<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What is DLP® Pico™ Technology?</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>What is Screenless Display?</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Screenless Display Advantages over Traditional Displays</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Why Choose DLP Pico Technology for Screenless Display?</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>System and Electronics Considerations for Screenless Display Using DLP Technology</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>DLP Pico Chipset Portfolio for Screenless Display</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Get Started with Screenless Display Product Development</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Revision History</td>
<td>15</td>
</tr>
</tbody>
</table>
Texas Instruments DLP Pico technology is a micro-electro-mechanical systems (MEMS) technology that modulates light using a digital micromirror device (DMD). A DMD consists of hundreds of thousands of highly reflective, digitally switchable, micrometer-sized mirrors (micromirrors) organized in a two-dimensional array. Each micromirror on a DMD represents a pixel on the screen (Figure 1-1) and is independently modulated, in sync with color sequential illumination, to create stunning displays. DLP Pico technology powers the displays of products worldwide, from media projectors to projectors inside of tablets and smartphones. TI’s DLP Pico chipsets are a great fit for any display system that requires high resolution and high brightness at low power in a compact size.

Figure 1-1. Digital Micromirror Device (DMD)
What is Screenless Display?

Screenless Display is a new class of projection-based display device that combines the latest innovations across three technology areas: DLP Pico technology, wireless connectivity and any mobile operating system (Figure 2-1). By combining these three technologies, Screenless Display allows users to display any content on virtually any surface from a small, portable wireless device. For example, the display surface can be a wall or table in an office or a home, a kitchen countertop, the ceiling in a bedroom, the side of a camping tent, or even a garage door (Figure 2-2).

On the go display: For consumers who travel frequently or live in small homes, Screenless Display with embedded wireless and video streaming applications can create a large display when needed yet also remain extremely portable.

Anywhere display: For consumers who would rather not have a TV mounted on a bedroom wall, a Screenless Display can be an inconspicuous wireless device that blends in to the décor while creating a large, HD display on a wall or a ceiling as required.

Portable cinema: For consumers who like to share video experiences with others, a Screenless Display can create unique group viewing opportunities on virtually any surface, inside or outside. For example, a big game on the garage door, a movie night in the backyard, or watching a movie on the side of a tent while camping.

Figure 2-1. Screenless Display as Combination of Three Technologies
Figure 2-2. Screenless Display Examples
Screenless Display Advantages over Traditional Displays

Screenless Display has several key advantages over traditional displays:

• **Screenless** – No fixed screen or display panel required, allowing content to be displayed on virtually any surface.

• **Portable** – No fixed installation required, enabling Screenless Display product to be easily moved or taken on the go. In contrast, traditional big screen televisions are large and not easily moved or transported.

• **Scalable** – The display image size scales with distance from the display surface, enabling images ranging from as small as few inches in diagonal to as large as 100 inches or more in diagonal from the same portable device.

• **Quick Set Up** – No fixed installation or mounting on the wall or placement on a pedestal required – allowing Screenless Display product to just power on and create stunning display.

• **Improved Aesthetics** – No fixed screen required, allowing display to be only visible when required and invisible when turned off. Once the display is off, the room aesthetics are kept in its natural state – without compromise – so there is no display panel to view “all of the time”.

• **Small Size** – No large display panel required, allowing Screenless Display product to be small size – can be designed to fit in your pocket or carry in your hand.

• **Smart** – Built-in video streaming applications and Wi-Fi, enabling Screenless Display product to provide all functionalities of a smart display.
Why Choose DLP Pico Technology for Screenless Display?

DLP Pico technology offers several key advantages that make it a great fit for Screenless Display:

- **High optical efficiency**: DLP Pico technology can work with any light source including LEDs, lasers, laser-phosphor or lamp and offers very high optical efficiency. The result is a high brightness display with low power consumption, which is a particularly good fit for high brightness display applications such as Screenless Display. Low power consumption also enables battery operation for a cable-less experience.

- **Wide choice of display resolution chipsets**: DLP Pico technology offers a wide range of display chipsets ranging from small resolution – nHD (640 × 360), WVGA (854 × 480) to HD resolution – WXGA (1280 × 800), HD (1280 × 720) and Full HD (1920 × 1080) resolutions. This provides the system designer with flexibility in designing and differentiating products across brightness, size, resolution, battery requirements and cost levels.

- **High contrast**: Depending on the optical design, DLP Pico technology can enable a high contrast ratio, which creates deep blacks and improves perceived brightness and image quality.

- **High speed**: Each DMD micromirror can flip thousands of times per second, enabling fast color refresh rates and high frame rates (120 Hz or higher in select cases). In addition, low display latency makes DLP Pico technology a great fit for gaming.

- **Advanced image processing algorithms**: The DLP® IntelliBright™ suite of algorithms provides two key functions:
 - **Content Adaptive Illumination Control**: The ability to dynamically adjust each RGB LED to optimize power based on frame by frame content.
 - **Local Area Brightness Boost**: The ability to intelligently boost darker regions of images depending on ambient lighting conditions. For more information on these algorithms, see the TI DLP IntelliBright application note.

DLP Pico technology is a proven display technology. Tens of millions of DLP chips have been sold and DLP Cinema® is the technology of choice for more than eight of ten digital cinema screens worldwide. DLP chipsets for Screenless Display take the same core technology and transform it into a tiny chip that creates stunning displays from compact, portable devices.
A typical Screenless Display system is comprised of two subsystems (Figure 5-1):

- Front end subsystem
- DLP Pico projection subsystem

Front end subsystem – Consists of an application processor that provides functionality such as:
 - Wi-Fi/Bluetooth
 - HDMI
 - IR remote control
 - Audio control
 - Fan control
 - Tilt sensor for automatic keystone correction
 - Motor control for autofocus

DLP Pico Projection subsystem: The DLP Pico Projection subsystem consists of two additional subsystems: the DLP Pico optical module and DLP Pico electronics.

 - **DLP Pico Optical Module**: The DLP Pico DMD, along with its associated illumination sources, optical elements, and necessary mechanical components are combined into a compact and rugged assembly known as an optical module or light engine (Figure 5-2).
The optical module is the core display component of the system. Optical modules can be of various sizes depending on the application and requirements. In general, the higher the brightness, the larger the size of the optical module due to larger LEDs, optics, DMD and thermal management in the form of heat sinks and fans.

To enable faster time to market many DLP Pico optical modules of various designs, sizes, capabilities, and performance are readily available from a number of Original Design Manufacturers (ODMs) who are part of the DLP Pico eco-system. For more information on the ecosystem and ODM contacts, please visit the DLP Pico Solutions and Services page.

If none of the readily available optical modules fit the requirements, there are several DLP design houses that have the expertise to support custom optical designs.

DLP Pico Electronics

- A typical DLP electronics system block diagram for a Screenless Display application is shown in Figure 5-3. The key components are the DLP controller, DLP chipset power management IC, and the LED drive circuit.
 - The DLP controller communicates with a front end processor via I2C and receives 24-bit RGB video data via parallel interface.
 - Power up/power down of the DLP system is controlled by the front end processor using the PROJ_ON signal.
 - The Power Management IC (PMIC)/LED driver provides all the necessary power supplies for the DLP controller and the DMD while the LED driver controls the RGB LED current.
Figure 5-3. DLP Electronics System Block Diagram using DLP3010, DLPC3438, and DLPA3000
The following DLP Pico chipsets are well suited for Screenless Display applications.

<table>
<thead>
<tr>
<th>Table 6-1. DLP Pico Chipset Portfolio for Screenless Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micromirror array size (diagonal in inches)</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Pixel pitch</td>
</tr>
<tr>
<td>Pixel orientation</td>
</tr>
<tr>
<td>Typical brightness (lumens)</td>
</tr>
<tr>
<td>Typical screen size diagonal in well-lit room</td>
</tr>
<tr>
<td>Typical screen size in dimly lit room</td>
</tr>
<tr>
<td>DMD part number</td>
</tr>
<tr>
<td>Controller part number</td>
</tr>
<tr>
<td>PMIC part number</td>
</tr>
<tr>
<td>EVM part number</td>
</tr>
<tr>
<td>DLP Intellibright™ algorithms</td>
</tr>
</tbody>
</table>
Brightness is an important consideration when selecting a DLP chipset. **Figure 6-1** can help determine the required brightness and matching chipsets based on screen size and ambient light conditions.

<table>
<thead>
<tr>
<th>Image Diagonal</th>
<th>Suggested Brightness (in lumens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100”</td>
<td>300-500</td>
</tr>
<tr>
<td>60-80”</td>
<td>150-300</td>
</tr>
<tr>
<td>50-60”</td>
<td>120-150</td>
</tr>
<tr>
<td>40-50”</td>
<td>80-120</td>
</tr>
<tr>
<td>30-40”</td>
<td>40-80</td>
</tr>
<tr>
<td>20-30”</td>
<td>20-40</td>
</tr>
<tr>
<td>10-20”</td>
<td>5-20</td>
</tr>
<tr>
<td>5-10”</td>
<td><10</td>
</tr>
</tbody>
</table>

Ambient Lighting Environment

- Dark (50 nits*)
- Dim (100 nits)
- Bright (indoor) (200 nits)

DLP Chip Size Required

- >0.5” Class DLP Enterprise Chipsets
- 0.45” Class DLP4710
- 0.3” Class DLP3010
- 0.2” Class DLP2010

*1 nit = 1 cd/m²

Figure 6-1. Brightness Table

NOTE: DLP Enterprise chipsets are available for >0.5 inch diagonal. Contact TI for more details.
1. Learn more about DLP Pico technology:
 - Read the *Getting Started with DLP Pico Technology* white paper, [DLPA059](#)
 - Browse products and data sheets

2. Evaluate DLP Pico technology with an easy to use evaluation module (EVM):
 - [DLP2010 EVM](#)
 - [DLP3010 EVM](#)
 - [DLP4500 EVM](#)
 - [DLP4710 EVM](#)

3. Download a TI Design reference design to speed product development, including a schematic, layout files, BOM and test report.
 - [DLP2010: Ultra Mobile, Ultra Low Power Display Reference Design using DLP Technology](#)
 - [DLP3010: Portable, Low Power HD Projection Display using DLP Technology](#)
 - [DLP4710: Portable, Low Power Full HD Projection Display using DLP Technology](#)

4. Find optical modules and design support:
 - Contact ODMs for production-ready optical modules [www.ti.com/lsds/](#)
 - Contact Design Houses for custom solutions [www.ti.com/lsds/](#)

5. Contact your local TI salesperson or TI distributor representative: [www.ti.com/general/docs/contact.tsp](#)

6. Check out TI’s E2E community to search for solutions, get help, share knowledge and solve problems with fellow engineers and TI experts: [e2e.ti.com/support/dlp_mems_micro-electro-mechanical_systems/default.aspx](#)
Revision History

Changes from Original (June 2015) to A Revision

- Updated tool folder link for DLP4710.

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated tool folder link for DLP4710.</td>
<td>14</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
www.ti.com/audio

Amplifiers
amplifier.ti.com

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-rfid.com

OMAP Applications Processors
www.ti.com/omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

TI E2E Community
e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated