1 General

1.1 Purpose

This test report is to provide the detailed data for evaluating and verifying the PMP40294 which performs a battery powered bi-directional system. It employs a bidirectional Buck-Boost Controller ---- BQ25703A with a user command switch. It can support any adaptor input within 5V-20V. And the system can also output multiple output options including 5/9/12/14.5/15/16/19/20V. the max output power is designed as 45W and valid battery voltage is from 9V to 13.2V.

1.2 Reference Documentation

Schematic: PMP40294_Sch.pdf
Gerber: PMP40294_GerberNCdrills.zip
Layer Plot: PMP40294_PCBlayers.pdf
Assembly Drawing: PMP40294_Assy.pdf
CAD File: PMP40294_CAD.zip
BOM: PMP40294_BOM.pdf

1.3 Test Equipment

Multi-meter (current): Fluke 287C
Multi-meter (voltage): Fluke 287C
DC Source: Chroma 62006P-100-25
E-Load: Chroma 63105A module
Oscilloscope: Tektronix DPO3054
Electrical Thermography: Fluke Ti9
2 Performance Data and Waveform

2.1 Efficiency

2.1.1 5V Input in Forward Mode

<table>
<thead>
<tr>
<th>$V_{IN}(V)$</th>
<th>$I_{IN}(A)$</th>
<th>$V_{BAT}(V)$</th>
<th>$I_{BAT}(A)$</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.077</td>
<td>0.409</td>
<td>9.294</td>
<td>0.194</td>
<td>86.83%</td>
</tr>
<tr>
<td>5.057</td>
<td>0.878</td>
<td>9.294</td>
<td>0.436</td>
<td>91.24%</td>
</tr>
<tr>
<td>5.016</td>
<td>1.842</td>
<td>9.294</td>
<td>0.938</td>
<td>94.39%</td>
</tr>
<tr>
<td>4.975</td>
<td>2.823</td>
<td>9.294</td>
<td>1.403</td>
<td>92.81%</td>
</tr>
<tr>
<td>5.073</td>
<td>0.496</td>
<td>11.095</td>
<td>0.194</td>
<td>85.59%</td>
</tr>
<tr>
<td>5.050</td>
<td>1.056</td>
<td>11.095</td>
<td>0.436</td>
<td>90.70%</td>
</tr>
<tr>
<td>5.001</td>
<td>2.205</td>
<td>11.096</td>
<td>0.931</td>
<td>93.67%</td>
</tr>
<tr>
<td>4.970</td>
<td>2.938</td>
<td>11.096</td>
<td>1.209</td>
<td>91.90%</td>
</tr>
<tr>
<td>5.070</td>
<td>0.565</td>
<td>12.523</td>
<td>0.194</td>
<td>84.86%</td>
</tr>
<tr>
<td>5.044</td>
<td>1.196</td>
<td>12.523</td>
<td>0.434</td>
<td>90.12%</td>
</tr>
<tr>
<td>4.989</td>
<td>2.486</td>
<td>12.523</td>
<td>0.923</td>
<td>93.23%</td>
</tr>
<tr>
<td>4.970</td>
<td>2.938</td>
<td>12.523</td>
<td>1.063</td>
<td>91.17%</td>
</tr>
</tbody>
</table>

2.1.2 9V Input in Forward Mode

<table>
<thead>
<tr>
<th>$V_{IN}(V)$</th>
<th>$I_{IN}(A)$</th>
<th>$V_{BAT}(V)$</th>
<th>$I_{BAT}(A)$</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.091</td>
<td>0.226</td>
<td>9.294</td>
<td>0.193</td>
<td>87.35%</td>
</tr>
<tr>
<td>9.079</td>
<td>0.510</td>
<td>9.294</td>
<td>0.462</td>
<td>92.77%</td>
</tr>
<tr>
<td>V IN(V)</td>
<td>I IN(A)</td>
<td>V BAT(V)</td>
<td>I BAT(A)</td>
<td>Efficiency</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>12.095</td>
<td>0.174</td>
<td>9.294</td>
<td>0.200</td>
<td>88.19%</td>
</tr>
<tr>
<td>12.085</td>
<td>0.392</td>
<td>9.294</td>
<td>0.457</td>
<td>89.58%</td>
</tr>
<tr>
<td>12.068</td>
<td>0.803</td>
<td>9.294</td>
<td>0.985</td>
<td>94.50%</td>
</tr>
<tr>
<td>12.051</td>
<td>1.223</td>
<td>9.294</td>
<td>1.500</td>
<td>94.59%</td>
</tr>
</tbody>
</table>
2.1.4 15V Input in Forward Mode

<table>
<thead>
<tr>
<th>V_{IN}(V)</th>
<th>I_{IN}(A)</th>
<th>V_{BAT}(V)</th>
<th>I_{BAT}(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.093</td>
<td>0.144</td>
<td>9.294</td>
<td>0.201</td>
<td>85.78%</td>
</tr>
<tr>
<td>15.086</td>
<td>0.321</td>
<td>9.294</td>
<td>0.456</td>
<td>87.44%</td>
</tr>
<tr>
<td>15.073</td>
<td>0.645</td>
<td>9.294</td>
<td>0.977</td>
<td>93.39%</td>
</tr>
</tbody>
</table>
15.058 | 0.991 | 9.294 | 1.499 | 93.36%
15.044 | 1.315 | 9.294 | 2.017 | 94.74%
15.030 | 1.642 | 9.294 | 2.520 | 94.90%
15.018 | 1.928 | 9.294 | 2.975 | 95.48%

| 15.093 | 0.169 | 11.095 | 0.201 | 87.26%
| 15.084 | 0.375 | 11.095 | 0.456 | 89.36%
| 15.068 | 0.759 | 11.096 | 0.977 | 94.78%
| 15.050 | 1.174 | 11.095 | 1.500 | 94.19%
| 15.033 | 1.559 | 11.096 | 2.018 | 95.52%
| 15.018 | 1.947 | 11.096 | 2.521 | 95.66%
| 15.002 | 2.286 | 11.096 | 2.977 | 96.31%

| 15.092 | 0.187 | 12.524 | 0.201 | 89.02%
| 15.082 | 0.418 | 12.524 | 0.457 | 90.71%
| 15.064 | 0.850 | 12.524 | 0.977 | 95.55%
| 15.044 | 1.318 | 12.523 | 1.500 | 94.74%
| 15.026 | 1.751 | 12.524 | 2.019 | 96.12%
| 15.007 | 2.188 | 12.524 | 2.522 | 96.19%
| 14.991 | 2.568 | 12.524 | 2.977 | 96.84%

2.1.5 20V Input in Forward Mode

<table>
<thead>
<tr>
<th>$V_{IN}(V)$</th>
<th>$I_{IN}(A)$</th>
<th>$V_{BAT}(V)$</th>
<th>$I_{BAT}(A)$</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.037</td>
<td>0.116</td>
<td>9.294</td>
<td>0.201</td>
<td>80.21%</td>
</tr>
</tbody>
</table>

15V Input@Forward Mode

![Graph showing efficiency vs. battery current for different battery currents and voltages]
20V Input@Forward Mode

<table>
<thead>
<tr>
<th>Battery Current(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>55%</td>
</tr>
<tr>
<td>0.5</td>
<td>60%</td>
</tr>
<tr>
<td>1.0</td>
<td>65%</td>
</tr>
<tr>
<td>1.5</td>
<td>70%</td>
</tr>
<tr>
<td>2.0</td>
<td>75%</td>
</tr>
<tr>
<td>2.5</td>
<td>80%</td>
</tr>
<tr>
<td>3.0</td>
<td>85%</td>
</tr>
<tr>
<td>3.5</td>
<td>90%</td>
</tr>
<tr>
<td>4.0</td>
<td>95%</td>
</tr>
<tr>
<td>4.5</td>
<td>100%</td>
</tr>
</tbody>
</table>

2.1.6 5V Output in Reverse Mode

<table>
<thead>
<tr>
<th>V_{BAT}(V)</th>
<th>I_{BAT}(A)</th>
<th>V_o(V)</th>
<th>I_o(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.292</td>
<td>0.305</td>
<td>5.033</td>
<td>0.498</td>
<td>88.40%</td>
</tr>
</tbody>
</table>
5V Output in Reverse Mode

<table>
<thead>
<tr>
<th>BAT(V)</th>
<th>I(BAT) (A)</th>
<th>Vout(V)</th>
<th>Iout(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.283</td>
<td>0.582</td>
<td>5.028</td>
<td>0.993</td>
<td>92.39%</td>
</tr>
<tr>
<td>9.274</td>
<td>0.868</td>
<td>5.021</td>
<td>1.502</td>
<td>93.69%</td>
</tr>
<tr>
<td>9.264</td>
<td>1.149</td>
<td>5.015</td>
<td>1.996</td>
<td>94.04%</td>
</tr>
<tr>
<td>9.255</td>
<td>1.432</td>
<td>5.009</td>
<td>2.490</td>
<td>94.11%</td>
</tr>
<tr>
<td>9.245</td>
<td>1.727</td>
<td>5.003</td>
<td>2.999</td>
<td>93.97%</td>
</tr>
<tr>
<td>11.093</td>
<td>0.262</td>
<td>5.030</td>
<td>0.497</td>
<td>86.00%</td>
</tr>
<tr>
<td>11.085</td>
<td>0.496</td>
<td>5.025</td>
<td>0.992</td>
<td>90.65%</td>
</tr>
<tr>
<td>11.077</td>
<td>0.736</td>
<td>5.019</td>
<td>1.501</td>
<td>92.40%</td>
</tr>
<tr>
<td>11.069</td>
<td>0.971</td>
<td>5.013</td>
<td>1.995</td>
<td>93.04%</td>
</tr>
<tr>
<td>11.061</td>
<td>1.208</td>
<td>5.005</td>
<td>2.490</td>
<td>93.27%</td>
</tr>
<tr>
<td>11.053</td>
<td>1.454</td>
<td>5.000</td>
<td>2.999</td>
<td>93.31%</td>
</tr>
<tr>
<td>12.593</td>
<td>0.236</td>
<td>5.030</td>
<td>0.497</td>
<td>84.10%</td>
</tr>
<tr>
<td>12.587</td>
<td>0.443</td>
<td>5.025</td>
<td>0.992</td>
<td>89.39%</td>
</tr>
<tr>
<td>12.580</td>
<td>0.655</td>
<td>5.019</td>
<td>1.501</td>
<td>91.42%</td>
</tr>
<tr>
<td>12.573</td>
<td>0.862</td>
<td>5.013</td>
<td>1.995</td>
<td>92.27%</td>
</tr>
<tr>
<td>12.566</td>
<td>1.071</td>
<td>5.005</td>
<td>2.490</td>
<td>92.60%</td>
</tr>
<tr>
<td>12.559</td>
<td>1.287</td>
<td>4.999</td>
<td>2.999</td>
<td>92.75%</td>
</tr>
</tbody>
</table>

2.1.7 9V Output in Reverse Mode

<table>
<thead>
<tr>
<th>BAT(V)</th>
<th>I(BAT) (A)</th>
<th>Vout(V)</th>
<th>Iout(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.285</td>
<td>0.521</td>
<td>9.104</td>
<td>0.496</td>
<td>93.32%</td>
</tr>
<tr>
<td>9.268</td>
<td>1.013</td>
<td>9.099</td>
<td>0.992</td>
<td>96.18%</td>
</tr>
<tr>
<td>9.251</td>
<td>1.526</td>
<td>9.088</td>
<td>1.500</td>
<td>96.56%</td>
</tr>
<tr>
<td>9.235</td>
<td>2.030</td>
<td>9.079</td>
<td>1.994</td>
<td>96.57%</td>
</tr>
</tbody>
</table>
9V Output@Reverse Mode

![Graph showing efficiency vs. output current for 9V output in reverse mode]

2.1.8 12V Output in Reverse Mode

<table>
<thead>
<tr>
<th>$V_{BAT}(V)$</th>
<th>$I_{BAT}(A)$</th>
<th>$V_o(V)$</th>
<th>$I_o(A)$</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.278</td>
<td>0.705</td>
<td>12.231</td>
<td>0.496</td>
<td>92.73%</td>
</tr>
<tr>
<td>9.256</td>
<td>1.373</td>
<td>12.218</td>
<td>0.990</td>
<td>95.18%</td>
</tr>
<tr>
<td>9.233</td>
<td>2.072</td>
<td>12.205</td>
<td>1.498</td>
<td>95.58%</td>
</tr>
<tr>
<td>9.211</td>
<td>2.756</td>
<td>12.194</td>
<td>1.992</td>
<td>95.70%</td>
</tr>
<tr>
<td>9.187</td>
<td>3.452</td>
<td>12.185</td>
<td>2.486</td>
<td>95.53%</td>
</tr>
<tr>
<td>9.163</td>
<td>4.177</td>
<td>12.173</td>
<td>2.996</td>
<td>95.30%</td>
</tr>
<tr>
<td>VBAT(V)</td>
<td>IBAT(A)</td>
<td>V_o(V)</td>
<td>I_o(A)</td>
<td>Efficiency</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>9.272</td>
<td>0.885</td>
<td>15.213</td>
<td>0.495</td>
<td>91.77%</td>
</tr>
<tr>
<td>9.244</td>
<td>1.727</td>
<td>15.205</td>
<td>0.989</td>
<td>94.21%</td>
</tr>
<tr>
<td>9.215</td>
<td>2.607</td>
<td>15.193</td>
<td>1.497</td>
<td>94.69%</td>
</tr>
<tr>
<td>9.187</td>
<td>3.473</td>
<td>15.181</td>
<td>1.991</td>
<td>94.75%</td>
</tr>
<tr>
<td>9.158</td>
<td>4.356</td>
<td>15.165</td>
<td>2.486</td>
<td>94.52%</td>
</tr>
<tr>
<td>9.127</td>
<td>5.279</td>
<td>15.146</td>
<td>2.994</td>
<td>94.13%</td>
</tr>
</tbody>
</table>

2.1.9 15V Output in Reverse Mode

<table>
<thead>
<tr>
<th>VBAT(V)</th>
<th>IBAT(A)</th>
<th>V_o(V)</th>
<th>I_o(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.077</td>
<td>0.737</td>
<td>15.210</td>
<td>0.494</td>
<td>92.06%</td>
</tr>
<tr>
<td>11.053</td>
<td>1.435</td>
<td>15.201</td>
<td>0.988</td>
<td>94.70%</td>
</tr>
<tr>
<td>11.029</td>
<td>2.162</td>
<td>15.191</td>
<td>1.497</td>
<td>95.38%</td>
</tr>
</tbody>
</table>
11.006 | 2.874 | 15.180 | 1.991 | 95.56%
10.982 | 3.594 | 15.169 | 2.485 | 95.52%
10.957 | 4.344 | 15.153 | 2.994 | 95.33%
12.580 | 0.647 | 15.211 | 0.495 | 92.51%
12.559 | 1.259 | 15.203 | 0.989 | 95.10%
12.538 | 1.893 | 15.194 | 1.497 | 95.85%
12.518 | 2.513 | 15.184 | 1.992 | 96.16%
12.497 | 3.140 | 15.170 | 2.485 | 96.08%
12.475 | 3.789 | 15.159 | 2.995 | 96.06%

15V Output@Reverse Mode

2.1.9 20V Output in Reverse Mode

<table>
<thead>
<tr>
<th>V_{BAT}(V)</th>
<th>I_{BAT}(A)</th>
<th>V_o(V)</th>
<th>I_o(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.262</td>
<td>1.200</td>
<td>20.235</td>
<td>0.495</td>
<td>90.12%</td>
</tr>
<tr>
<td>9.224</td>
<td>2.338</td>
<td>20.224</td>
<td>0.988</td>
<td>92.66%</td>
</tr>
<tr>
<td>9.184</td>
<td>3.536</td>
<td>20.206</td>
<td>1.496</td>
<td>93.10%</td>
</tr>
<tr>
<td>9.145</td>
<td>4.723</td>
<td>20.188</td>
<td>1.990</td>
<td>93.03%</td>
</tr>
<tr>
<td>9.125</td>
<td>5.349</td>
<td>20.174</td>
<td>2.243</td>
<td>92.69%</td>
</tr>
<tr>
<td>11.068</td>
<td>0.999</td>
<td>20.235</td>
<td>0.495</td>
<td>90.59%</td>
</tr>
<tr>
<td>11.037</td>
<td>1.941</td>
<td>20.224</td>
<td>0.983</td>
<td>92.81%</td>
</tr>
<tr>
<td>11.005</td>
<td>2.925</td>
<td>20.211</td>
<td>1.497</td>
<td>94.01%</td>
</tr>
<tr>
<td>10.973</td>
<td>3.892</td>
<td>20.195</td>
<td>1.991</td>
<td>94.16%</td>
</tr>
<tr>
<td>10.956</td>
<td>4.396</td>
<td>20.186</td>
<td>2.244</td>
<td>94.07%</td>
</tr>
<tr>
<td>12.573</td>
<td>0.875</td>
<td>20.235</td>
<td>0.495</td>
<td>91.05%</td>
</tr>
</tbody>
</table>
2.1.11 USB Type A

<table>
<thead>
<tr>
<th>V_{BAT}(V)</th>
<th>I_{BAT}(A)</th>
<th>V_{BUS}(V)</th>
<th>I_{BUS}(A)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.304</td>
<td>0.063</td>
<td>5.140</td>
<td>0.092</td>
<td>80.89%</td>
</tr>
<tr>
<td>9.299</td>
<td>0.297</td>
<td>5.108</td>
<td>0.495</td>
<td>91.48%</td>
</tr>
<tr>
<td>9.293</td>
<td>0.586</td>
<td>5.070</td>
<td>0.990</td>
<td>92.17%</td>
</tr>
<tr>
<td>9.286</td>
<td>0.894</td>
<td>5.028</td>
<td>1.498</td>
<td>90.72%</td>
</tr>
<tr>
<td>9.279</td>
<td>1.203</td>
<td>4.988</td>
<td>1.991</td>
<td>88.97%</td>
</tr>
<tr>
<td>9.278</td>
<td>1.271</td>
<td>4.978</td>
<td>2.096</td>
<td>88.51%</td>
</tr>
<tr>
<td>11.103</td>
<td>0.054</td>
<td>5.143</td>
<td>0.090</td>
<td>77.19%</td>
</tr>
<tr>
<td>11.099</td>
<td>0.255</td>
<td>5.108</td>
<td>0.495</td>
<td>89.50%</td>
</tr>
<tr>
<td>11.094</td>
<td>0.497</td>
<td>5.068</td>
<td>0.988</td>
<td>90.81%</td>
</tr>
<tr>
<td>11.088</td>
<td>0.756</td>
<td>5.028</td>
<td>1.498</td>
<td>89.85%</td>
</tr>
<tr>
<td>11.083</td>
<td>1.015</td>
<td>4.985</td>
<td>1.991</td>
<td>88.28%</td>
</tr>
<tr>
<td>11.081</td>
<td>1.072</td>
<td>4.978</td>
<td>2.096</td>
<td>87.84%</td>
</tr>
<tr>
<td>12.603</td>
<td>0.047</td>
<td>5.140</td>
<td>0.092</td>
<td>79.66%</td>
</tr>
<tr>
<td>12.599</td>
<td>0.226</td>
<td>5.108</td>
<td>0.495</td>
<td>88.67%</td>
</tr>
<tr>
<td>12.595</td>
<td>0.440</td>
<td>5.068</td>
<td>0.990</td>
<td>90.53%</td>
</tr>
<tr>
<td>12.590</td>
<td>0.669</td>
<td>5.028</td>
<td>1.498</td>
<td>89.42%</td>
</tr>
<tr>
<td>12.585</td>
<td>0.898</td>
<td>4.985</td>
<td>1.991</td>
<td>87.80%</td>
</tr>
</tbody>
</table>
2.2 Standby Current

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{STD}</td>
<td>Standby current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{BAT}=9.3V, Connectors Unattached</td>
<td>100</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td></td>
<td>V_{BAT}=11.1V, Connectors Unattached</td>
<td>102</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td></td>
<td>V_{BAT}=12.6V, Connectors Unattached</td>
<td>103</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
</tbody>
</table>

2.3 Start up

2.3.1 Forward Mode

5V Input
CH2: Vin 5V/Div
CH4: Input Current 1A/Div

9V Input
CH2: Vin 5V/Div
CH4: Input Current 1A/Div
12V Input
CH2: Vin 5V/Div
CH4: Input Current 1A/Div

15V Input
CH2: Vin 5V/Div
CH4: Input Current 1A/Div

20V Input
CH2: Vin 5V/Div
CH4: Input Current 1A/Div

2.3.2 Reverse Mode

5V Output
CH2: Vo 5V/Div

9V Output
CH2: Vo 5V/Div
2.4 Output Voltage Ripple in Reverse Mode

2.4.1 Output Voltage: 5V
2.4.2 Output Voltage: 9V
2.4.3 Output Voltage: 12V
2.4.4 Output Voltage: 14.5V
2.4.5 Output Voltage: 15V
V_{BAT}=9.3\text{V} \text{ and No Load}\n\text{CH2: } V_o (AC Coupled) 20mV/Div

V_{BAT}=9.3\text{V} \text{ and Full Load}\n\text{CH1: } V_o (AC Coupled) 50mV/Div

V_{BAT}=11.1\text{V} \text{ and No Load}\n\text{CH1: } V_o (AC Coupled) 20mV/Div

V_{BAT}=11.1\text{V} \text{ and Full Load}\n\text{CH1: } V_o (AC Coupled) 50mV/Div

V_{BAT}=12.6\text{V} \text{ and No Load}\n\text{CH1: } V_o (AC Coupled) 50mV/Div

V_{BAT}=12.6\text{V} \text{ and Full Load}\n\text{CH1: } V_o (AC Coupled) 50mV/Div

2.4.6 Output Voltage: 16V
2.4.7 Output Voltage: 19V
Lit Number

PMP40294 Test Results

2.4.8 Output Voltage: 20V
2.5 Dynamic Performance

2.5.1 Output Voltage Transition in Reverse Mode
2.5.2 Output Current Transition in Reverse Mode

Vo=5V & 100mA/us Current slew rate

V_{BAT}=9.3V and 0 to 25% load
CH2: Vo (AC Coupled) 50mV/Div

V_{BAT}=9.3V and 25% to 0 load
CH2: Vo (AC Coupled) 50mV/Div
PMP40294 Test Results

V_{BAT} = 11.1V and 0 to 25% load
CH2: V_o (AC Coupled) 50mV/Div

V_{BAT} = 12.6V and 0 to 25% load
CH2: V_o (AC Coupled) 50mV/Div

V_{BAT} = 9.3V and 25% to 50% load
CH2: V_o (AC Coupled) 100mV/Div

V_{BAT} = 11.1V and 25% to 0 load
CH2: V_o (AC Coupled) 50mV/Div

V_{BAT} = 12.6V and 25% to 0 load
CH2: V_o (AC Coupled) 50mV/Div

V_{BAT} = 9.3V and 50% to 25% load
CH2: V_o (AC Coupled) 100mV/Div

V_{BAT} = 11.1V and 50% to 25% load
CH2: V_o (AC Coupled) 100mV/Div
V_{BAT} = 12.6\,\text{V} \quad \text{and} \quad 25\% \text{ to } 50\% \text{ load}

CH2: V_o (AC Coupled) 100\text{mV/Div}

V_{BAT} = 9.3\,\text{V} \quad \text{and} \quad 50\% \text{ to } 75\% \text{ load}

CH2: V_o (AC Coupled) 100\text{mV/Div}

V_{BAT} = 11.1\,\text{V} \quad \text{and} \quad 50\% \text{ to } 75\% \text{ load}

CH2: V_o (AC Coupled) 100\text{mV/Div}

V_{BAT} = 12.6\,\text{V} \quad \text{and} \quad 50\% \text{ to } 75\% \text{ load}

CH2: V_o (AC Coupled) 100\text{mV/Div}
V\text{BAT} = 9.3V \text{ and 75% to 100% load}

CH2: V\text{o (AC Coupled) 100mV/Div}

V\text{BAT} = 11.1V \text{ and 75% to 100% load}

CH2: V\text{o (AC Coupled) 100mV/Div}

V\text{BAT} = 12.6V \text{ and 75% to 100% load}

CH2: V\text{o (AC Coupled) 100mV/Div}

\text{Vo} = 9V \text{ & 100mA/us Current slew rate}
$V_{BAT} = 9.3\, V$ and 0 to 25% load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 9.3\, V$ and 25% to 0 load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 11.1\, V$ and 0 to 25% load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 11.1\, V$ and 25% to 0 load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 12.6\, V$ and 0 to 25% load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 12.6\, V$ and 25% to 0 load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 9.3\, V$ and 25% to 50% load

CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT} = 9.3\, V$ and 50% to 25% load

CH2: V_o (AC Coupled) 100mV/Div
\textbf{PMP40294 Test Results}

\begin{align*}
\text{VBAT} &= 11.1\text{V and 25\% to 50\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 12.6\text{V and 25\% to 50\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 9.3\text{V and 50\% to 75\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 11.1\text{V and 50\% to 75\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 11.1\text{V and 75\% to 50\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 11.1\text{V and 50\% to 25\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 12.6\text{V and 50\% to 25\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 9.3\text{V and 75\% to 50\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div} \\
\text{VBAT} &= 11.1\text{V and 75\% to 50\% load} \\
\text{CH2: Vo (AC Coupled) 100mV/Div}
\end{align*}
VBAT=12.6V and 50% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=12.6V and 75% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=9.3V and 75% to 100% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=9.3V and 100% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=11.1V and 75% to 100% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=11.1V and 100% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=12.6V and 75% to 100% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT=12.6V and 100% to 75% load
CH2: Vo (AC Coupled) 100mV/Div
Vo=12V & 100mA/us Current slew rate

V_{BAT}=9.3V and 0 to 25% load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=9.3V and 25% to 0 load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=11.1V and 0 to 25% load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=11.1V and 25% to 0 load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=12.6V and 0 to 25% load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=12.6V and 25% to 0 load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=9.3V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

V_{BAT}=9.3V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div
PMP40294 Test Results

VBAT = 11.1V and 25% to 50% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 12.6V and 25% to 50% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 9.3V and 50% to 75% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 11.1V and 50% to 75% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 11.1V and 50% to 25% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 12.6V and 50% to 25% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 9.3V and 75% to 50% load

- **CH2: Vo (AC Coupled) 100mV/Div**

VBAT = 11.1V and 75% to 50% load

- **CH2: Vo (AC Coupled) 100mV/Div**
VBAT = 12.6V and 50% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 75% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 75% to 100% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 100% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 75% to 100% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 100% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 75% to 100% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 100% to 75% load
CH2: Vo (AC Coupled) 100mV/Div
$V_o=15V \& 100mA/us$ Current slew rate

$V_{BAT}=9.3V$ and 0 to 25% load
CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT}=9.3V$ and 25% to 0 load
CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT}=11.1V$ and 0 to 25% load
CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT}=11.1V$ and 25% to 0 load
CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT}=12.6V$ and 0 to 25% load
CH2: V_o (AC Coupled) 100mV/Div

$V_{BAT}=12.6V$ and 25% to 0 load
CH2: V_o (AC Coupled) 100mV/Div
PMP40294 Test Results

VBAT = 9.3V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 50% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 75% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 50% to 75% load

VBAT = 11.1V and 75% to 50% load
V BAT = 12.6V and 50% to 75% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 12.6V and 75% to 50% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 9.3V and 75% to 100% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 9.3V and 100% to 75% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 11.1V and 75% to 100% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 11.1V and 100% to 75% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 12.6V and 75% to 100% load

CH2: Vo (AC Coupled) 100mV/Div

V BAT = 12.6V and 100% to 75% load

CH2: Vo (AC Coupled) 100mV/Div
Vo=20V & 100mA/us Current slew rate

$V_{BAT}=9.3\,V$ and 0 to 25% load
CH2: Vo (AC Coupled) 100mV/Div

$V_{BAT}=9.3\,V$ and 25% to 0 load
CH2: Vo (AC Coupled) 100mV/Div

$V_{BAT}=11.1\,V$ and 0 to 25% load
CH2: Vo (AC Coupled) 100mV/Div

$V_{BAT}=11.1\,V$ and 25% to 0 load
CH2: Vo (AC Coupled) 100mV/Div

$V_{BAT}=12.6\,V$ and 0 to 25% load
CH2: Vo (AC Coupled) 100mV/Div

$V_{BAT}=12.6\,V$ and 25% to 0 load
CH2: Vo (AC Coupled) 100mV/Div
PMP40294 Test Results

VBAT = 9.3V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 25% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 12.6V and 50% to 25% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 9.3V and 50% to 75% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 50% to 75% load

VBAT = 9.3V and 75% to 50% load
CH2: Vo (AC Coupled) 100mV/Div

VBAT = 11.1V and 75% to 50% load
V_{BAT} = 12.6\,V and 50\% to 75\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 12.6\,V and 75\% to 50\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 9.3\,V and 75\% to 100\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 9.3\,V and 100\% to 75\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 11.1\,V and 75\% to 100\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 11.1\,V and 100\% to 75\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 12.6\,V and 75\% to 100\% load
CH2: V_{o} (AC Coupled) 100\,V/Div

V_{BAT} = 12.6\,V and 100\% to 75\% load
CH2: V_{o} (AC Coupled) 100\,V/Div
2.6 Thermal Performance

The board is applied a 9.3V battery pack and output 20V/2.25A load at the connector. Run about 10min for warming up.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated