Enabling tomorrow’s sensing applications with smart analog microcontrollers

Shailesh Thakurdesai
Strategic marketing manager
Texas Instruments

Darren Lu
Applications engineer
Texas Instruments
Introduction

More and more applications are emerging that require end-node intelligent sensing capabilities. These applications cross various industry segments, including building automation, medical health and fitness and personal and portable electronics. For new product development teams, designing each new product or system individually without capitalizing on previous design work will surely tax the engineering resources of any organization.

Now a new generation of microcontrollers can be quickly and efficiently adapted to many different types of sensing and measurement applications, such as those involving the sensing of light, humidity, temperature, power current, carbon monoxide and many other conditions or parameters. The most prominent example of this new type of microcontroller is the MSP430FR231x MCU family, which integrates ferroelectric random access memory (FRAM) technology and incorporates one of the industry’s most sensitive transimpedance amplifiers (TIA) for precise current sensing and ultra-low-power consumption.

The MSP430FR231x MCU Family

The very ultra-low-power MSP430FR231x microcontrollers not only feature a host of advanced capabilities like low-power, nonvolatile FRAM memory and, in one case, an integrated low-leakage TIA, but they also include configurable analog technology as well as many different connectivity peripherals that allow developers to quickly deployed these devices in a wide variety of applications. A 16-bit RISC controller operates at up to 16 MHz and includes standby power modes that consume as little as one micro-ampere (µA).

Because of the high level of integration in the MSP430FR231x MCU family, as many as six discrete devices can be eliminated from designs, reducing the physical size of the system’s printed circuit board (PCB) by as much as 75 percent, saving significantly on bill of material (BOM) costs and simplifying system design challenges. The MSP430FR231x devices include a high-performance eight-channel 10-bit analog-to-digital converter (ADC), an enhanced comparator, a 32-kHz oscillator, timers, a real-time clock, multiple general purpose input/output channels, and all of this in 16- or 20-pin package as small as 4 mm x 3.5 mm.
The integrated low-leakage TIA and FRAM memory give the MSP430FR2311 MCU next-generation capabilities never before integrated into a microcontroller for sensing applications. For example, the integrated TIA can sense current levels 100-times more effectively than other controllers with integrated TIAs; plus, the MSP430FR2311 MCU’s TIA extends the battery life of the system because it has the industry’s lowest current leakage of only 50 pico-amperes (pA).

In addition, FRAM memory is more secure than traditional types of memory and, when compared to Flash memory technology, it is 100 times faster, consumes 250 times less power and it stores 100 times more data.

Applications

The application areas appropriate to the MSP430FR231x MCU family are quite broad, but three in particular stand out: building automation, medical health and fitness, and personal and portable electronics.

Building Automation

Many building automation systems include smoke detectors. A smoke detector based on a MSP430FR2311 microcontroller would be able to process the entire signal chain in a single device. In addition, the integrated TIA’s extreme sensitivity to low levels of current would make any smoke detector sensitive to even the slightest amount of smoke in the air. Of course, the low power leakage of the integrated TIA, overall low power requirements and standby power modes of these microcontrollers would allow a smoke detector to operate for years on a single battery charge.
Thermostats in a building automation network could make use of the MSP430FR231x MCU’s configurable analog front end and general purpose inputs to support various sorts of sensors, like temperature sensors, humidity sensors and others. Likewise, occupancy or security sensors based on the MSP430FR231x MCU could monitor any number of sensor types such as infrared or temperature sensors to determine when someone enters a room or whether a certain space is occupied by a person.

Light or current sensing could also be incorporated into wireless power switches in a building automation system. A change in the light level in a room, for example, might cause a power switch to adjust the voltage provided to light fixtures in order to maintain the specified light level. Or monitoring the current provided to a bank of lights could be part of an energy saving system that automatically adjusted light levels in order to reduce the building’s energy consumption.

Medical Health and Fitness

Very small size or a single-chip system could be a very desirable attribute in many medical and fitness applications, especially as wearable health and fitness devices increase in popularity. For example, a wristwatch-like ultra violet (UV) light monitor based on the MSP430FR231x MCU could inform someone with a sensitive skin condition when his or her UV exposure had reached a predefined threshold. The very small form factor of a MSP430FR231x MCU could also allow it to be integrated directly into a smartwatch where it could provide UV monitoring and other health-related functionalities while enhancing the value of the smartwatch to consumers.

A small thermometer based on one of the MSP430FR231x devices could easily sense the temperature when the instrument’s probe came into contact with skin or bodily tissue. The temperature could be communicated over one of the general purpose I/O channels to a small liquid crystal diode (LCD) display where it could be read. Any number of specialized health monitors like a pregnancy tester or other such devices could also be enabled by an integrated low-power microcontroller.

Personal and Portable Electronics

Because of the increasing prevalence of battery-operated consumer electronic systems as well as the green power movement to reduce power consumption, power sensing or monitoring has become increasingly critical in many consumer electronics.

Of course, in battery-operated systems, low power consumption by the power monitoring subsystem is a prerequisite. For the battery packs or power banks in cell phones or smartphones, for example, users must know how much of the battery’s charge is left so that a recharge cycle can begin before the battery charge is depleted. The small, low-power MSP430FR2311 MCU with its integrated TIA could detect the current as it is discharged by the battery and keep track of the remaining charge.

Figure 3. Medical devices, like digital thermometers, require small single-chip solutions
Certainly many other types of **battery monitoring** applications could also be enabled by the MSP430FR231x MCU family. For example, several portable **electric shavers** could utilize an MSP430FR231x microcontroller to prolong the life of the battery's charge. The battery monitoring subsystem would optimize the current being drawn from the battery relative to the speed of the shaver's motor. With the addition of pulse width modulation (PWM), the microcontroller might actually control the speed of the motor to extend the life of the battery.

The MSP430FR231x MCUs could also be at the heart of an extensive range of energy saving green power applications. For instance, various types of **printers** could make use of these microcontrollers to monitor power usage and control when the printer should be powered down to a standby power mode in order to reduce power consumption. Pushing a button or an automatic signal from the microcontroller might wake up the printer to a full power mode when it is needed.

Conclusions

Sensing and measurement applications will be essential to the IoT of the future as well as to a wide range of unrelated applications. Sensors, managed and controlled by microcontrollers, will provide the information and data that applications need to respond, operate efficiently and, in general, more effectively serve users who benefit from them. Highly integrated, low power microcontrollers like the MSP430FR231x MCUs with their innovative next-generation features like FRAM memory storage and a low-leakage transimpedance amplifier give system designers the right combination of versatile functionality, small size, low power and adaptable I/O connectivity needed to quickly develop a broad range of successful products.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated