System Description

A piezoelectric sounder is a loudspeaker that uses the piezoelectric effect to generate sound. It is widely used in the application where sound volume and high pitch are more important than sound quality, such as toys, air conditioner, microwave oven and alarm equipment.

The piezoelectric sounder normally required a 1-KHz to 5-KHz rectangular voltage to operate. The sound press mainly depends on the amplitude of the driving voltage. The higher driving voltage, the higher sound press will be. For example, the PKM13EPYH4002 from Murata requires 0-V to 30-V or +15-V to −15-V rectangular voltage. The power supply in these applications could be two cell alkaline battery, lithium-ion battery or 3.3-V, 5-V power rail, which is much lower than the target voltage. Therefore, a high performance, simple boost converter TLV61046A is required for this application.

TLV61046A is 1.8-V - 5.5-V input, up to 28-V output, full integrated boost converter. It integrates low side MOSFET, high side rectifier diode and the isolation MOSFET. The isolation MOSFET disconnects the pass-through path between input and output when the device is disabled. This function helps to reduce the battery power loss when the piezoelectric sounder doesn’t work.

Based on TLV61046A, the reference design introduces two driving circuit of piezoelectric sounder. With PWM signal from MCU, one circuit provides rectangular wave driving voltage between 0-V and 28-V; the other circuit provides ±15-V rectangular wave driving voltage.

The block diagram of the 28-V driver circuit is shown in Figure 1. The output voltage of the TLV61046A is set to 28V. A PWM signal from MCU drives Q1 to control the voltage across the piezoelectric sounder LS. When PWM signal is logic high, the Q1 turns on, so 28V is applied to LS. When PWM signal is logic low and Q1 turns off, the LS is discharged by the resistor in parallel. The frequency of the PWM signal should be equal to the recommended frequency of the sounder. The duty of the PWM should be as low as possible to reduce the power loss when the sound press is acceptable.

The block diagram of ±15-V driving circuit is shown in Figure 2. The output of the TLV61046A is set to 15V. An additional charge pump circuit doubles the output voltage to approximately 30V. When Q1 turn off and Q2 turn on, the voltage according the sounder LS is 15V; when Q1 turns on and Q1 turns off, the voltage according LS is -15V. The frequency of driving voltage follows the PWM input from MCU. By modifying the feedback divider of the TLV61046A and selecting proper Q1, Q2, this circuit supports ±28 V for the sound. The resistor in parallel with LS can discharge the voltage to zero after the boost converter is disabled.
Figure 2: Block Diagram of ±15-V Driver Circuit

Design Theory

The schematic of the 28-V driver circuit is shown in Figure 3. The output voltage of the boost converter is configured by R1 and R3. This voltage should be set to as high as possible to get highest sound.

Q1 is a NPN device driven by the PWM signal from the MCU. The sounder TS1 is charged to 28V when Q1 turns on, and discharged by the R2 to 0V when Q1 turns off. The frequency of the PWM should be equal to the recommended operating frequency of the sounder, which is 4KHz in this reference design.

The duty cycle of the PWM and the R2 resistance impact the sound press of TS1. They also impact the power loss of the driver circuit because the current flows through R2 to ground when Q1 turns on.

The power loss of R2 is calculated by equation (1), where D is duty cycle of the input PWM signal.

\[
P_{R2} = \frac{V_{OUT}^2 \times D}{R2}
\]

(1)

Follows are two steps to find suitable R2 and duty cycle to compromise the sound press and power loss:

- Setting the duty cycle to 50%, select a 1-KΩ to 10-KΩ resistor that minimize the power loss without suffering the sound press

- Using R2 selected by step 1, slowly decrease the duty cycle to minimize the power loss if the sound press requirement is met.

Figure 3: 28-V Rectangular Waveform Driver Circuit
The schematic of the ±15-V driver circuit is shown in Figure 4. The output voltage of the TLV61046A is set to 15V. The additional charge pump circuit doubles the output voltage to approximately 30V. The NPN Q2 and PNP Q3 form a totem pole driver circuit. The Q4 and R5 form a simple level shift circuit. When PWM is high voltage, the Q4 turns on. So the totem pole circuit outputs 0.7V. The voltage according LS2 is -14.3V. When the PWM is low voltage, the output voltage of totem pole circuit is 29.3V. So the LS2 voltage is 14.3V.

![Figure 4: ±15-V Rectangular Waveform Driver Circuit](image)

The current flowing through R5 to ground increases the power loss of the circuit. It is suggested to minimize the duty cycle of the PWM signal if the sound press meets the requirement.

The R6 in parallel with LS2 discharge the DC voltage at LS2 to zero after the TLV61046A is disabled.

Test Result

Figure 5 shows the startup waveform the 28-V circuit by EN signal. The device finishes startup process in 7ms. It is suggested that the PWM input signal is 7ms later than EN high logic.

![Figure 5: Startup at VIN=3.3V](image)

Figure 6 shows operating waveform when the PWM input signal is 4KH with 30% duty and VIN = 3.3V. The sounder voltage is charged to 28V when the Q1 turns on, and discharged to almost 0 V by the resistor when the Q1 turns off.
The startup by EN waveform of the ±15-V circuit is shown in Figure 7, the two output voltage ramps up to target value within 7ms.

Figure 7: Startup at VIN=3.3V

Figure 8 shows the operating waveform with 4-KHz, 30% duty PWM input when VIN=3.3V. The rising and falling time is very short because the totem pole has strong driving capability.

Figure 8: Operating Waveform with 4-KHz PWM
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated