System Description

The reference design circuit introduces high precision, bi-direction current solution used in battery test system (BTS). The block diagram of the circuit is shown in Figure 1. The LV side voltage ranges from 1V to 5V and HV side voltage ranges from 12V to 15V. In real application, the LV side is connected to the battery and the HV side is connected to a voltage bus that has the capability to sink or source current. The DIR stands for the direction signal that determine if the battery is charged or discharged. When DIR is logic high, the TPS611781 operates and TPS54821 shutdowns, so the battery energy is discharged to the HV which is 15V at this condition; when DIR is logic low, the TPS54821 operates and TPS611781 shutdowns, so the battery is charged by the energy from the HV which is 12V at this condition. The ISET is voltage signal to set the charge/discharge current. The current is approximately 6A if the voltage in ISET is 3V. A voltage applied in VSET will set the regulation voltage of the LV side.

Design Theory

The TPS61178x is a 20V, full integrated boost converter. Details about the operating principle of the TPS61178x can be found in its datasheet. The schematic of TPS61178x is shown in Figure 2:

- The TPS611781 is a force PWM device, which allows negative inductor current. While TPS61178 integrates power save mode that turns off the synchonic MOSFET if inductor current is zero. If <100mA discharge current for the battery is required, TPS611781 is the right device. Otherwise, TPS61178 can be selected.
- The TPS61178x triggers under-voltage lockout if the voltage in its VIN pin is lower than 2.7 V. So the VIN pin is powered by VBUS in Figure 2. It is suggested that the voltage at VIN pin is at least 2V lower than VBUS.

- The switching frequency is set to 200KHz to increase the efficiency and maximum duty cycle as the minimum on time of low side MOSFET is fixed to 135 ns

- The R9, R11 and FB pin are used to set the VBUS voltage not higher than 16V. Please note that the FB pin must be higher than 0.36V at normal operation condition.

![Figure 2: Schematic of TPS61178x](image)

The TPS54821 is a 4.5-V to 17-V input, 8-A output BUCK converter. The schematic is shown in Figure 3:

- The VSENSE pin and its resistor divider are used to set the maximumum voltage of the BUCK converter

- The converter is disabled by pulling the SS pin to low voltage instead of EN. Otherwise, the TPS54821’s internal MOSFET would faultly switch if TPS611781 is operating.
The current control circuitry for the TPS611781 and the TPS54821 is shown in Figure 4. The INA188 is used to sense the voltage across a 5mohm resistor, and then amplifies the signal approximately 101 times. The battery voltage is sensed through an amplifier in the node of the battery.

The proportional-integrated method is used to control the battery charging or discharging current and the battery voltage.

Test Result

In the reference design, the current accuracy relates to the current sensing resistor, the current amplifier INA188 and the offset of the OP07CD. To achieve good current control accuracy, the designed circuit should be calibrated. When TPS611781 operates, the output current is 1.0017A if ISET=0.5109V; and the output current is 5.0046 A if ISET=2.5498V. From these two data, the gain and offset can be calculated as following:
\[
gain = \frac{I_{OUT2} - I_{OUT1}}{I_{SET2} - I_{SET1}} = \frac{5.0046 - 1.0017}{2.5498 - 0.5109} = 1.96327
\]

\[
OffSet = I_{OUT1} - gain \cdot I_{SET1} = 1.0017 - 1.96327 \times 0.5109 = -0.00133
\]

Using the gain and offset, the setting current and actually output in bench test are shown in table 1

<table>
<thead>
<tr>
<th>Reference Current (A)</th>
<th>0.09683</th>
<th>0.49066</th>
<th>0.99522</th>
<th>1.98176</th>
<th>3.99646</th>
<th>5.99683</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Current (A)</td>
<td>0.0980</td>
<td>0.4910</td>
<td>0.9956</td>
<td>1.9820</td>
<td>3.9970</td>
<td>5.9980</td>
</tr>
</tbody>
</table>

Using the same method to calibrate the current at TPS54821 operation, the bench test result is shown in table 2

<table>
<thead>
<tr>
<th>Reference Current (A)</th>
<th>0.09912</th>
<th>0.50027</th>
<th>0.99998</th>
<th>2.00197</th>
<th>4.00357</th>
<th>6.00813</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Current (A)</td>
<td>0.0999</td>
<td>0.5011</td>
<td>1.0001</td>
<td>2.0023</td>
<td>4.0025</td>
<td>6.0075</td>
</tr>
</tbody>
</table>

The Figure 1 shows the full scale (FS) accuracy of the reference design at TPS611781 and TPS54821 operating condition.
When TPS611781 is operating at 6 A, the thermal performance is shown Figure 2, where the TPS611781 case temperature is 75.8°C, and the inductor temperature is 63.4°C.

![Figure 2: TPS611781 Thermal at 6A operation](image)

While the TPS54821 is operating at 6 A, the thermal is shown in Figure 3, where the case temperature is 67.3°C and inductor temperature is 62°C.

![Figure 3: TPS54821 Thermal at 6A operation](image)
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated