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Introduction

The emergence of the Internet of Things (IoT) promises to greatly increase the 

deployment of low-cost sensors or actuators such as intelligent lighting, thermostats 

and smoke detectors, which will need to communicate with the Internet. These sensors 

and actuators (henceforth referred to as “IoT nodes”) often need to run for months or 

years on coin-cell or AA batteries. As a result, energy efficiency is a critical concern 

for developers.

Laptops, mobile phone and tablet users are accustomed to having operating systems 

(OSs) control power-saving activities such as dimming displays or system hibernation 

after periods of no usage. However, these devices are based on sophisticated OSs 

such as Windows®, Linux®, iOS® or Android™. The low-cost nature of IoT nodes 

will result in many implementations using microcontroller units (MCUs) with limited 

on-chip memory, thus precluding the use of high-level OSs. Although traditional 

MCU developers are often satisfied with a set of low-level libraries for managing the 

hardware functionality, such an approach will often be insufficient for IoT nodes for 

several reasons:

• Over the last decade, new silicon processes 

have created significantly more power 

leakage compared to devices built using older 

complementary metal-oxide semiconductor 

(CMOS) processes. To achieve the energy 

efficiency optimal for IoT nodes, more 

sophisticated power-management features 

are being designed into MCUs aimed at IoT 

applications. A low-level software interface 

creates a learning curve for potential users, 

making it less likely they will exploit them.

• Achieving optimal energy efficiency requires 

using more complex power-down modes, 

where much of the system on chip (SoC)—

including the central processing unit (CPU), 

peripherals and memory—shuts down or power 

cycles. Silicon vendors should provide higher-

level functions that implement these ultra-low 

power states reliably to insulate users from 

device-specific complexities. In addition, these 

higher-level power-management solutions 

should address issues such as maintaining a 

reliable time base in applications that spend 

significant time in sleep modes.

• Many IoT devices originate from companies 

not traditionally associated with embedded 

systems development; it’s unlikely that there will 

be enough traditional embedded developers 

to address all of the opportunities available in 

the IoT marketplace. MCU-based IoT node 

developers who lack previous embedded 

development experience will certainly not 

want to deal with low-level register-abstraction 

application programming interfaces (APIs). They 

will expect something much closer to what is 

available in Windows or Linux, where they can 
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select a specific power-down mode or have the 

OS actively manage power.

In the connected MCU space, real-time operating 

system (RTOS) offerings deliver higher-level software 

functionality such as network connectivity to 

embedded developers. In this white paper, I will 

examine a power-management framework deployed 

in the SimpleLink™ MCU software development 

kit (SDK) that enables developers to build energy-

efficient IoT nodes. The SimpleLink MCU SDK 

includes an RTOS called TI-RTOS that serves as the 

foundation of the power-management framework; 

in this paper I will refer to TI-RTOS rather than to 

the SimpleLink MCU SDK. However, the power-

management framework is OS independent and 

also runs, for example, on FreeRTOS, which is 

also supported in the SimpleLink MCU SDK. Since 

many software power-management techniques 

are inherently dependent on underlying hardware 

features, the combination of TI-RTOS running on 

TI’s SimpleLink Bluetooth® low energy CC2640R2F 

ultra-low-power wireless MCU is a real-world 

example of a power-aware RTOS executing on an 

MCU designed for low-power IoT node applications.

An RTOS has some inherent advantages for energy-

efficient designs. The first is that the preemptive 

multitasking design paradigm encourages interrupt-

driven rather than polling-based drivers, which 

eliminates unnecessary CPU usage spent polling 

peripheral registers. The second advantage is that 

the OS automatically drops into an idle thread when 

there is nothing to do, clarifying when developers 

can apply power-saving techniques. Furthermore, 

as I will discuss later, some of the more advanced 

power-management capabilities require the device 

drivers to communicate with a centralized database 

that tracks which resources are in use. This fits 

naturally into an OS, which typically manages some 

or all of a system’s peripherals.

Beyond these natural advantages, a power-aware 

RTOS must offer numerous other capabilities 

to achieve an optimal low-power operating 

performance. I will examine specific power-

management techniques that when combined 

produce a comprehensive framework. However, 

before getting into the software specifics, let’s 

briefly review some essential hardware power-

management features that must be present on 

the device.

Hardware power- 
management features

To comprehend the software power-management 

techniques explained later, you should have a basic 

understanding of some of the underlying hardware 

features that assist in effective power management:

• Clock gating: Clock gating turns off the clock 

for a particular peripheral, which in turn reduces 

the power consumed by that peripheral’s logic.

• Power domains: Although turning off the 

clock to a peripheral eliminates most power 

consumption, depending on the process used 

to manufacture the device, there will often 

still be some power drain due to leakage. To 

address this issue, an SoC may implement 

power domains to completely shut off power 

to a particular circuit. Unlike clock gates, which 

usually have a one-to-one correspondence to 

a peripheral, a power domain typically controls 

multiple peripherals, such as all of the universal 

asynchronous receiver transmitters (UARTs) or 

serial input/output (I/O) peripherals.

• Wake-up generator: To implement very 

aggressive low-power states, both the CPU and 

virtually all peripheral domains power down. 

Since no interrupts can normally reach the 

CPU in these circumstances, additional logic 

that enables a subset of peripherals to wake 

http://www.ti.com/lsds/ti/tools-software/simplelink_mcu_sw.page
http://www.ti.com/lsds/ti/tools-software/simplelink_mcu_sw.page
http://www.ti.com/product/cc2640r2f
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up the CPU is required. SoC designers must 

decide which interrupts can wake up the CPU 

and ensure that the wake-up generation logic 

catches these interrupts, takes the CPU out of 

reset so it can respond to the interrupt and then 

forwards the interrupt to the correct vector.

• CPU-independent high-resolution timer: 

Since the great majority of embedded 

applications have some time-driven events, it 

is essential to maintain an accurate time base 

across power-saving modes. This requires 

keeping a timer active while powering down the 

rest of the SoC. The timer must have sufficient 

resolution to maintain something similar to a 

1 ms tick count and sufficient width to avoid 

rollovers during periods of deep sleep. The 

required resolution and width will depend on the 

CPU clock rate and how long the application 

will sleep for.

• Fast wake-up time and appropriate run-

time performance: Although not explicitly 

used for power management, the SoC’s ability 

to wake up quickly, complete work quickly, 

and go back to a low-power state quickly is of 

paramount importance to maximize time in low-

power states. Important design choices here 

include having a high-frequency clock source 

stabilize quickly, and selecting the right CPU 

speed and performance so that the work can 

be done quickly.

Let’s discuss how an RTOS power manager uses 

these features, beginning with a discussion on how 

to minimize run-time power consumption.

“CPU active” power- 
management techniques

Minimizing power consumption while the CPU 

is active primarily means aggressively managing 

power consumed by peripherals such as timers, 

serial ports and radios. To do so, the RTOS 

power manager relies on the clock gating and 

power domains designed into the CC2640R2F 

silicon, which enables the power down of inactive 

peripherals. Leveraging this hardware requires 

knowing when a particular peripheral is in use or 

not. An OS and its associated device drivers can 

track such knowledge. Each device driver must 

declare a dependency on the specific peripheral it 

will use.

For example, when invoking the Serial Peripheral 

Interface (SPI) driver, that driver declares a 

dependency to the OS power manager on the 

specific SPI port (e.g., SPI2). The OS power 

manager knows the clock gate and power domain 

associated with SPI2 and verifies that these are 

enabled. If they are not, it enables them. When the 

driver completes execution, it informs the OS power 

manager to release the dependency on the chosen 

SPI. The power manager maintains a database of 

dependency counts on the clock gates and power 

domains. Whenever the dependency count for 

a clock gate or power domain goes to zero, the 

power manager is responsible for disabling them to 

reduce power. These peripheral power downs occur 

during normal system run time and help increase 

energy efficiency.

Maximizing CPU power- 
state efficiencies

In many IoT nodes, the SoC spends much or even 

most of its time in some form of sleep mode. To 

maximize energy efficiency, it is critical to not only 

maximize the amount of time spent in sleep modes, 

but also to appropriately use the most power-

efficient sleep modes where possible. Achieving 

the most power-efficient sleep state will typically 

go beyond just putting the CPU into a sleep state. 

It may be desirable to power down memories in 

addition to on-chip peripherals. It is also essential 
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to have a real-time clock or high-resolution timer 

kept alive across power downs to ensure proper 

functioning of the application’s time-based 

functions. In the CC2640R2F implementation, 

the real-time clock is part of the “always-on” 

hardware, so the application always has access to 

it. However, in other silicon implementations, it may 

be necessary for the power manager to specifically 

keep a timer or clock alive. There are a number of 

different techniques to ensure that sleep modes are 

as efficient as possible. Let’s begin with a discussion 

of tick suppression.

Tick suppression

Embedded applications typically employ a regular 

timer interrupt as a “heartbeat.” This timer interrupt 

calculates when any time-based activities such as 

periodic functions or timeouts should occur. For 

RTOS-based applications, this timer interrupt is 

known as the system tick, but no-OS applications 

will typically have a similar regular timer tick.

Ticks execute periodically at a rate sufficient for the 

most granular timing needed by the application. 

As a result, most system ticks will not result in the 

execution of a time-driven function. In energy-

efficient applications, it is clearly undesirable to 

wake from a low-power state just to service the 

system tick timer interrupt and then find that there 

is nothing to do. Fortunately, the OS knows when 

any periodic functions or timeouts are due to occur. 

To implement tick suppression, the OS reprograms 

the timer associated with the system tick so that 

the next timer interrupt only occurs when the next 

time-based function runs. As illustrated in Figure 1, 

this approach can eliminate the majority of timer 

interrupts associated with the system tick.

In the TI-RTOS implementation, the developer 

simply sets a configuration parameter to enable 

tick suppression. An alternative approach is to 

provide application-driven control through APIs. 

However, this forces the tick-suppression logic 

into the application code, and adds the overhead 

of API calls to a relatively simple operation. The 

core overhead of tick suppression is low, as 

reprogramming the timer peripheral is simply a 

register write.

Figure 1. These screen captures illustrate two oscilloscope traces. The top (yellow) trace tracks a timer that triggers every 1 ms for use as a 
comparison against the bottom (blue trace), which tracks triggering for a timer used to generate a 1-ms system tick for TI-RTOS. In the left-side 
screens, these two traces line up as expected. In the right-side screens, TI-RTOS tick suppression is enabled, resulting in fewer interrupts, as they 
occur only when work is actually scheduled for execution.
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TI-RTOS and most other RTOSs automatically 

track the next tick interval when work is scheduled, 

so this information is always available. A minor 

side effect is that it may take somewhat longer 

to execute OS system calls that must return tick 

counts, especially on architectures with poor math 

performance. That is because the count must be 

calculated versus just returning a count variable that 

increases upon each timer interrupt.

A power policy manager

In earlier versions of the TI-RTOS power manager, 

designed for digital signal processors (DSPs) in 

mobile phone applications, decisions on when to go 

into a particular low-power state and which power 

state to select were pushed up to the application. 

Once a decision had been made to go to a specific 

power state, a register/notify framework enabled 

the power manager to notify relevant system entities 

such as device drivers, which would then take steps 

to complete any activities and prepare for a power-

state change. Once all the system entities had 

reported that they were ready, the power manager 

would then proceed with the power-state change.

This approach was sufficient in the mobile phone 

space, where large application development teams 

incorporate power-management experts, and the 

nondeterministic nature of the notification process is 

acceptable when the main CPU is running a high-

level OS such as Android, which inherently has a lot 

of overhead.

IoT node applications require a simpler and lower-

overhead approach. Just as for tick suppression, 

the OS power manager is well-placed to make any 

decision about transitioning to a different power 

state. A function called a power policy manager 

provides a simple way to automatically decide on 

and manage power transitions. This function scales 

back the register/notify framework and makes 

greater use a concept known as a constraint to 

simplify decisions about power-state transitions. The 

power policy manager is configurable, but comes 

with a set of default policies that don’t require 

understanding significant levels of detail.

When a multitasking OS-based application has 

nothing to do, it drops into an idle loop and the OS 

can invoke the power policy manager. The role of 

the power policy manager is to determine which 

low-power state to enter at this point. It is always 

safe to simply place the ARM® core in a wait for 

interrupt (WFI) state, as the core register contents 

are fully maintained and application execution can 

resume with minimal latency. However, since other 

power states offer much greater power savings, the 

policy manager will first determine whether to enter 

one of them.

An application may drop into an idle loop because 

one or more tasks are blocked, waiting for 

peripheral I/O operations to complete. If completing 

these I/O operations or any other function are 

essential for the system’s correct operation, the 

application needs to be able to communicate this 

to the OS power manager. In the power-manager 

implementation for the CC2640R2F wireless MCU, 

the application informs the power manager of critical 

functions by setting constraints.

An example of when a constraint is appropriate 

would be when transmitting data over a Bluetooth 

low energy or 802.15.4 radio. An application waiting 

for acknowledgement or data from the wireless 

network would typically block on a semaphore. If no 

other application task needs to run, the application 

will then drop into the idle loop and the power policy 

runs. Obviously, it would not be appropriate to shut 

down the radio and put the CPU into a long-latency 

deep-sleep mode, because that would result in a 

loss of the incoming Bluetooth low energy packets. 

To prevent this from happening, the Bluetooth low 

energy stack or radio driver sets a constraint while it 
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is operating. When its action is complete, it releases 

the constraint.

The constraint should be limited to only those 

power-down modes that would impair successful 

operation. For example, going into an idle state (see 

the next section for more details about the different 

CC2640R2F device power states) may be safe for 

a particular operation, but not going into a standby 

state. The power manager tracks constraints in 

a relatively similar manner to dependencies. But 

the power policy only checks for constraints, not 

dependencies. The assumption is that power 

downs can occur—regardless of ongoing peripheral 

activity—unless a peripheral’s associated stack or 

device driver sets a constraint.

Assuming that constraints are not preventing the 

system from transitioning to a lower power state, 

the power policy manager must weigh information 

from various sources to decide which power-

saving mode to invoke. Each power-saving mode 

is characterized by a specific latency, calculated 

by combining the time to perform a power-down 

operation and the time that the SoC requires to fully 

wake up and be ready for normal system execution.

Much like the technique used in tick suppression, 

the power policy checks when the next periodic 

functions or timeouts are due to occur, and 

then compares this time against the latencies 

of the different power states. It will choose the 

lowest applicable power state and program the 

appropriate wake-up configuration. The power 

policy understands the wake-up latencies from each 

power state and therefore will program the wake-up 

to occur sufficiently early enough to ensure that the 

processor is ready to respond instantly to perform 

previously scheduled work.

When the power policy triggers a transition to a new 

power state, it invokes driver-registered callback 

functions that need notification of sleep transitions 

to shut down the peripheral’s activity. The default 

implementations of these callbacks are minimalistic 

and based on the assumption that it is safe (in the 

absence of any set constraints) to shut down the 

peripheral as quickly as possible.

Figure 2. The TI-RTOS power manager delivers significantly lower power performance with minimal user intervention. Key system components 
such as drivers and stacks are power-aware and inform the power manager when it is safe to aggressively power down. The power policy manager 
combines this information with the knowledge of upcoming events to decide which power state to select.
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Power states

A key attribute of the power manager is that 

it provides proven implementations of a pre-

defined set of power states for a device. These 

are extensively tested to ensure reliable transitions 

to and from the mode, eliminating the need for 

developers to become experts in the device’s 

power-management features or the need to 

devote engineering resources to low-level power-

management code development.

Table 1 lists the power states for the CC2640R2F 

wireless MCU as an example of those that can be 

present for a device power optimized for an IoT 

node. As you can see from the data in Table 1, to 

achieve ultra-low power consumption, it is important 

to implement SoC-specific power states that do 

much more than simply put the main CPU to sleep.

WFI mode simply results in gating the clock to 

portions of the main CPU, which applies in any 

situation, as it has virtually no latency. The primary 

role of the power policy manager is to determine 

if the idle or standby modes are usable, as these 

greatly reduce power consumption (especially the 

latter). See Figure 3. The idle mode will additionally 

power off some CPU logic completely, while 

retaining the state of vital registers. Neither the 

Figure 3. This current-consumption profile highlights the < 10 µA average for maintaining a Bluetooth low energy connection with a 1-s 
connection interval. The device wakes from standby and the radio powers up to do a receive operation, followed by a transmit operation. The device 
then quickly transitions back to standby. Note the very low current used in standby mode.

Power 
state

Wake-up time 
to active CPU 

Current 
used Comments

Active NA 4.145 mA Standard feature of ARM 
Cortex®-M core

WFI A few cycles 2.028 mA Standard feature of ARM 
Cortex-M core

Idle 1.4 µs 796 µA SoC-specific

Standby 14 µs 1–2 µA SoC-specific

Shutdown 700 µs 0.1 µA SoC-specific

Table 1. The current consumed at different power states varies 
exponentially. The wake-up times and current draw are based on 
an ARM Cortex-M3 core running at 48 MHz. In the WFI and idle 
measurements, no peripheral domains were active.



WFI or idle implementations take action to turn off 

peripherals. As a result, actual power usage will 

vary depending on which peripheral and associated 

power domains are active.

In standby mode, all peripheral domains power 

down, except for always-on logic used for wake-

up generation. The real-time clock in the always-

on domain maintains an accurate time base while 

in this state. The device’s static random access 

memory (SRAM) goes in retention mode and the 

power supply is duty cycled to achieve further 

power savings, while sustaining a sufficient charge 

to maintain a vital state.

The shutdown mode is for applications that wish to 

sleep for hours or even days. The main advantages 

of this mode compared to simply turning the whole 

SoC off is that any pin can cause the SoC to power 

back up; there is no need for additional external 

circuitry to turn on the SoC. Because shutdown 

would only occur for very long power downs, the 

default power policy manager does not use it. The 

application can invoke it directly if appropriate or 

modify the power policy manager to use it.

Summary

With the advent of the IoT triggering an explosion 

in battery-powered connected sensors and 

actuators, power management has become a 

critical technology for MCU developers. While 

aggressive power-management strategies require 

the implementation of specific features in the 

silicon itself, it is equally important that a software 

layer enable easy leverage of such features. This 

is especially true in the IoT market, where many 

developers lack embedded experience.

In this paper, I reviewed RTOS-based power-

management components that provide low-

level libraries for managing peripheral clocks 

and domains and transitioning to and from 

specific power states. These components are 

complemented by power-aware drivers that enable 

the OS to understand when to turn off specific 

peripherals. Finally, the OS power manager has the 

intelligence to decide when to transition to a lower 

power state, eliminating the need for the application 

to manage such details and simplifying the process 

for developers.
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