
Foundational Software for
Functional Safety

Jay Thomas
LDRA
Technical Development Manager

Siddharth Deshpande
Texas Instruments
Hercules MCU Lead Software Engineer

Foundational Software for Functional Safety 2 Texas Instruments: May 2015

Introduction to Functional Safety

To begin – consider the definition of functional

safety. Functional safety is a system-level concept

where, when achieved, each of the underlying

safety functions performs as expected even under

conditions of failure modes of operation. When a

functional safety system is governed by software,

there are requirements that must be followed during

development, verification, and deployment.

The origin of functional safety standards is the

avionics industry. The complexity of aircraft systems

has driven functional safety to other functional

safety systems over the last decades (see figure

below). DO-178B and now DO-178C generally

provide the most specific guidance in terms of test

activities required. In industrial control – IEC 61508

took many of the same principles and generalized

them. Once they were generalized, other standards

Functional safety is a concept which is used to
manage risk in dynamic systems.

Functional safety involves active systems and provides processes to manage risk in the
context of the system inputs and expected response. It is often applied in industries such
as automotive, aerospace, industrial and medical devices where there are regulatory and
commercial safety constraints. These constraints require the management of the software
development life cycle (SDLC) as it pertains to risk. Example safety standards such as ISO
26262, IEC 61508, IEC 62304 and DO-178B/C aim to reduce risk by requiring functional safety
elements to be examined at every stage of the SDLC – including requirement specification,
design, implementation, verification, validation and deployment.

In certain development workflows this process is commonly represented by the V diagram,
such as the one above from ISO 26262. In the next sections, we will examine functional safety
in different domains and discuss similarities and differences. We will then look at real systems
and how they can be partitioned and how you can help to ensure that the system can more
readily meet functional safety requirements by looking at the individual components. This
will provide the context to look at the SafeTI™ software framework – which can be used as a
foundation for functional safety systems.

Item testing 4-8 item integration
and testing

Test phase
verification

Software
testing

Test phase
verification

Test phase
verification

Software
testing

Test phase
verification

Software
testing

Design
 phase
 verification

Design
 phase
 verification

Design
 phase
 verification

4-7 System design

D
esign phases Te

st
 p

ha
se

s

Scope
of part 4

Scope
of part 6

Scope
of part 4

Scope
of part 6

6-
5

In
it

ia
ti

o
n

o
f

p
ro

d
uc

t
d

ev
el

o
p

m
en

t
at

 t
he

 s
o

ft
w

ar
e

le
ve

l

6-11 Verification of
software safety
requirements

6-10 Software
integration and

testing

6-9 Software unit
testing

6-8 Software
unit design and
implementation

6-7 Software
architectural design

6-6 Specification of
software safety
requirements

Foundational Software for Functional Safety 3 Texas Instruments: May 2015

such as ISO 26262 for automotive and EN 50128

for railway looked at the specific needs of those

industries and made sure that they were accounted

for in those specific standards.

These standards are industry specific, but there are

some variations:

Avionics DO-178B (First published 1992) / DO-178C

Industrial IEC 61508 (First published 1998, Updated 2010)

Railway EN 50128 (First published 2001)

Nuclear IEC 61513 (First published 2001)

Automotive ISO 26262 (First published 2011)

System Partition Principles

Functional safety can also involve system

partitioning. Every system is composed of a set of

subsystems. These subsystems each require risk

management at different levels. For instance, some

subsystems may cause a catastrophic event if they

fail, while others will have no effect. The subsystems

typically have dependencies on each other and

can often be decomposed into trees of dependent

software elements. An example is shown at the top

of the next column. Software systems inherit the

most stringent safety class – if a system depends

on an unsafe subsystem – then it is unsafe.

This leads us to the Safety Element Out of Context

/ Compliant Item concepts of ISO 26262 and IEC

61508 respectively. These principles allow you to

perform your safety activities on the subsystem

level and make sure that hazards are contained in

specific software items. For the system as a whole,

this means down to the lowest level subsystems –

the board support package (BSP) and driver layer.

These all should be designed to achieve the highest

levels of safety. All other subsystems, including

those that contain contributions to system hazard

are connected to these low-level systems.

The SafeTI™ 1 software development process

utilizes the Safety Element Out of Context (SEooC)

concept. This concept allows users to develop

systems independently with a view of assumed

hazards and risks. Given the view of assumed risks

and the contexts of functional safety standards –

such as (i.e. ISO 26262-10:2012) these subsystems

can then be integrated into a variety of target

applications such as automotive braking and

steering systems, industrial automation and drives,

medical devices, aerospace control systems and

many others.

The SEooC approach is particularly applicable for

highly integrated, distributed systems as the safety

of the overall application can be considered in the

contexts of its parts – each of which can contribute

to overall failure in different ways.

Software System/
Software item

(Class C)

Software item
Y

(Class C)

Software item
Z

(Class C)

Software item
W

(Class B)

Software item
X

(Class A)

Safety Classification
Principles

- No adverse side effects
 caused by X and W

- No hazard contributing
 effect by X and W

- Z include all software
 system contributions
 to hazards

- Software system inherits
 “worst” safety class

1 See www.ti.com/safeti for more information on SafeTI control solutions.

Foundational Software for Functional Safety 4 Texas Instruments: May 2015

Foundational Software for
Functional Safety

Figure 1. Software Stack built on top of Hercules™ Safety MCU

Figure 1 shows a typical software stack. The

customer application is developed on top of low-

level drivers and application libraries. Typically the

software components of the software stack are

developed by different vendors, which are then

integrated by the system developers into a system

or application.

For a functional safety system, it is very important to

have a solid foundation with adherence to industry

functional safety standards with which to start.

TI provides a strong foundation for the software

stack through HALCoGen (Hardware Abstraction

Layer Code Generator) and the SafeTI™ Diagnostic

Library. These software components provide

low-level peripheral drivers, device initialization

and diagnostic functions for Hercules MCUs.

Since they have been developed by following

the ISO 26262 and IEC 61508 safety standards,

they can be used by the customer assist in the

development of their functional safety systems. The

software development process for these software

components has been certified by TÜV NORD to

meet ASIL D and SIL 3 levels of safety integrity.

TÜV NORD is an internationally recognized and

independent assessor of compliance to quality and

safety standards.

A functional safety system designer is responsible

for creating systems (and any hardware or software

components incorporated in these systems)

that meet all applicable safety, regulatory and

performance requirements. When the system is

submitted for functional safety certification, all the

software components are assessed to determine

compliance to functional safety standards. This is a

monumental task for the system developer if they

are to provide all the artifacts for all the software

components coming from different vendors.

SafeTI™ compliance support packages (CSP) help

make this task easier for the system developer.

SafeTI™ Compliance Support Packages are

developed according to TI’s certified software

development process and are available for

HALCoGen and the SafeTI™ Diagnostic library.

These CSPs provide a helpful starting point for

customers who need to provide similar evidence for

their functional safety software.

SafeTI™ Compliance Support
Package

The SafeTI™ Compliance Support Packages (CSPs)

help make it easier for customers to comply with the

functional safety standards. The LDRA tool suite is

used in the development of the CSPs. The artifacts

included in the CSPs can be classified into three

categories:

Requirements and Design

• Software Safety Requirements Specification
This document provides the purpose, scope

and requirements of the software product being

developed. It lists all the software requirements

assumed during the development of the product.

Each of the safety requirements is assigned an

ASIL/SIL level based on the technical safety

concept derived from the SEooC approach

Customer Application

Application Libraries

Application Libraries

SafeTI™
Diagnostic

Library

(Software
Unit)

Motor Flash

USB Ethernet FlexRay CAN

Math
DSP

Peripheral Drivers (HALCoGen)
(Software Unit)

101010101111100001010101110001101011001110100101011010111010011110101
101010101111100001010101110001101011001110100101011010111010011110101
101010101111100001010101110001101011001110100101011010111010011110101

Hercules™

Safety MCU

!

!

Foundational Software for Functional Safety 5 Texas Instruments: May 2015

• Software Architecture/Design Document
This document provides an overview of the

architecture and software design of the product

being developed. It describes the overall structure,

architecture style, constraints and the application

programming interface (API) it offers.

• Software Safety Manual
The Safety Manual provides information needed

by system developer to assist in the integration

of this software in their end safety system. This

information will help the system developers to

assist in the creation of a functional safety system

which uses this software unit.

Test Reports

• Detailed Static Analysis Report
This report provides a summary of the software

quality metrics and the source code violations as

per coding guidelines. TI utilizes a coding

standard for static analysis that is primarily derived

from MISRA C:2004 guidelines. The enforcement

of this coding standard improves software quality

by restricting usage of potentially dangerous

language features. In addition, by following

these guidelines, the resulting code will be more

maintainable, clear, concise, and robust.

Apart from this, quality metrics are also measured

for the source code. These metrics are a subset of

Hersteller Initiative Software (HIS) Quality metrics.

HIS is a consortium of five major automotive

manufacturers (Audi, BMW, DaimlerChrysler,

Porsche and Volkswagen). This group has

specified a fundamental set of metrics to be used

in the evaluation of software. Comment density,

cyclomatic complexity, procedure exit points,

fan in/fan out, number of global variables and

Halstead metrics are some of the measurables

used for the evaluation of the quality of the

software product

• Detailed Dynamic Analysis Report
This report provides a summary of the structural

coverage metrics (statement coverage, branch

coverage, and modified condition/decision

coverage (MC/DC coverage). LDRAunit® is used

to perform dynamic analysis. It provides facilities

to improve code efficiency and detect potential

software defects. These structural coverage

metrics help toevaluate the completeness of

the test cases and demonstrate there is no

unintended functionality. This report indicates the

statements in the code, branch conditions, MC/

DC conditions which are covered and not covered

during the test run.

• Test Matrix
This report provides detailed information about the

results of the formal testing including information

about the test cases, test case descriptions,

input and output parameters, test results and

requirements associated with each of the test

cases.

• Traceability Matrix
Traceability Matrix report provides bidirectional

traceability between different phases of software

development. This is a comprehensive report

detailing the traceability between requirements,

design, source code, and test cases. This matrix

helps track safety requirements bi-directionally

from specification to design to implementation to

test cases.

Test Automation Unit

The CSPs feature a Test Automation Unit (TAU) tool

that enables customers to re-execute unit-level test

cases in their environment.

The default configuration is tested by TI, and the

test results and code coverage reports included in

the CSP are relevant to the default configuration.

Providing such fixed test results and code

coverage reports may not suit all customer needs.

The TAU, coupled with configurable software

provided by HALCoGen, therefore provides the

flexibility to enable customers to execute and

provide evidence for the unit test cases within their

specific configuration. In so doing, the TAU utilizes

LDRAunit® for performing dynamic analysis.

The TAU also provides infrastructure for the

customers to add their own test cases for their

particular configuration. The TAU generates the

dynamic coverage and regression report for these

selected test cases.

The Dynamic Coverage reports include a summary

report and individual report for each of the source

files. The summary report provides a summary of the

structural coverage metrics at a file level whereas

the individual report provides the coverage metrics

at an API level. For each API within the source file,

the code coverage metrics are obtained.

The TAU generates a regression report for each test

sequence. In addition, a high-level summary report

and individual reports are also generated.

The summary report provides a summary of the

total number of test cases executed, detailing the

number of test cases which have passed and failed.

The individual regression report provides detailed

information about the test cases executed.

The provided information includes a test case

description, input and output parameters, and the

test results for each test case within the sequence.

Conclusions

Developing functional safety-compliant software is

a challenging task with risk having to be managed

throughout the entire software life cycle.

SafeTI™ Compliance Support Packages (CSPs)

and the LDRA tool suite can help simplify the

development of functional safety software. The

SafeTI™ CSPs provide documentation, reports and

a unit test capability to assist customers using the

Hercules MCU software components to comply

with functional safety standards such as IEC 61508

(Industrial Controls) and ISO 26262 (Automotive).

The CSPs can also be a helpful starting point for

customers who need to provide similar evidence for

their functional safety software. The CSPs help

reduce software validation efforts and provide work

products that can assist with end system functional

safety certification.

SPNY007

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms
and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI
assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The
publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

© 2015 Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

