>97.57%</td>
</tr>
<tr>
<td>390</td>
<td>1.32</td>
<td>512.85</td>
<td>49.18</td>
<td>20.29</td>
<td>10.16</td>
<td>499.55</td>
<td>97.41%</td>
</tr>
<tr>
<td>390.1</td>
<td>1.05</td>
<td>409.21</td>
<td>49.26</td>
<td>16.10</td>
<td>8.06</td>
<td>397.04</td>
<td>97.02%</td>
</tr>
<tr>
<td>390.1</td>
<td>0.80</td>
<td>310.13</td>
<td>49.34</td>
<td>12.11</td>
<td>6.06</td>
<td>299.13</td>
<td>96.45%</td>
</tr>
<tr>
<td>390.1</td>
<td>0.54</td>
<td>211.04</td>
<td>49.41</td>
<td>8.12</td>
<td>4.07</td>
<td>200.85</td>
<td>95.17%</td>
</tr>
<tr>
<td>390.2</td>
<td>0.28</td>
<td>107.31</td>
<td>49.49</td>
<td>3.93</td>
<td>1.97</td>
<td>97.37</td>
<td>90.74%</td>
</tr>
<tr>
<td>390.2</td>
<td>0.02</td>
<td>8.19</td>
<td>49.57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

2.3 Efficiency Data @ 400Vin

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Pin(W)</th>
<th>Vout(V)</th>
<th>Iout(mV)</th>
<th>Iout(A)</th>
<th>Pout(W)</th>
<th>Eff(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.2</td>
<td>0.02</td>
<td>8.80</td>
<td>50.84</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>400.1</td>
<td>0.28</td>
<td>110.03</td>
<td>50.76</td>
<td>3.93</td>
<td>1.97</td>
<td>99.87</td>
<td>90.77%</td>
</tr>
<tr>
<td>400.1</td>
<td>0.54</td>
<td>216.85</td>
<td>50.68</td>
<td>8.12</td>
<td>4.07</td>
<td>206.02</td>
<td>95.00%</td>
</tr>
<tr>
<td>400.1</td>
<td>0.80</td>
<td>318.48</td>
<td>50.61</td>
<td>12.11</td>
<td>6.06</td>
<td>306.83</td>
<td>96.34%</td>
</tr>
<tr>
<td>400</td>
<td>1.05</td>
<td>420.00</td>
<td>50.54</td>
<td>16.10</td>
<td>8.06</td>
<td>407.35</td>
<td>96.99%</td>
</tr>
<tr>
<td>400</td>
<td>1.30</td>
<td>521.20</td>
<td>50.46</td>
<td>20.09</td>
<td>10.06</td>
<td>507.50</td>
<td>97.37%</td>
</tr>
<tr>
<td>400</td>
<td>1.56</td>
<td>622.80</td>
<td>50.38</td>
<td>24.08</td>
<td>12.06</td>
<td>607.33</td>
<td>97.52%</td>
</tr>
<tr>
<td>400</td>
<td>1.81</td>
<td>724.40</td>
<td>50.30</td>
<td>28.07</td>
<td>14.05</td>
<td>706.84</td>
<td>97.58%</td>
</tr>
<tr>
<td>399.9</td>
<td>2.07</td>
<td>826.19</td>
<td>50.22</td>
<td>32.05</td>
<td>16.04</td>
<td>805.78</td>
<td>97.53%</td>
</tr>
<tr>
<td>399.9</td>
<td>2.32</td>
<td>927.37</td>
<td>50.14</td>
<td>36.04</td>
<td>18.04</td>
<td>904.65</td>
<td>97.55%</td>
</tr>
<tr>
<td>399.8</td>
<td>2.57</td>
<td>1028.69</td>
<td>50.05</td>
<td>40.03</td>
<td>20.04</td>
<td>1003.00</td>
<td>97.50%</td>
</tr>
<tr>
<td>399.8</td>
<td>2.70</td>
<td>1079.46</td>
<td>50.01</td>
<td>42.02</td>
<td>21.04</td>
<td>1052.02</td>
<td>97.46%</td>
</tr>
</tbody>
</table>
3. Thermal Performance

During the thermal test, a 12V Fan (Delta FFB03612EHN at full speed) is applied to provide air cooling to the board.

3.1 380VDC input, 47.4V/21A output

<table>
<thead>
<tr>
<th>Spot analysis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amb Temperature</td>
<td>28.3°C</td>
</tr>
<tr>
<td>Area analysis</td>
<td>Value</td>
</tr>
<tr>
<td>Q300_1Max</td>
<td>49.0°C</td>
</tr>
<tr>
<td>XFMR coreMax</td>
<td>39.4°C</td>
</tr>
<tr>
<td>TI GaN FETMax</td>
<td>51.0°C</td>
</tr>
</tbody>
</table>
3.2 390VDC Input, 48.7V/21A Output

<table>
<thead>
<tr>
<th>Spot analysis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amb Temperature</td>
<td>26.6°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area analysis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q300_1Max</td>
<td>46.7°C</td>
</tr>
<tr>
<td>XFMR coreMax</td>
<td>38.2°C</td>
</tr>
<tr>
<td>TI GaN FETMax</td>
<td>46.9°C</td>
</tr>
</tbody>
</table>
3.3 400VDC INPUT, 50V/21A OUTPUT

<table>
<thead>
<tr>
<th>Spot analysis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amb Temperature</td>
<td>27.1°C</td>
</tr>
<tr>
<td>Area analysis</td>
<td>Value</td>
</tr>
<tr>
<td>Q300_1Max</td>
<td>46.6°C</td>
</tr>
<tr>
<td>XFMR coreMax</td>
<td>38.5°C</td>
</tr>
<tr>
<td>TI GaN FETMax</td>
<td>46.1°C</td>
</tr>
</tbody>
</table>
4. StartUp Transient

Oscilloscope channel assignments during the startup transient tests are C1: SR V_{DS}, C2: V_{out}, C3: I_{out}, C4: V_{in}.

4.1 380VDC INPUT, 48V NO LOAD
4.2 390VDC INPUT, 48V NO LOAD

4.3 400VDC INPUT, 48V NO LOAD
4.4 380VDC INPUT, 48V/4A

4.5 390VDC INPUT, 48V/4A
4.6 400VDC INPUT, 48V/4A
4.7 380VDC INPUT, 48V/6A

4.8 390VDC INPUT, 48V/6A
4.9 400VDC INPUT, 48V/6A
4.10 380VDC INPUT, 48V/8A

4.11 390VDC INPUT, 48V/8A
4.12 400VDC INPUT, 48V/8A

4.13 380VDC INPUT, 48V/10A
4.14 390VDC INPUT, 48V/10A

4.15 400VDC INPUT, 48V/10A
5. Turn Off Transient

Oscilloscope channel assignments during the turn off transient tests are C1: SR V_{DS}, C2: V_{out}, C4: V_{in}.

5.1 380V DC Input, 48V/4A
5.2 390VDC INPUT, 48V/4A

5.3 400VDC INPUT, 48V/4A
5.4 380VDC INPUT, 48V/10A
5.5 390VDC INPUT, 48V/10A

5.6 400VDC INPUT, 48V/10A
6. Key Waveforms

Oscilloscope channel assignments in these tests are C1: SR FET V_{DS} voltage, C2: Output voltage ripple, C4: Primary switching node.

6.1 380V in, 48V no load
6.2 390V in, 48V NO LOAD

6.3 400V in, 48V NO LOAD
6.4 380Vin, 48V/21A

6.4 390Vin, 48V/21A
6.4 400V\textsubscript{IN}, 48V/21A
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated