System Description

The reference design introduces a circuitry to improve the current and voltage control accuracy of the LM5175 evaluation board (LM5170EVM-BIDIR). LM5170 is a multiphase bidirectional current controller. It operates at BUCK mode when require current flowing from high voltage side to low voltage side, or BOOST mode when require current flowing from low voltage side to high voltage side. The LM5170 integrates 5-A MOSFETs driver to improve the converting efficiency. Its diode emulation feature can help to prevent negative current through synchronous MOSFET. Others features include multiphase operation to increase current capability and efficiency, programmable or adaptive dead-time and so on. The LM5170 is suitable for high current battery test system which requires charging and discharging battery under current and voltage control signal. However, its integrated current amplifier is not good enough to achieve lower than 0.05% current accuracy. And LM5170 doesn’t integrated voltage control loop to regulate the battery voltage. To solve the two problems, the PMP15038 is designed as in Figure 1. A 1mΩ resistor is placed between the LM5170EVM and the battery. A precision, high-voltage instrumentation amplifier senses the current through the battery. This current is regulated by the precision operational amplifiers OP07 to the current reference signal. The battery voltage is also sensed and regulated using precision operational amplifiers.

The current capability of the PMP15038 is set to 50A. However, the LM5170 can actually support higher current if lower voltage rating power MOSFET and higher current inductor are selected.

![Figure 1: Block Diagram of the PMP15038](image)

The detail circuit of current control loop is shown in Figure 2. The ISEN+ and ISEN- are connected the current sensing resistor in the LM5170EVM. The U1 SN74LV4053A converts the bidirectional battery current to one direction based on the DIR pin logic. The INA188 amplifies the voltage drop of the sensing resistor by approximately 100 times. The U3 OP07 controls battery current equal to the current reference signal IREF. The ISETA in the output of the U3 is connected to the ISETA pin of the LM5170EVM.
The voltage control loop circuitry is shown in Figure 3. The BAT+ and BAT- are connected to the positive and negative node of the battery respectively. The U7 controls the battery voltage to the voltage reference VREF. The output of the U7 is also connected to the ISETA pin of the LM5170.

Some modifications of LM5170EVM are required to make the system to operate:

- Bypass the breaker with the $1\text{m}\Omega$ current sensing resistor as shown in Figure 4.
- Disable the breaker Q5, Q6, Q8, Q9 by reducing the gate to source resistor to 10KΩ
- Pull down SYNCOUT pin with 10KΩ.
The photo of the PMP15038 is shown in Figure 5. The small PCB is the current and voltage control circuit. The large PCB is LM5170EVM-BIDIR. The 12-V BUS connects to the high voltage side of LM5170EVM and the battery connect to the low voltage side. The small PCB circuit is powered by the 12-V bus. And it control LM5170EVM output voltage and current through the ISETA pin.

Figure 5: Board Image of the PMP15038 connected to the LM5170EVM

Test Result
In the reference design, the current accuracy depends on the current sensing resistor, the gain and offset of the current amplifier INA188 and the offset of the OP07CD. These parameters vary from device to device. To achieve good current control accuracy, the total gain and the offset of the designed circuit should be calibrated. In BUCK mode, the battery current is 39.999 A if the current reference signal is 4.01713 V; and battery current is 10.0295 A if the current reference signal is 1.0212 V. From these two data, the real gain and offset can be calculated as following:

\[
gain = \frac{I_{OUT2} - I_{OUT1}}{I_{SET2} - I_{SET1}} = \frac{39.999 - 10.0285}{4.01713 - 1.0212} = 9.82607
\]

\[Offset = I_{OUT1} - gain \cdot I_{SET1} = 10.0285 - 9.82607 \times 1.0212 = -0.00588\]

Using the gain and offset, the current reference and actually output current in bench test are shown in table 1.

<table>
<thead>
<tr>
<th>Reference Current (A)</th>
<th>1.0082</th>
<th>1.9633</th>
<th>4.9130</th>
<th>10.0285</th>
<th>20.0442</th>
<th>30.0629</th>
<th>39.999</th>
<th>50.0059</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Current (A)</td>
<td>1.0073</td>
<td>1.9622</td>
<td>4.9134</td>
<td>10.0285</td>
<td>20.045</td>
<td>30.063</td>
<td>39.999</td>
<td>50.003</td>
</tr>
</tbody>
</table>

The Figure 6 shows the full scale (FS) accuracy of the reference design at BUCK mode condition. The data is better than 0.05%. The current accuracy in boost mode can also be calibrated with same method.

Because the common-mode rejection ratio is limited, the output current would change with the battery voltage. As shown in Table 2, the output current decrease 2mA (0.004% of full scale current) if battery side voltage increases from 0.5V to 5V.

<table>
<thead>
<tr>
<th>Battery Voltage (V)</th>
<th>0.05</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Current (A)</td>
<td>10.002</td>
<td>10.002</td>
<td>10.0015</td>
<td>10.001</td>
<td>10.0005</td>
<td>10.000</td>
</tr>
</tbody>
</table>

![Figure 6 Battery Charging Current Accuracy](image-url)
To measure the voltage loop accuracy, bulk capacitors are used to simulate the battery. The voltage is calibrated using the method in current calibration. After calibration, the regulated battery voltage at 1-A output current is shown in Table 3. The differential is much lower than 0.5mV.

<table>
<thead>
<tr>
<th>Reference Voltage (V)</th>
<th>0.04968</th>
<th>0.4988</th>
<th>0.99788</th>
<th>1.99434</th>
<th>2.9912</th>
<th>3.98935</th>
<th>4.98531</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Voltage (V)</td>
<td>0.04969</td>
<td>0.49882</td>
<td>0.99788</td>
<td>1.99433</td>
<td>2.99116</td>
<td>3.98935</td>
<td>4.98526</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated