Valuing wide V_{IN}, low EMI synchronous buck circuits for cost-driven, demanding applications

Timothy Hegarty
Systems Engineer
Non-Isolated Power Solutions
Texas Instruments
Synchronous buck converters with a wide V_{IN} range, proven EMI performance, and multi-output flexibility are indispensable features to reduce total solution cost and time-to-market.

At the epicenter of most power converter implementations is an inevitable trade-off of efficiency versus solution size [1]. However, new applications are coming to fruition that have unique power solution requirements tied to a number of performance features. For the cost-driven industrial, automotive and communications applications shown in Figure 1, three particularly desirable features pertinent to synchronous buck converter circuits are required: 1) wide input voltage operating range or wide V_{IN}; 2) multiple outputs, both non-isolated and isolated, leveraging dual-channel and Fly-Buck™ solutions; and 3) low noise and electromagnetic interference (EMI).

Referencing Texas Instruments portfolio of easy-to-use, wide V_{IN} buck converters and controllers, this white paper takes a close look at the value proposition of each listed feature as it relates to a product development environment where bill-of-materials (BOM) cost optimization, reliability, and time-to-market are the overarching constraints.

Figure 1: Cost-driven, demanding applications within automotive, industrial and communications segments.

Wide V_{IN} operating range

Power converters specifically with wide V_{IN} range [2] provide an operating margin to quell input rail transient voltage disturbances. This type of transient immunity performance is critical in applications where high reliability or an extended product life cycle is required. For example, industrial automation and process control equipment often must operate from largely unregulated 8 V-to-36 V rails that also support high current and inductive load switching of electromechanical (EM) devices. Examples include motors, relays and circuit breakers. When such
devices switch on and off, the combination of series parasitic inductance and high slew rate currents contribute to momentary power surges, causing voltage fluctuations and large overvoltage spikes on the supply rail. Furthermore, IEC 61000-4, a common transient immunity specification for industrial applications [3], describes low- and high-frequency input disturbances (ESD, burst, lightning/surge, and conducted and radiated immunity). Such high slew rates and high-voltage line transients often expose the fragility or marginality of a particular design, resulting in electrical overstress (EOS) or even catastrophic failure. A passive protection network, typically consisting of a low-pass LC filter and transient voltage suppression (TVS) array, is used as a first line of defense to clamp the peak-voltage excursions. However, the circuits located downstream from the protection network must survive up to a 100-V peak transient voltage without damage, as well as function seamlessly through these types of transients without interruption.

Using a DC/DC converter that produces a tightly-regulated output even in volatile voltage environments with a wide range of dynamic disturbances, Figure 2 shows an example of a high-efficiency solution using an emulated current-mode (ECM) control technique specifically intended for large step-down conversion ratios. Operating over a 16:1 wide VIN range and capable of sustaining repetitive 100-V surges, the converter maintains uninterrupted regulation and the output voltage is immune to large and noisy voltage swings at the input. The wide VIN range capability reduces the cost of ancillary passive components for transient protection, and renders designs with minimal component derating unnecessary.

Multiple outputs

Dual output synchronous buck converter

The proliferation of electronic subsystems in automobiles has created demand for small size, low cost and highly reliable power supplies that can operate under the stringent conditions presented by the automotive environment. Figure 3 shows a dual-channel synchronous buck automotive supply [4] that can be used in engine control units (ECU) and other critical functions. These critical functions include braking, fuel system and drive train subsystems where processors must remain
powered without glitches during even the most severe battery voltage transients.

You can select a fixed switching frequency at either 2.2 MHz or 440 kHz to operate above or below the AM broadcast band, respectively, with the option to synchronize to an external clock if needed. The dual-channel controller pushes cost and size boundaries by minimizing the solution footprint. The two channels are interleaved 180 degrees out-of-phase for lower input ripple current with respect to two independent single-phase converters. Dual-gate drive outputs allow you to adjust the switch (SW) voltage and current slew rate, which helps to reduce high-frequency noise and EMI filter size. At the same time, an IC package with wettable flank terminations allow you to visually inspect the printed circuit board (PCB) for solder joint integrity, reducing production cost and increasing reliability.

Fly-Buck converter

Recently gaining prominence as a sub-20 W isolated power solution is the Fly-Buck converter [5]. As an extension of the synchronous buck regulator, the Fly-Buck circuit lowers the solution cost by eschewing loop compensation and feedback optocoupler components. A compensated error amplifier is not needed, and an adaptive constant on-time (COT) control approach gives a nearly-instantaneous response for excellent transient dynamics. For maximum flexibility, both isolated and non-isolated outputs are available. The Fly-Buck can be used for low-current auxiliary and bias rails, floating gate supplies that drive power MOSFETs and IGBTs, and bipolar supplies for powering high-precision amplifiers and data converters.

![Fly-Buck converter diagram](image)

Figure 4: AC- or DC-powered Fly-Buck solution supplying ±15 V isolated rails.

Low noise and EMI

Electromagnetic susceptibility (EMS), electromagnetic compatibility (EMC) and all environmental effects (E3) are relevant considerations in any electronics product development – and critical for systems integration. Moreover, system-level conformance to EMI regulatory specifications is an increasingly important power solution benchmark and a key milestone in a product’s design cycle.
Such strict regulatory standards have spurred demand for proven “out-of-the-box” compliant solutions using recommended EMI filtering components and PCB layout techniques. Typically, a high-density design has little space available for EMI filtering. Fortunately, a tight layout improves radiated emissions as well as immunity to incoming disturbances. Essential steps to take are to minimize loop areas containing high di/dt currents and reduce surface areas with high dv/dt voltages (such as switch node copper polygon areas) [6-8].

Many power converter ICs are specifically designed to minimize their EMI signature. For example, the **LM5088-Q1**, a current-mode buck controller from TI, has an optional spread-spectrum feature that reduces peak emission levels, particularly at the fundamental frequency and lower harmonics. The **LM5140-Q1** controller presented in Figure 3 has high-side and low-side gate drivers with adjustable slew rate control to mitigate higher-frequency conducted and radiated emissions. The **LM5165** is an example of a synchronous buck converter [9] that uses an integrated active slew rate control of the switch-node voltage transition to reduce EMI filtering requirements, especially in the more troublesome frequency band above 30 MHz. Using an LC input filter of 22 µH and 10 µF, conducted emissions plots for the LM5165 synchronous buck converter shown in Figure 5 and Figure 6 meet the CISPR 25 Class 5 automotive EMI standard.

Conclusion

Synchronous buck converters with a wide input voltage range, multiple outputs (with or without galvanic isolation), and verified EMI performance are indispensable when total solution cost and time-to-market are predominant concerns for the system designer.

Figure 5: Synchronous buck converter CISPR 25 Class 5 EMI performance from 150 kHz to 30 MHz. \(V_{IN} = 24 \, V \), \(V_{OUT} = 5 \, V \), \(I_{OUT} = 100 \, mA \): unfiltered (a); filtered emissions (b).

Figure 6: Synchronous buck converter CISPR 25 Class 5 EMI performance from 30 MHz to 108 MHz. \(V_{IN} = 24 \, V \), \(V_{OUT} = 5 \, V \), \(I_{OUT} = 100 \, mA \): unfiltered (a); filtered emissions (b).
Conversely, converter designs lacking the requisite performance and reliability can wreak havoc on a design. Against this backdrop, many designers are choosing to capitalize on easy-to-use IC solutions that combine value, performance and reliability. Recounted in this white paper and summarized in Table 1, a cohesive feature set and innovative product advantages play an outsized role in maximizing value and reliability to address a variety of power solution application requirements and end equipment.

Table 1: A compelling value proposition with system-level benefits of a wide V_{in} range, multiple outputs and low EMI solution.

<table>
<thead>
<tr>
<th>Key Market</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rugged industrial equipment</td>
<td>Wide V_{in} Range: 60 V+ for 24-V backplanes with superimposed voltage spikes and transients, Multiple Outputs: Multi-output Fly-Buck produces isolated bias and IGBT floating gate drive supplies, Low EMI/EMC: Smaller input transient protection circuit for space-constrained designs</td>
</tr>
<tr>
<td>Advanced automotive electronics</td>
<td>42 V / 60 V to survive battery load dump overvoltage, Dual-channel for high-density 5-V and 3.3-V rails, 3-V V_{in} manages battery cold crank and start-stop events, Wide adjustable output voltage range for USB Type-C™ power, Fixed 2.2-MHz switching frequency avoids AM band</td>
</tr>
<tr>
<td>Sensitive communications systems</td>
<td>75 V+ for 48-V server backplanes, smaller passive component protection network, Fly-Buck derives ±12-V / ±15-V bipolar rails for op amps, ADCs and RF circuits, Active slew-rate control of SW node voltage lowers radiated emissions</td>
</tr>
</tbody>
</table>

References

2. Choudhary, Vijay. “Wide V_{in} power management ICs simplify design, reduce BOM cost, and enhance reliability,” TI white paper, September 2013.
4. Wide V_{in} automotive applications, Texas Instruments website.
10. Download these data sheets: LM5088-Q1, LM5140-Q1, LM5161, LM5165.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>www.ti.com/audio</th>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td></td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
<td>dataconverter.ti.com</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DLP® Products</td>
<td></td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>DSP</td>
<td></td>
<td>www.ti.com/clocks</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td></td>
<td>interface.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td>logic.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Logic</td>
<td></td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td></td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td></td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated