Getting personal with the 66AK2G02 SoC

Jackie Brenner
Senior Member of Technical Staff
Catalog Processors Systems Applications Team

Texas Instruments
Introduction

We live in a world driven by data: financial data, medical data and entertainment data. Moreover this data, be it audio, video or the written word, are tailored specifically for us and our interests. So what type of processor powers this always “connected” yet personalized experienced?

Digital Signal Processors (DSPs) deal with real world signals that you can interact with. You speak with your voice, you listen to other people’s voices, you listen to music and you see the world around you. These analog signals are digitized and represented by numerical values. These values can represent the pitch or frequency of our voices and the amplitude or how loudly we are speaking.

DSPs work in real time. They receive data and process it before the next data point arrives. Unlike other processors, DSPs do not gather data and work off-line to produce results. In the world we live in there is no time to wait and no time to waste. DSPs are decisive; processing the data leads to immediate action.

Texas Instruments (TI) first used signal processing to look for oil deposits when it was a geophysical company. The Speak and Spell educational toy used voice synthesis technology to provide parents/educators with a new tool to use to teach children. Over the past 30+ years TI has worked with customers who have developed DSP applications that impact our daily lives that solve either simple tasks or provide solutions to the most complicated problems.

Manipulating real-world data means a lot of multiplying, adding and subtracting to get the information we need. The TMS320™ family of DSPs is designed with hardware multipliers to do a lot of math quickly, in fact in a single clock cycle. Other processors do multiple adds to do a multiply but this does not happen in one clock cycle. With devices using the TMS320C66x (“C66x”) DSP core which can run at a clock rate of up to 1.2 GHz, the DSP can represent data in floating-point as well as fixed-point format. Floating point lets you represent signals with a wide dynamic range and with greater precision than in fixed point representation.

The C66x DSP has multiple data busses and plentiful on-chip memory to keep data flowing into and out of the processing engine. Even in a single-core configuration, the C66x DSP is the ultimate multi-tasker. Its inherent parallelism allows you to do more things at the same time, i.e., more math calculations, more data comparisons. It also uses pipelining to break up problems into smaller tasks to speed their completion. This programmable processor is a good “C” engine. The C6000™ compiler does the allocation of hardware resources at compile time; no assembly language is required to achieve high performance.
So how do we build upon our C66x DSP foundation? We craft a System on Chip (SoC) adding a powerful ARM® processor and several high-speed connectivity options like Gigabit Ethernet and Peripheral Component Interconnect Express (PCIe). The addition of an ARM like the Cortex®-A15 allows customers to run High Level OS (HLOS) like Linux® on the ARM while allowing the DSP to continue processing the real-time data. The ARM can also manage the less time critical data traffic that comes through network interfaces like Ethernet, Universal Serial Bus (USB) or Controller Automated Network (CAN). As shown in Figure 1, we have created the 66AK2G02 SoC.

So now we have a processing SoC that is highly connected but how does that relate to personalization?

Audio devices based on DSP technology were the first to be personalized allowing us to create our own playlists and take them with us when we are on the go. But what if I want to enhance my audio experience and surround myself with sound whether I am in the car or at home?

The automotive amplifier creates the audio environment within the car. These are the amplifiers behind the speakers that you find on your car doors and in your dashboard. The car is a difficult environment for creating a concert hall experience. It is a noisy environment and as cars become lighter to get better mileage, the noise problem only increases.

So how does the 66AK2G02 SoC address this? The 600-MHz C66x DSP is responsible for the audio processing (equalization, mixing, compression, delay compensation, etc.) and noise cancellation. The ARM Cortex-A15 provides system control of the network interfaces. The possible network communication interfaces in a car may include CAN and either Media Local Bus (MLB) or Ethernet depending on the specific car model.

The 66AK2G02 SoC, as shown in Figure 2 on the following page, is a great solution for automotive amplifier manufacturers who want to reduce their current cost and footprint by having an SoC that integrates a high-performance DSP and ARM and an abundant amount of on-chip memory—more than 2.5 MB. With QSPI memory to boot from and 2.5 MB of on-chip memory, it may be possible to eliminate external double data rate (DDR) memory to lower power consumption as well as reducing cost and size of the total system. The 66AK2G02 SoC also allows for multiple automotive bus communication protocols (Ethernet and MLB) in a single scalable platform design.
The Ethernet requirements for car audio include time sync, audio video bridge (AVB) transport, quality of service (QoS) and streaming media encapsulation, which are defined by IEEE standards. These are all defined by IEEE standards that are beyond the scope of this white paper.

So in short, the 66AK2G02 SoC creates the right audio environment based on the current conditions the car is experiencing. And since this an automotive application, the 66AK2G02 SoC needs to and does meet the requirements for reduced defects and low Failure in Time (FIT) rates. Further the time is coming where higher end vehicles will try to provide more channels of audio and customization for a per passenger audio experience.

In the home, new audio applications drive the need for increased DSP performance over existing solutions. Internet audio streaming and local media streaming (Wi-Fi®, hard disk drive, MP3 files) require increased ARM performance. The 66AK2G02 SoC has three multichannel audio serial ports or McASPs. The McASPs function as a general-purpose audio serial port optimized for the needs of multichannel audio applications. The McASPs can support many different data formats such as time-division multiplexed (TDM) streams, Inter-Integrated Sound (i²S) protocols, and intercomponent digital audio interface transmission (DIT). Other key features include flexible clock and frame sync generation and up to 16 transmit or receive data pins and serializers. And all three can be used simultaneously with two clock zones each.
Reliability and security on the factory floor

Audio is not the only application that can benefit from the features of the 66AK2G02 SoC. Industrial markets can also be enhanced with high-performance processing, large on-chip memory and provisions for error correction and detection.

A Programmable Logic Controller (PLC) provides the main controlling function in an automation system. It controls different local and remote I/O nodes—sensors, actuators and drives. The PLC manages the I/O communication as well as coordinates decision making for the connected remote nodes in the field. PLCs are used in factories, buildings, mobility/transportation, processes and energy automation.

The primary purpose of the CPU in the PLC is to process messages or data packets that are transmitted and received from I/O device nodes or from the neighboring PLCs. It is critical that both the transfer of data to/from the interface and the processing of the data be deterministic with low variability.

On a 66AK2G02 SoC, the Cortex-A15 does the processing using the internal memories as much as possible to reduce delays (latency), as shown in Figure 3. In addition, to ensure high reliability, error correction and detection is required on all memories in the system. Specifically, single-bit error correct and dual-bit error detect (SECDED) is supported for program and data accesses from the Cortex-A15. To learn more about ECC and its importance to decrease Failure in Time rates please see the white paper, “Designing embedded systems for high reliability with the 66AK2Gx DSP + ARM® processor”.

In addition to the Cortex-A15, two dual-redundant fast industrial Ethernet rings must be supported. This can be achieved with the two Industrial Control Sub-Systems (ICSS) found in the 66AK2G02 SoC. Each ICSS can support Industrial Ethernet Protocols such as PROFINET®, EtherCAT® and EtherNet/IP™. Communication can be augmented via an additional Gigabit Ethernet connection.

An increasingly important requirement of the PLC CPU is to provide secure boot and secure processing. PLC manufacturers are starting to get concerned about the privacy of their network traffic but the higher priority is currently the authenticity of the communication. They want to make sure that the message that they receive is from a real endpoint in the automation network. The 66AK2G02 SoC is capable of supporting standard secure boot with customer programmable keys that are stored in One Time Programmable (OTP) memory. A security accelerator supporting encryption standards such as several Security Hash Algorithms (SHAs), Triple Data Encryption Algorithm (3DES) and Advanced Encryption Standard (AES) is also part of the 66AK2G02 SoC.

Figure 3: The 66AK2G02 SoC used in a Programmable Logic Controller
The power of the SoC is in the designers’ ability to leverage the resources they need to meet their application requirements. The Processor Software Development Kit (SDK) was designed from the ground up to provide a starting point for embedded applications.

When developers implement application software for an automotive audio application or an industrial PLC, they often need that application to be portable from one product to another to maximize reuse and engineering efficiency. Designers need to focus on what they do best so they need a software development environment that abstracts the SoC for them. Lower levels of software can effectively provide this abstraction and these are included in the Processor SDK.

Processor SDK 2.02 includes support for both Linux® and TI-Real Time Operating Systems (RTOS). On the 66AK2G02 SoC either Linux or TI-RTOS can run on the Cortex-A15. The C66x DSP can run a TI-RTOS specifically optimized for it, or run no OS at all.

The Linux SDK provides Long-Term Stable (LTS) Mainline Linux kernel support. Version 4.1 is supported in Processor SDK 2.02. There is also U-Boot bootloader support; the 66AK2G02 SoC can be boot-loaded from a variety of sources. The SDK also includes Linaro GNU compiler collection (GCC) tool chains and Yocto Project™ OE Core-compatible file systems.

The RTOS SDK provides TI-RTOS kernel which is a light-weight real-time embedded operating system for TI devices. Chip support libraries, drivers, basic board-support utilities and diagnostics are also provided. The SDK also supports inter-processor communication (IPC) between the C66x DSP and the Cortex-A15. Other elements include optimized C66x DSP algorithm libraries, basic networking stack and protocols and secondary bootloaders and boot utilities. Linaro GCC tool chains, C6000 DSP Code Generation tools and PRU compilers for ICSS are included in the Code Composer Studio™ v6.x IDE environment used to develop code with RTOS SDK.

All basic Processor SDK software is provided at no cost to the developer, and because of the use of open source, there are no royalties associated with its use. There are a large number of TI embedded processors that are all supported within the Processor SDK. This not only provides a common look and feel across devices but it also allows easier porting from one device to another.

Get started today

We have introduced the 66AK2G02 SoC and how the real-time C66x DSP and powerful Cortex-A15 and many connectivity options make it ideal for embedded systems like automotive/home audio and industrial PLC applications. We see that the 66AK2G02 SoC also offers high reliability by offering ECC on all internal and external memories. We have covered the Processor SDK and how it can be used in software development.

Want to learn more about how the 66AK2G02 SoC can be used in your embedded application? We have a data sheet and technical reference manual available for download today. We also have an Evaluation Board (EVM), the EVMK2G available for purchase which provides actual hardware with the 66AK2G02 SoC and Processor SDK to begin your software evaluation.
Personalization will still be a driving force as we move ahead. Presenting data that is not only targeted but also timely will continue to make life easier at home, at work, in the car or at the concert hall. The 66AK2G02 SoC can help create that future.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated