Motor drives have an undeniable presence in key systems used in our daily lives. As such, energy savings through efficiency and reliability improvement is of paramount importance and is the key focus for suppliers and regulatory standards bodies.

Everyday we see systems in motion all around us. What makes them move? On the outset, it may be due to wheels as in the case of an automobile. What actually drives these movements, though, are motors. Additionally, many household appliances such refrigerators, air-conditioners, ventilation fans, washers, driers and so many others all require electric motors. One can see that motors are part of our day-to-day life. The goal of this paper is to discuss the role of power electronics – the various components and requirements – in motor drives through applications that we use and encounter in household and industrial environments.

What is a motor drive?

An electric motor is a device that converts electrical energy to mechanical energy. It also can be viewed as a device that transfers energy from an electrical source to a mechanical load. The system in which the motor is located and makes it spin is called the drive, also referred to as the electric drive or motor drive.

The function of the motor drive is to draw electrical energy from the electrical source and supply electrical energy to the motor, such that the desired mechanical output is achieved. Typically, this is the speed of the motor, torque, and the position of the motor shaft. Figure 1 shows the block diagram of a motor drive.
The functions of the power converter circuit in the motor drive are:

- Transfer electrical energy from a source that could be of a given voltage, current at a certain frequency and phase as the input
- To an electrical output of desired voltage, current, frequency and phase to the motor such that the required mechanical output of the motor is achieved to drive the load
- Controller regulates energy flow through feedback coming from the sensor block
- Signals measured by sensors from the motor are low-power, which are then sent to the controller
- Controller tells the converter what it needs to be doing. A closed-loop feedback system is the method of comparing what is actually happening to what the motor should be outputting, then adjusting the output accordingly to maintain the target output

Motor drive efficiency

Electric motors represent 45 percent of all electrical energy consumption across all applications. Increasing the efficiency of motor-drive systems could potentially result in a significant reduction in global electricity consumption [1]. With increasing demand of electricity along with industrialization and urbanization across the globe, the ability to supply energy is becoming even more challenging. As part of a global effort to reduce energy consumption and carbon emissions on the environment, various regulations across many countries have put forth and are continually working on governmental mandates to improve motor drive efficiency.

All these requirements make it compelling to have an efficient power converter system using switched-mode power supplies (SMPS). The SMPS uses semiconductor power switches (also called power electronic switches) in a switch mode and on and off states only, that yields 100 percent efficiency in an ideal situation. Power electronics systems are primarily designed using silicon-based power management with power semiconductor switches. These switches are power MOSFETs, bipolar junction transistors (BJTs), and isolated gate bipolar transistors (IGBTs) that have made significant improvements in their performances. Examples include lower on-state resistance, increased blocking voltage, and higher drive currents. Furthermore, a lot of development is taking place using wide-band-gap semiconductors such as silicon carbide (SiC). SiC is of particular interest to motor drives that transfer very high power at high-voltage levels.

Motor drive classifications

Before we delve into motor drive applications and the role of power electronics in these systems, here is a quick overview on how motor drives are classified (Figure 2).
Table 1 summarizes where AC (induction) and DC (brushed and brushless) motors are used in terms of voltage and power levels, along with the pros and cons of each.

Power converter in motor drives

The drive configuration for motors summarized in Table 1 are generally the same. However, what differs is the power converter topology in the power converter circuit. Since the bulk of these applications are moving towards brushless DC (BLDC) or induction motors, our focus will be on applications that use these two types of motors.

In general, selecting a motor drive may require looking at the power and voltage levels while addressing questions that depend on the application. Examples could be the starting torque, load inertia, pattern of operation, environmental conditions, or the motor’s ability to regenerate. Addressing these questions is outside the scope of this paper.

AC motor drives

The AC motor drive, as the name suggests, requires an AC input to the induction motor used to drive large industrial loads such as HVAC for commercial buildings – pumps and compressors, factory automation, industrial equipment that requires provisions for speed adjustments such as conveyor belts, tunnel boring, mining, paper mills, and many others. An AC motor drive takes an AC energy source, rectifies it to a DC bus voltage and, implementing complex control algorithms, inverts the DC back to AC into the motor using complex control algorithms based on load demand.

Figure 3 shows a block diagram of an AC motor drive. The power stage and power supplies are marked in teal.

Power stage

The power converter topology used in the power stage is that of a three-phase inverter which transfers power in the range of kW to MW. Inverters convert DC to AC power. Typical DC bus voltage levels are 600–1200V. Considering the high power and voltage levels, the three-phase inverter uses six isolated gate drivers (**Figure 3**). Each phase uses a high-side and low-side insulated gate bipolar transistor (IGBT) switch. Operating usually in the 20–30 kHz range, each phase applies positive and negative high-voltage DC pulses to the motor windings in an alternating mode. High-power IGBT requires isolated gate drivers to control their operations. Each IGBT is driven by a single isolated gate driver. The isolation is galvanic between the high-voltage output of the gate driver and the low-voltage control inputs that come from the controller. The emitter of the top IGBT floats, which necessitates using an isolated gate-driver. In order to isolate a high-voltage circuit with that of a low-voltage control circuit, isolated gate-drivers are used to control the bottom IGBTs.

Gate drivers convert the pulse-width modulation (PWM) signals from the controller into gate pulses for the FETs or IGBTs. Moreover, these gate drivers need to have integrated protection features such as

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Voltage Levels</th>
<th>Power Levels</th>
<th>Applications</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brushed DC</td>
<td><100V</td>
<td><100W</td>
<td>Toys, coffee machine, gate openers, etc.</td>
<td>Easy to spin, low cost</td>
<td>Brushes wear out, inefficient</td>
</tr>
<tr>
<td>Brushless DC</td>
<td><600V</td>
<td>Up to a few kW</td>
<td>Household appliances, white goods, pumps</td>
<td>Long life/reliable, high efficiency</td>
<td>Cost, complicated control</td>
</tr>
<tr>
<td>AC Induction</td>
<td>>600V</td>
<td>>750 W</td>
<td>Industrial and factory automation</td>
<td>Low cost, less maintenance, rugged, reliable in wide power range</td>
<td>Starting issues, low-power factor correction, complicated speed control</td>
</tr>
</tbody>
</table>

Table 1. Comparative analysis of motors
as desaturation, active Miller clamping, soft turn-off and so on.

These isolated gate drivers usually suffer from low drive strength, especially when the drive current capability is below the 2A range. Traditionally, these drive applications use discrete circuits to boost the drive current. Recently, there have been several gate driver ICs developed to replace the discrete solution. Figure 4 illustrates this trend.

In order to take advantage of the low conduction losses in IGBTs, gate drivers need to operate at voltages much higher than their threshold voltage in the range of 15–18V. Furthermore, an IGBT is a minority-carrier device with high input impedance and large bipolar current-carrying capability. The switching characteristics of an IGBT are similar to that of a power MOSFET, showing similar current rise and voltage fall times. However, the switching current during turn-off is different.

At the end of the switching event, the IGBT has a “tail current” that does not exist for the MOSFET. This tail is caused by minority carriers trapped in the “base” of the bipolar output section of the IGBT. This causes the IGBT to remain turned on. Unlike a bipolar transistor, it is not possible to extract these carriers to speed up switching, as there is no external connection to the base section. Therefore, the device remains turned on until the carriers recombine. This tail current increases the turn-off loss which requires an increase in the dead time between the conduction of two devices for a given phase of a half-bridge circuit.

Having a negative voltage (–5V to –10V) at the gate helps to reduce the turn-off time by helping to recombine the trapped carriers. When the IGBT is
turned on the high dv/dt and parasitic capacitance between gate and emitter generates voltage spikes across the gate terminal. These spikes can cause a false turn-on of the bottom IGBT. Having a negative voltage at the gate helps to avoid this false turn-on trigger. Usually 15V to 18V is applied to the gate to turn-on the device and a negative voltage of –5V to –8V is applied to turn off the IGBT. This requirement is key to determine the power supply rating to the IGBT driver.

Typically, such a power supply is a PWM controller with a topology that has the ability to scale the output power while driving these high-power IGBTs. Typical inputs for these power supplies are regulated to 24V (to be explained shortly). One example of a classic topology used for this power supply is the push-pull isolated converter. This topology is similar to a forward converter with two primary winding. The advantage that push-pull converters have over fly-back and forward converters is that they can be scaled up to higher powers, in addition to higher efficiency. More details and construction of this topology with a push pull converter can be found in the TI design guide [2].

Other power supplies

Figure 3 shows an offline power supply that draws power from the three-phase universal AC line to a regulated 24V DC output. Because of the low-power level (below 75W), power factor correction (PFC) is not needed. These offline power supplies are typically fly-back topology converter ICs that could be a controller with external MOSFET, or an integrated MOSFET controller or switcher. The choice of the power supply IC is flexible and is influenced by the power level, number of outputs, and accuracy of the regulation. This offline power supply is usually a separate module.

The 24V DC output is the system power bus in the AC motor drive system that is input into the bias power supply for the power stage and non-isolated DC/DC converter. This non-isolated DC/DC regulator from the 24V system provides power
to the controller, communications and safety microcontrollers, interface transceivers, and data converters.

BLDC motor drives

The brushless DC (BLDC) is on trend for becoming the most popular choice, replacing brushed DC and AC motors in markets such as HVAC, especially for its higher efficiency and high reliability. Of particular interest are power tools and household appliances such as refrigerators, air-conditioners, vacuum cleaners and other such white goods. Using BLDC in these market spaces lowers the system’s overall weight.

Figure 5 shows a block diagram of the BLDC motor drive in a cordless (battery-powered) power tool such as an electric drill. Power blocks are shown in blue.

Power stage

A BLDC power stage is also an inverter similar to an AC motor drive, except that the input can be single- or three-phases. DC-rail voltages are typically 48-600V, depending on the power levels. The switch is usually a power MOSFET switching at around 100 kHz. Gate drivers are high-side, low-side or half-bridge drivers per inverter phase with no isolation requirement. Protection features are not as critical as those needed for the AC motor drive, except for dead-time control to avoid shoot-through since the high-side and low-side drivers are operating from one IC.

Power supplies

Bias power to the controller and gate drivers comes off a regulated power supply from the battery. A typical battery used in this space is the 18V nominal Lithium-Ion (Li-Ion) five-cell battery. Since these are cordless tools, a wall charger is required to charge the drill periodically. Typically, charging in the range of 50–1000W is done using an isolated controller that is topology-specific, depending on the power level. Also, PFC is generally not needed unless the power level is in the few hundred W. Typical charging controllers are based off of a fly-back, interleaved fly-back, or push-pull topologies.

![Block diagram of a cordless BLDC motor drive](image_url)
Summary

Motor drives are becoming more efficient as power electronic devices such as power switches (IGBTs and MOSFETs), gate drivers and bias supplies are being incorporated. We discussed two key and popular motor drive systems: AC and BLDC, and covered the functionalities and role of gate drive circuits and associated bias supplies. Key areas such as isolation, voltage levels and protection features were highlighted. TI has several gate drivers for both drives, the ISO5500 and UCC27531 for AC motor drives.

For brushless DC drives using the three-phase pre-drivers, TI offers the DRV8301/2/3/8, or single-phase, high-side/low-side drivers such as the UCC272xx and LM510x families. To drive 100V power MOSFETs such as the CSD19534Q5A or 80V CSD19501KCS, TI offers the UCC27211A/UCC27201A, LM5105, LM5109 and the UCC272201A-Q1 (for automotive applications). Regardless of drives, TI offers a variety of PWM controllers for bias supplies such as UCC287xx, UCC28910, LM5030 and LM5023.

References

2. Isolated IGBT gate-drive push-pull power supply with 4 outputs (TIDA-00181), Texas Instruments
3. Download these datasheets: CSD19534Q5A, CSD19501KCS, DRV8301, DRV8302, DRV8303, DRV8308, ISO5500, LM5023, LM5030, LM5105, LM5109, UCC27211A, UCC27201A, UCC27531, UCC28710, UCC28910
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated