Introduction

This white paper will highlight the Digital Signal Processor (DSP) based System-on-Chip (SoC) approach for high-performance wireless Base Stations. TI’s TMS320TCI6488 device will be used as an example to highlight the benefits of a flexible DSP SoC approach for W-CDMA baseband processing. A DSP SoC can provide a single-chip solution, lower power usage, better performance, more frugal use of board real estate, simpler integration, and lower part counts. Compared to multi-chip solutions, the DSP SoC has several advantages that will be discussed in this paper.

Introduction to TMS320TCI6488

The TMS320TCI6488, as shown in Figure 1, is a very high-performance baseband DSP SoC designed specifically for W-CDMA base stations.

This three-core DSP, running at 1GHz per core, supports all of the necessary baseband functions required for a macro base station — on a single chip. Designed specifically to solve problems at a system level, this “baseband on a chip” eliminates the need for Field Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits (ASIC) and other bridging devices, reducing the total bill of materials for Original Equipment Manufacturers (OEMs) by up to a factor of five, resulting in lowered equipment costs for service providers.

The TCI6488 is built on the latest cutting edge technology, the new 65-nm process node, allowing an unprecedented level of functional integration leading to a very high-performance, high-density modem solution. This allows the device to perform at a level that is an order of magnitude higher than the previous process node at a fraction of the power consumption.

Figure 1: TMS320TCI6488 Block Diagram
With a high level of functional integration and a high channel density supported on a single device, this DSP offers a modular and scalable design with a small footprint. TCI6488 is a software programmable solution that is upward code-compatible with previous devices belonging to the C6000 DSP family, and allows for the reuse of existing DSP software.

Time-to-Market

The time-to-market benefits of using a standard DSP SoC are clear. Eliminating ASIC design from scratch can lead to significant time savings. In addition, not having to re-spin one or multiple of the various functional devices in a legacy system can be the difference between an OEM getting a majority of the market share and missing the market window. As illustrated in Figure 2 above, being slightly late to market, ensures missing a significant portion of the revenue and virtually ensures not capturing the entire market when the product is finally released.

The total revenue lost in this scenario can be calculated as the difference in area between the two triangles – the red shaded area.

Assuming a constant market ramp, on-time revenue is half (base) \times (height)

\[= 0.5 \times \text{Product Lifetime} (L) \times \text{Maximum Revenue} (R) = 0.5 \times L \times R \]

And delayed revenue is half (base) \times (height)

\[= 0.5 \times \text{Delayed Product lifetime} (L-LD) \times \text{Delayed Maximum Revenue} (RD) \]

\[= 0.5 \times (L-LD) \times RD \]

Total Revenue Loss is

\[= 0.5 \times L \times R - 0.5 \times (L-LD) \times RD = 0.5 \times [L \times R-(L-LD) \times RD] \]

Figure 2: Revenue Lost Due to Delayed Market Entry

Example of Late to Market Revenue Loss

For example, if the total product lifecycle (L) is 48 months, the Max Revenue is $10M per month, the project delay (LD) = 6 months and the delayed maximum revenue is $7M,

The Total Lost Revenue = \(0.5 \times (10 \times 48 - (42) \times 7) = 93M\)!! (Almost 40% of potential total revenue from the project)

As can be seen, the revenue lost due to delayed market entry has components of both delayed market start and inability to hit 100% market share as components of the lost revenue. This does not yet comprehend the additional development expense for the duration of the delay as well as the lost margin in having to compete for market share when coming from a late-to-market position.

Total Cost of Ownership

Lower Development and Fixed Cost

As can be seen in Figure 3 below, the SoC approach considerably lowers the cost of development.

The NRE costs associated with developing IP blocks, generating and re-spinning ASIC as well as testing and qualifying various devices can run in the 10s of millions of dollars.

There is also another component of the initial investment – the additional cost of having to develop custom prototyping boards for ASIC, as off-the-shelf solutions are not available with the custom pin-out. DSP SoCs, on the other hand, have a variety of off-the-shelf standardized board solutions available. These are generally also lower in cost as they are sold across multiple OEMs and application areas.

![Figure 3: Standardized DSP SoCs Lower NRE and Fixed Cost](image-url)
Lower Bill of Materials

In W-CDMA applications, the TCI6488 DSP eliminates the need for ASIC or FPGAs for chip-rate processing. This results in significant unit cost savings. In addition, through the integration of standardized system-level interfaces such as Serial RapidIO® and OBSAI, it also eliminates the need for bridges or glue logic, allowing the device to seamlessly communicate with the backplane and a host of other devices. As such, the TCI6488 can lower the total Bill of Materials (BOM) for a system by up to one-fifth of legacy systems as seen in Figure 4.

Compared to an all ASIC approach, the DSP SoC approach provides a good balance of flexibility and cost efficiency. DSP SoCs are used across multiple air-interface standards, due to their support of multiple standards, and across multiple generations of systems, due their ability to support emerging features and requirements. Typically, this leads to DSP SoCs shipping in volumes that exceed what any single custom device would be able to achieve in isolation. These volumes are leveraged to lower silicon costs and are used to offer a very attractive price point to help OEMs meet their BOM targets for established markets, as well as niche and emerging applications.

There are several scenarios where the TCI6488 DSP SoC further demonstrates its ability to fit into various partitions and resource allocation approaches. In one such example, as shown previously in Figure 4, the device can be used to construct a 192-user 3GPP Release 99 system quite easily using four devices. The same device can also be used to...
create a High-Speed Downlink Packet Access (HSDPA) system. A virtually complete base-band system with 192-User, 3-Sector RACH, HSDPA / HSUPA (additional small device needed for transmit chip rate functionality) can be implemented using just four devices as seen in Figure 5. This simple example demonstrates how, through software modification, the same architecture (if not the same channel card) can be used for voice-only users, HSDPA/HSUPA users, dedicated data users or various combinations of three.

Software Programmable Solution

The move from modems dominated by lots of low data rate voice calls to modems with a few large data rate data channels that are time multiplexed has actually decreased the front end signal processing complexity. This is seen conceptually in Figure 6 on the following page.

As the data portion of the processing mix on the modem increases, there has been a steady increase in modem complexity because this processing is correlated with the data bit rate. On the other hand, the signal processing complexity actually decreased as we moved away from voice dominated standards and towards time-multiplexed, shared channels, as used in HSDPA. The addition of antenna arrays and more complicated receiver structures with HSUPA has increased the complexity of the signal processing. But nevertheless, the role of data processing has increased significantly and this type of processing has always been done in software. Hence, modems are becoming increasingly soft.
Software programmability on the baseband, such as that available on the TCI6488, is becoming more desirable.

By using the TCI6488, OEMs can accelerate their channel card development since it offers a software-programmable solution and allows for the reuse of existing DSP software developed for previous generations of TI infrastructure DSPs. TCI6488 is upward code-compatible from previous devices that are part of the TMS320C6000™ DSP platform. Customers can re-use their existing software code base and evolve their system architectures ensuring they get to market more quickly.

Easier Higher Layer Software Provisioning

The main benefit of a system allowing easily provisioned software is quick time to market. A system using the TCI6488 can provide this benefit in three ways:

Single-Chip Physical Layer Functionality

From the higher layer software perspective, each DSP SoC looks identical and operates at a user level. This is because a complete user can reside on a single SoC. Therefore the board-level resource manager does not have to be cognisant of the resource mapping on the hardware, simplifying resource management. The resource manager on the SoC is in charge of load balancing the users it is given.

Aggregated MAC Functionality

Traditionally, higher-layer software also has to deal with the task of partitioning physical, control and signalling as well as MAC layer functionality across separate devices.
Typically, the software layers of the modem protocol were separated onto different CPUs, with the Layer 2 protocol and the board control being implemented on a “control” processor, usually a PowerPC. One reason for this split was that the control processor devices had a more suitable peripheral set for communicating with upstream components and had better software development tools for this type of code.

However, over the last few years, the software development support for Texas Instruments’ DSPs has improved significantly with industry competitive C, C++ and micro Linux support. The TMS320C64x+™ CPU used on the TCI6488 also supports memory management and a user/supervisor mode. TCI6488 supports both Ethernet and Serial RapidIO® and therefore does not suffer from being “interface poor” for board level and Layer 2 processing.

Greater DSP Horse Power Allows System Homogeneity

With 1-GHz performance per DSP core, the TCI6488 has sufficient processing power on the three CPUs to absorb the L2 processing and the board control functions on to the DSP SoC. This gives system designers greater flexibility as to how the software is partitioned. This has the dual-purpose benefit of simplifying upper-layer software provisioning as well as reducing the modem board BOM.

Easier Software Replication and System Testing

A direct consequence of the system homogeneity discussed above is that the same physical layer (and potentially L2) software would be written once and then replicated across multiple TCI6488 devices making the software development easier and enabling shorter time-to-market.

Also, since every SoC is self contained, when designing a higher-performance system by adding more SoCs, the channel card would require little or no testing at the SoC level. This would mean minimal additional testing at a system level when scaling a system.

Investment Protection via Flexibility

Feature additions and standards evolution are now routinely expected in the wireless development world. For example, the difference between GPRS and W-CDMA maturity at deployment is shown in Figure 7 on the following page. A non-editorial change request (CR) is essentially an engineering “bug” in the standard. Increasingly, standards are launched early and equipment is deployed with bugs and other uncertainties still present
in the standards. Wireless operators demand that this early equipment be fixed in the field after deployment. Replacement of equipment is considered an ugly (and expensive) fix for the problem and is only available as a last resort option.

Add to this every carrier’s requirement to differentiate themselves via a slightly different twist on the standards specification and it is the recipe for frequent changes to system designs that OEMs must make, sometimes mid-stream in a design. Also, in the early stages of any system development project, it is often not clear which functions should be implemented with hardware and which in software. Consequently, the ability to make changes during development without being too disruptive can be valuable. Given the recent history of tighter development budgets, it’s no wonder that more of the OEMs are looking at flexible implementations such as DSP SoC. Also, the cost of ASIC development is rising and becoming harder to justify with typical infrastructure volumes. This is more clearly seen with emerging wireless markets where the uncertainty of gaining critical market share is even greater.

The DSP SoC, like the TCI6488, allows OEMs to have the flexibility to deal with feature creep. Often they can begin development without nailing down the complete architecture of the system knowing that, through software, the TCI6488 is able to support a variety of system partitions and configurations.

Improved Power Efficiency

The increased processing demands of today’s advanced wireless networks have also increased power consumption. The ever-growing demand for high-capacity, high-data-rate signal processing in base stations raises a chronic technology challenge. The challenge is to squeeze higher functionality and performance within increasingly tighter power and
space constraints. As a result, power-performance metrics are now a central concern in infrastructure system design. New methods have been devised enabling designers to address the two main areas of power consumption—namely leakage power and dynamic power—to significantly improve performance compared to conventional techniques.

To solve this problem, the TCI6488 DSP SoC sports a new power and performance management technology called SmartReflex™. Texas Instruments’ SmartReflex technology is used to decrease both static and dynamic power consumption while maintaining the specified device performance.

This technology takes advantage of the fact that a device’s leakage and associated power can vary significantly across a process distribution as shown in Figure 8. SmartReflex technology make use of this phenomenon by adjusting the core voltage of devices to suit the process type of the material.

Another element of SmartReflex technology is enhancing device performance and optimizing power efficiency by considering thermal parameters. To achieve improved power efficiency, the device implements temperature-dependent dynamic voltage scaling.

The final solution allows full performance utilization of highly integrated silicon designs, such as TCI6488, with optimized power consumption. A comparison of the 65-nm node (with and without SmartReflex technology) with the 90-nm node is shown in Figure 9 on the following page. This allows designers the ability to add multiple TCI6488 devices on a single card, while still meeting the board power budget.

Another primary component of dynamic power is the chip-to-chip interface between multiple devices on legacy systems. Through system integration, the DSP SoC approach ensures that device-to-device communication is kept at a minimum, reducing the overall system power consumption.

Figure 8: Device Leakage and Power Can Vary Significantly Across Process Distribution
Smaller Form Factor

The efficient integration of the various system-level components on the DSP SoC also allows for a smaller number of input and output signals (I/Os) and package ball count, which in turn reduces the size of the device. This has the dual benefit of reducing packaging cost as well as allowing a greater device density on a single board, thus allowing system designers to pack more functionality on their board with every generation. The TCI6488 fits into a small 23 mm × 23 mm flip chip BGA package.

With fewer signals leaving the device, DSP SoCs such as the TCI6488 also have the added benefit of simplifying board layout and reducing board complexity associated board cost.

Greater Scalability

According to some analysts, the market for small form factor base stations is on the rise (see Figure 10).
However, the uncertainty around the timing and slope of the pico base station market ramp make this a questionable market for a custom chip development from the very beginning. As such, a phased approach starting with a standard DSP SoC moving to a custom SoC is recommended for such markets.

The beauty of a DSP SoC approach is that it allows designers to pick an appropriate granularity of system performance and then replicate that to match the end system as shown in Figure 11.

A single TCI6488 can support a complete HSPA pico base station. Thus, software can be, written, verified and qualified once for such a single DSP SoC to support a pico implementation and then replicated on top of multiple devices to create larger system configuration, such as micro or macro, in the future. In addition, the availability of high bandwidth, peer-to-peer interconnect like Serial RapidIO®, enables OEMs to reduce overall R&D by allowing it be re-used across form-factor product lines ranging from small enterprise class pico base station, all the way to a super macro covering over a 100-Km cell.

Conversely, if the modem designer wishes to dedicate a chip to only one function, such as Random Access Channel (RACH) messaging, this is also possible with the TCI6488. The designer can therefore trade off the advantages of code that is repeatable across multiple devices with the efficiency that might come from concentrating a single function in one device.
Simpler Redundancy and Load Balancing

Inherent in DSP SoC architecture is the built-in multi-function redundancy. Since all the baseband functions are performed on the TCI6488, system redundancy can be implemented by just adding an additional TCI6488 to the system.

With proper system design, it may be possible to have system redundancy without adding an additional device. In such cases, the system software would sense if a functional unit or logical block on the DSP SoC was not performing and simply switch the task to another DSP SoC via the Serial RapidIO® subsystem. However, this approach will likely require the system to drop to a fewer number of supported users.

Via the same approach, the presence of a Serial RapidIO-connected DSP subsystem also makes it easy for the system to balance the processing load between various DSP SoCs on the system.

Multi-Standard Support

Back almost a decade ago at the start of the 3G standards development, industry pundits predicted that the world would converge to one wireless air interface. The mess of standards that had been 1G had given way to a slightly better situation, at least in Europe, with 2G, and the hope was that 3G would finish the job. Now, a decade later, this utopian ideal has been replaced by a fragmented world where multiple standards not only survive but are being pushed to compete and inter-operate at the same time.

The explosion in the number of wireless air interfaces compounded by a simultaneous cut back in capital expenditure is forcing OEMs to consider ways to address multiple market opportunities while getting the most out of their architecture investments.

This is where TCI6488 comes to the rescue with its ability to support UMTS, GSM, TD-SCDMA, WiMAX and cdma2000 applications as seen in Figure 12. The three 1-GHZ DSP

Figure 12: TCI6488 Enables Multiple Wireless Modem Standards
cores go a long way in enabling this device to support multiple standards, while the acceleration of the mature, compute intensive W-CDMA functionalities makes sure it is able to meet the aggressive W-CDMA cost efficiency targets. This flexibility in a small form factor, scaleable solution provides OEMs a unique solution to support established markets and extend these into new and emerging infrastructure applications.

Primary W-CDMA Functional Processing

Symbol Rate and MAC-hs Processing

Uplink and downlink symbol rate processing, as well as MAC-hs processing, is performed on one or more of the three TMS320C64x™ 1-GHz DSP cores available on the TCI6488.

TCI6488 is upward code-compatible from previous devices that are part of the TMS320C6000™ DSP platform, with the TCI6488 allowing system designers to re-use their existing software code base.

In addition, twenty eight (28) new instructions have been added to this DSP core with a large number of these targeted at improving performance in wireless infrastructure applications. As such, designers can improve their code performance on a per cycle basis simply by taking advantage of these new instructions.

FEC Decoding for Voice and Data

The device has two high-performance embedded coprocessors [enhanced Viterbi Decoder Coprocessor (VCP2) and enhanced Turbo Decoder Coprocessor (TCP2)] that significantly speed up channel-decoding operations on chip. The VCP2 can decode over 763 12.2-Kbps adaptive multi-rate (AMR) [K=9, R=1/3] voice channels. The TCP2 can decode up to 44 384-Kbps or 8 2-Mbps turbo encoded channels [assuming 6 iterations].

Both TCP2 and VCP2 are loosely coupled into a DSP subsystem and are fully parameterized to flexibly support various options within the 3GPP specifications. The presence of VCP2 and TCP2 frees up DSP resources for other processing and enables basebands with much higher voice and data density than would have been possible with a DSP-only approach.

Chip-Rate Processing

Transmit Chip-Rate Acceleration Using RSA

Transmit chip-rate processing on the TCI6488 is implemented by a DSP subsystem and its associated Rake Search/Spread Accelerator (RSA) extensions. These RSA extensions accelerate CDMA transmit processing by performing the spreading and scrambling functions. The RSA extensions are also capable of carrying out the stream aggregation...
functionality. Also, in conjunction with the DSP cores, they can also perform search functionality that can be used to augment the Preamble Detect (PD) and Path Monitoring (PM) functions typically performed on the Receive Accelerator.

The RSA extensions allow the TCI6488 to truly shine in supporting very high user density, multiple antennas, variety of data formats as well as an array of system configurations. Thus a base station using the TCI6488 can flexibly support multiple voice and data users, as well as cell sizes over 100 miles in size. All of this is accomplished without sacrificing cost or power efficiency, in large part due to the RAC.

Figure 13 shows the functional split of transmit chip-rate processing between the DSP subsystem and the RSA extensions. The DSP core generates both OVSF and PN codes and provides the multiplied result of these two codes as input to the RSA. The modulated user symbols are also provided as input to the RSA. The RSA applies the code values to the modulated symbols to achieve spreading and scrambling.

Receive Chip-Rate Acceleration Using RAC

Receive chip-rate processing on the TCI6488 is implemented via the Receive DSP core and the Receive Accelerator (RAC). The RAC is comprised of highly flexible and programmable correlation engines, as shown in Figure 14. These can be configured to carry out various receive chip-rate functions, including Rake finger de-spreading (FD), EOL finger tracking (FT), search or path monitoring (PM) operations and RACH preamble detection (PD) operations. These blocks receive 2× over sampled chip-rate antenna streams and provide the Rx accelerator DSP with either de-spread symbols or correlation energies. These blocks support a very large amount of correlation resources and can support up to 6,144 32-chip correlations per 32-chip period. The DSP associated with the RAC serves to control and configure the two correlation engines.
Advanced and Emerging Features Support

The TCI6488 has support for various Multiple Input Multiple Output (MIMO) antenna configurations. Fixed and adaptive beam forming can be enabled on both uplink and downlink via the RSA and RAC. Parallel Interference Cancellation (PIC) is enabled with re-spread possible via the RSA. Thus, as the market demand for advanced features materializes, OEMs using TCI6488 will be able to quickly support advanced features without having to redesign their existing baseband platforms. The soft nature of the DSP SoC also makes it an ideal candidate for OEMs to support emerging features and capabilities on their current platforms.

W-CDMA Software Library Elements

The TCI6488 platform is supported by a hardware adaptation software layer, which abstracts the hardware implementation details and provides a well-defined API to the upper software layers. A comprehensive set of optimized hardware-dependent functions are provided as apart of this hardware adaptation layer. In addition, a robust set of W-CDMA software library elements are also provided to give system designers a head start in developing a complete physical layer. Alternately, OEMs can build their own processing elements on top of the hardware adaptation software to complement or replace the ones provided along with the TCI6488. An API layer on top of the hardware adaptation software and the W-CDMA software library elements allows OEMs the freedom to choose the level at which they want to develop their differentiated software component.
W-CDMA on DSP SoC Architecture Considerations

Introduction

A base station modem is a real-time system with multiple users, all with their own real-time constraints, being supported simultaneously. Recent modems that support data transfer have the added complexity of having to support many different users with different data rates and QoS requirements leading to differing I/O, MIPS, and memory requirements. In order to understand the benefits of the DSP SoC approach for W-CDMA base stations, it is pertinent to consider the trade-offs made by designers when designing a multi-user modem.

For the purposes of this discussion, a simplified receiver (demodulation) modem data flow is considered, as shown in Figure 15, which includes both a low latency control path and a higher latency data path.

Additionally, every system is assumed to have at least a basic Real-Time Operating System (RTOS) to schedule tasks and users.

Task Division

One of the basic decisions concerning whether a basic software task can be performed relates to a user or a function, as seen in Figure 16. This decision impacts the way
interrupts are generated and how often tasks switch. It also affects the way software interacts with any peripherals and hardware acceleration on the DSP SoC.

Dividing Tasks by Users

If the tasks are divided by users, the RTOS will not know how many tasks will be present at any given time. The main issue with dividing the tasks by user is that the number of tasks grows with the number of users. For instance, on a macro base station, there may be up to 64 users running on a TC16488 and these users may require multiple tasks each. Also, as the number of tasks grows, so generally will the number of task switches per second. Not only is there a crushing number of task structures to manage, but also more time will be spent in interrupt routines and in the kernel, and less time doing useful work. Typically, this can lead to an unmanageable system above a few tens of users.

Dividing Tasks by Functions

If the tasks are divided by functions, the RTOS does not have to know how many users are present in the system. It only has to know how many unique functions are to be performed. As the number of users increases, the time it takes a task to complete will increase as that task will run for each user that needs that task at that point in time. If the task is called immediately, when there is data available for each task, then each task will be called for each user and the number of task switches will increase with the number of users. This can again lead to a crushing number of task switches.

A Hybrid Approach

A better way to manage this is to assign each task to a linked list. When a task runs to completion, for each user, it will add an item to the linked list of the task associated with the next function to be performed on that user. This will not cause an interrupt to be generated and the users will accumulate on the linked list. At some point the task will be activated and it will process its linked list to completion, or until it is pre-empted. This method of task definition and processing is generally preferred on the TC16488.

Key Take-Away From the User and Task Grouping Analysis

In order to keep the number of tasks, and the task pre-emption overhead, to a manageable level, they must not scale with the number of users. Tasks should be associated with functions and not users. This can be done by setting up a number of queues. Tasks are
associated with a queue (usually several tasks per queue) and requests for operation of a task on a particular user are linked to these queues. The kernel will manage the draining of these queues and can do this in several ways, using periodic or data-driven interrupts to achieve real-time operation. As mentioned earlier, this is the recommended approach when using the TCI6488 for W-CDMA applications.

Scheduling on a Multi-Core DSP SoC with Acceleration

Having considered how to group tasks and users on the TCI6488, the question naturally arises of how to map users and task on a DSP SoC. The TCI6488 is a multi-CPU DSP SoC and composed of independent IP blocks that interoperate and synchronize to achieve a single complete modem function. As such, mapping the priority queue into a multi-CPU environment is an important consideration when designing W-CDMA systems using it.

Mapping Users Across DSP SoC CPUs

One simple way to do this is to divide the users amongst the CPUs, so that each CPU maintains its own queues. However, some functions, such as filtering and demodulation, may be shared amongst all users. Also, some functions may be required to share coprocessors or peripherals, and are therefore interdependent.

In this case, the interaction between the sets of priority queues can get quite complicated and it gets difficult to ensure real-time performance. Also, the complexity of the coprocessors and peripherals increases because they have to support multiple CPUs. This involves making decisions about priority of tasks from different CPUs. All this adds complexity to hardware and also to software drivers. It also makes testing of the final system more complex.

Mapping Tasks across DSP SoC CPUs

Another approach is one of assigning a functional task to a single CPU so that each CPU in charge of a unique group of functions. Each coprocessor, which generally accelerates a specific type of function, is associated with a single CPU and control of the order of tasks performed on that coprocessor is significantly simplified. In many cases peripherals will only communicate with a single CPU as well. This reduces the testing required to verify that tasks will not be starved of data.

Synchronization between CPUs can be achieved by system-wide synchronization signals that align the CPUs to frame, slot and symbol boundaries. Communication between CPUs is in the form of blocks of data generated by one task and destined for another via Direct
Memory Access (DMA) approach between L2 memories. This is the recommended approach when using the TCI6488.

Recommended Resource Mapping with TCI6488

The architecture of the TCI6488 has been kept as symmetrical as possible so that it may be used with a variety of functional splits and system partitions. All DSP cores have access to the Receive accelerator, for instance. It is therefore possible to run the same functions on all CPUs, and have all CPUs access all coprocessor and peripheral resources.

Yet, it is noted that simplicity of software architecture, along with the nature of many modem algorithms, leads the smart system designer to partition the tasks so that the software is not symmetric across CPUs. This is why despite the symmetric architecture, there is still a recommended usage model, the outcome of extensive study of code cycle estimates, spreadsheet analysis and transactional level models.

Based on this analysis, software partition recommended for W-CDMA allows the simplicity of having only one CPU controlling the RAC, one CPU controlling the TCP and VCP, and one CPU performing transmit chip-rate function as well as communication with the antenna array interface for output. Each CPU is also equipped with its own L2 memory as is appropriate in an implementation where each CPU has a unique function. This simplifies the operation of the device and allows the system designer to extract maximum application level efficiency from the device.

For other standards, such as those based on OFDM, the natural inclination may be to use a symmetrical software architecture. But even in this case, it is recommended to divide the problem so that certain functions, such as FFT/IFFT and some modulation and demodulation is performed by one CPU and the results communicated to another CPU for symbol-rate processing. In fact, in the case of OFDMA, the modulation is jointly performed for all users and users cannot be completely separated onto different CPUs. This certainly simplifies communication between the antenna interface (or Serial RapidIO® if this is used for antenna data) and the CPU processing the front end. This also has the added benefit of simplifying the back-end symbol-rate processing and its communication with the network interface.

Balancing Resources on a Multi-DSP SoC System

As it was recommended in the previous section that each CPU perform different tasks from each other, it is worthwhile considering if the same approach can be extended to each DSP SoC having a different task in a multi-DSP system. For instance, a scenario can
be imagined in which there would be one DSP SoC performing nothing but symbol-rate decode and one DSP SoC performing nothing but chip-rate modulation.

In a purely soft implementation, this makes sense. However, in such a scenario, any co-processing elements present on chip will not be used efficiently. For instance on a TCI6488, performing only symbol-rate processing needs a powerful set of VCP2 and TCP2 engines, as present. However, on another DSP SoC performing only chip-rate tasks, the VCP2 and TCP2 engines would be unused.

Thus, dedicating DSP SoCs to a particular subset of functions also does not make for a scalable system. Clearly, if one wishes to increase the channel density on a board, with each SoC performing the same complete set of functions, one can simply add more SoCs to the board. The TCI6488 is designed to allow this to happen with the minimal extra hardware. The Antenna Interface (AIF) and Serial RapidIO® both can be connected in a daisy chain configuration to enable multi-device systems. The gigabit Ethernet and Serial RapidIO interfaces can also be attached to a switch to create a scaleable fabric-based system.

Handling of W-CDMA Tighter Latency on DSP SoC

Compared to a design where each device performs a different task, DSP SoC has the advantage of latency in transferring data from task to task, while executing the data path of one user is smaller because the data is kept contained on chip.

System Architecture Conclusion

For a system design using DSP SoCs, such as TCI6488, the system architecture that is the most scalable at the board level and leads to the simplest, most easily tested software is one in which each CPU in the DSP SoC performs a unique subset of tasks, but each SoC in the system performs the same set of tasks as the other SoCs. TCI6488 has been optimized for this scenario for W-CDMA/HSPA, but is flexible enough to also efficiently support other modem standards and partitions.

The goal for any SoC is to have the perfect balance of on-chip resources. Therefore, properly sizing memory, IO, CPU and other resources from the outset is critical. Comprehending and balancing resource requirements on a DSP SoC requires a good grasp of the end system as well as a clear understanding of the real-time constraints. Failure to understand real-time requirements can be disastrous and lead to resource underutilization, insufficient capacity, bandwidth, memory or a combination of these. Sharing hardware resources and multiple threads or services allocated to multiple processor cores increases complexity and risk. Up-front understanding and avoidance of known resource sharing pitfalls is
strongly suggested. When multiple resources must be shared, interaction should be well synchronized, brief and well tested.

How TCI6488 Guards Against Typical SoC Pitfalls

Though the TCI6488 was designed from the ground-up to be a very effective real time W-CDMA baseband processor, it still incorporates features to help the system designer, should one of the typical problems listed above occur.

- **Insufficient memory** – In addition to the hefty on-chip memory already included, the TCI6488 also allows for a variety of external memory devices supported through its DDR-2 memory interface.
- **Inadequate acceleration** – The presence of Serial RapidIO® allows for a very-high bandwidth, low-latency option for connectivity to external accelerators, including those implemented on FPGAs.
- **Insufficient performance** – Multiple copies of the TCI6488 can be instantiated. Given the re-use of the software and the ease of connectivity via Serial RapidIO, getting to the right performance is easier than ever.

Summary and Conclusion

The value in a DSP SoC approach lies in its ability to provide time-to-market advantages without sacrificing BOM savings. The ease of software provisioning and testing eases the burden on system software. The software programmable nature of TCI6488 helps insulate OEMs and carriers against unanticipated changes, while allowing them to leverage their existing code base. The ease of software replication and the enhanced device features, along with power efficiency and small form factor, allow system designers to easily scale their designs to meet application requirements. DSP SoCs are also particularly well suited to allow implementation of redundancy and load balancing. Via hardware and software mechanisms, well-designed DSP SoCs, like the TCI6488, also avoid the typical pitfalls that can plague SoCs.

TCI6488 DSP offers a high-performance, power-efficient and cost-effective baseband platform capable of supporting physical layer processing, including symbol-rate and chip-rate processing. Designed specifically for the W-CDMA base station, the TCI6488 helps designers achieve unprecedented system density and performance.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, and notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>Low Power</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td>Wireless</td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated