Time-sensitive networking for industrial automation

Pekka Varis
Chief Technologist, Catalog Processors

Thomas Leyrer
Distinguished Member of Technical Staff

Texas Instruments
Introduction

Time-sensitive networking (TSN) is an Ethernet extension defined by the Institute of Electrical and Electronic Engineers (IEEE) designed to make Ethernet-based networks more deterministic. Industries like automotive, industrial and performance audio use real-time communication with multiple network devices and will benefit from the TSN standard.

The consumer and enterprise world of Ethernet and wireless Ethernet communication is bandwidth oriented. For example, while browsing the Internet you accept a varying amount of delay before video playback starts. Although there is a preference for quick interaction, for the average user it is acceptable if one out of 100 clicks perform an order of magnitude worse. However, if a video is bad quality or even halted the typical consumer will be frustrated.

Even infrequent delays are unacceptable in control systems such as those inside automobiles, production lines or concert halls. The most important aspects for these systems are latency and jitter or variation in the latency of control data through the network. The maximum time a packet takes to reach the destination in the system defines the communication cycle or control frequency in the network.

Table 1 gives an overview of network parameters for certain application examples. The network size and topology can be either fixed (to a certain application) or variable. The Internet is the worst-case example when it comes to the number of nodes and the route that a packet takes through the network. Latency is in the seconds range and jitter is very high when you repeat a packet transfer over the Internet.

By contrast, real-time deterministic Ethernet communication typically limits the number of devices connected to the network. Using a machine tool as an example of an embedded product, the number of motors connected with Ethernet to a single piece of control hardware is less than 100.

New motor control parameters are exchanged every 250 µs. This fixed and pre-engineered setup requires deterministic real-time Ethernet with short cycle times and high-precision clock distribution.

<table>
<thead>
<tr>
<th>Network feature</th>
<th>Automotive radar</th>
<th>Machine tool</th>
<th>Professional audio</th>
<th>Consumer video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>4 sensors</td>
<td>64 axes</td>
<td>20 speakers</td>
<td>1 screen</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 Gb</td>
<td>100 Mb</td>
<td>100 Mb</td>
<td>100 Mb</td>
</tr>
<tr>
<td>Jitter</td>
<td>20 ns</td>
<td>100 ns</td>
<td>10 ns</td>
<td>100 ms</td>
</tr>
<tr>
<td>Latency</td>
<td>1 ms</td>
<td>100 µs</td>
<td>10 µs</td>
<td>1 s</td>
</tr>
<tr>
<td>Cycle time</td>
<td>10 ms</td>
<td><1 ms</td>
<td>Stream</td>
<td>Burst</td>
</tr>
<tr>
<td>Time synchronized</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Topology</td>
<td>Star</td>
<td>Line, ring</td>
<td>Star, line</td>
<td>Point to point</td>
</tr>
</tbody>
</table>

Table 1. Network parameters for various application examples.
Production systems in a modern factory are fully connected using real-time Ethernet. Figure 1 shows various control systems in a production cell. A time-sensitive network is a key technology with which to connect various control systems in real time.

Although the requirements for control systems are different in terms of scale, cycle time and accuracy, they can use the same communication interface to transfer data deterministically. Many sensors and actuators are deployed inside the control system. They either connect directly to real-time Ethernet or connect to a concentrator in the real-time Ethernet network using serial point-to-point connections. TSN with its deterministic networking performance is a good fit here, in the “field” level of a manufacturing floor.

Principles of TSN

IEEE 802 Ethernet combined with Internet Protocol has been a success story like few others in the tech industry. The only challengers to its dominance have been more sophisticated technologies in the areas of determinism and quality of service such as Asynchronous transfer mode (ATM), token ring and RapidIO®. TSN is a set of roughly 12 IEEE 802 standards aimed at addressing determinism and quality of service without compromising the strengths of Ethernet such as interoperability.

TSN is a local area network (LAN)-level solution that can work with non-TSN Ethernet, but timeliness is only guaranteed inside the TSN LAN. You can group TSN standards based on what use case it solves: a common view of time, guaranteed maximum latency, or co-existence with background or other traffic.

Like any popular standard, the TSN toolbox of standards is evolving; some of the individual standards like 802.1AS-Revision (Rev) have not yet been approved, and new alternative shapers are being introduced. Because of this on-going evolution, when choosing a solution it is important to consider the upgradability of the solution to support new or changed standards.

As shown in Figure 2 on the following page, IEEE 802 Ethernet including the TSN features is a layer 2 or data link layer technology. Applications will require an upper-layer protocol such as UDP/IP or PROFINET above TSN (Figure 4 on page 6).

802.1AS-Revision – Timing and synchronization for time-sensitive applications

All devices in a network expecting deterministic packet transmission will require a common understanding of time. The clock master or masters distribute time over Ethernet packets to all devices.
in the network running the Best Master Clock Algorithm (BCMA).

802.1AS-Rev is a tightly defined subset or a profile of 1588v2 precision timing over packet. The additions of 802.1AS-Rev to 802.1AS add support for more than one time domain and add support for one-step in addition to two-step. The underlying hardware must support the time stamping of transmitted and received packets as close to the wire as possible. For one-step delay reporting, the hardware must also be able to insert a time stamp into the packet. For two-step delay reporting, the transmit time stamp is included in a follow-up packet, in some cases reducing the packet load created by time synchronization over packet.

802.1AS-Rev includes peer-to-peer line-delay measurement and bridge-delay calculation. Beyond time stamping, the rest of 802.1AS-Rev is typically implemented in software. TSN implementation for Texas Instruments (TI) Sitara™ processors supports 802.1AS-Rev and both one-step and two-step delay reporting.

802.1Qbv – Enhancements for scheduled traffic

Time-aware shaper (TAS) makes switches aware of the cycle time for real-time traffic. A per-egress port scheduler for packets creates a periodic window during which there is no interfering traffic.

TI’s TSN implementation for Sitara processors supports TAS. TAS is mostly a hardware feature, with a software stack configuring the hardware shaper in each bridge port and talker.

802.1Qbu – Frame preemption and 802.3br – Interspersing express traffic

Ethernet is a store-and-forward network. Once a packet starts to go on the wire it will block the wire from other packets until the end of the packet is reached. For example, a 100-Mbps network and a typical maximum transmission unit (MTU) packet size of 1.5 kB create a head-of-line blocking of about 120 ms (1.5 kB/100 Mbps). Higher-speed links reduce this linearly, but even 1-Gbps networks can have resulting jitter in the tens of microseconds.

To reduce head-of-line blocking issues, IEEE defined frame preemption (802.1Qbu) and the related physical layer standard interspersing express traffic (802.3br). Only express traffic can preempt, providing guaranteed latency for express traffic.

Cut-through switching, together with TAS and frame pre-emption, are the basic technologies to reduce worst-case latency—even in a long daisy-chain topology network. TI’s TSN implementation for Sitara processors supports cut-through switching, frame pre-emption and interspersing traffic.

802.1Qch – Cyclic queuing and forwarding

Cyclic queuing and forwarding defines completely deterministic delays for all streams. TI’s TSN implementation for Sitara processors does not initially support 802.1Qch; instead, we propose using 802.Qbv (TAS) and a fully managed network to avoid interfering traffic.
802.1CB – Frame replication and elimination for reliability

Typical Ethernet networks rely on higher-level protocols such as Transmission Control Protocol (TCP) retransmission to recover from dropped Ethernet frames, and the Spanning Tree Protocol (STP) to construct new routes through the network. Both approaches sacrifice a nondeterministic amount of time to deliver the frame.

TSN uses redundancy to guarantee latency even in the presence of single-point failures such as cut cables or broken switches. To proactively guarantee the delivery of frames inside a LAN topology with multiple routes, 802.1CB provides redundancy by selectively duplicating frames at the sender and then discarding the duplicate at the destination.

802.1CB is compatible with existing industrial networks where earlier redundancy protocols such as High-Availability Seamless Redundancy (HSR) and Parallel Redundancy Protocol (PRP) provided no latency impact from single-point failures. TI supports HSR, PRP and the 802.1CB on the programmable real-time unit subsystem and industrial communication subsystem (PRU-ICSS) found on Sitara processors.

802.1Qcc – Stream reservation protocol enhancements and performance

TSN uses three identifying labels: stream ID, stream destination address and traffic class.

- **Stream ID** is the media access control (MAC) source address concatenated with a 16-bit handle.
- **The stream destination address** is the MAC destination address concatenated with the virtual LAN (VLAN) ID (802.1Q – VLAN support). Addresses are usually locally managed or multicast addresses.

- **VLAN priority bits**, typically using only one or two classes, determine the traffic class.

The delivery of frames inside a LAN topology with multiple routes, 802.1CB provides redundancy by selectively duplicating frames at the sender and then discarding the duplicate at the destination.

802.1Qcc supports a centralized configuration model with a centralized user configuration (CUC), as shown in Figure 3. A centralized network configuration (CNC) calculates resource allocations and availability and configures the bridges.

Alternative architectures are possible: talkers and listeners talking directly to CNC, or even a fully distributed architecture. A centralized architecture and YANG-based network management protocol (YANG is a data modeling language for network configuration developed by IETF and defined in RFC 7950) like RESTCONF or NETCONF used over a standard secure networking stack like Transport Layer Security (TLS) are likely.

![Figure 3: TSN configuration](https://www.belden.com/blog/industrial-ethernet/what-does-tsn-configuration-look-like-today-and-in-the-future)
TSN’s impact on industrial Ethernet

TSN adds real-time capabilities to standard IEEE Ethernet—capabilities that were once only available on specialized industrial field buses (also called industrial Ethernet). TSN does not remove the need for or replace the protocol used above Ethernet. The interface to software is a good example. For Transmission Control Protocol/Internet Protocol (TCP/IP), a Berkeley software distribution (BSD) socket has become the standard interface with TCP/IP and networking in general, and has proven portable and scalable for a wide set of applications.

A Hypertext Transfer Protocol (HTTP) application works unmodified while reading from a local file or over the Internet. But these sockets are not necessarily relevant interfaces for a protocol that prioritizes solving worst-case latency and exposing the concept of time all the way to the application. For example, the industrial Ethernet protocol PROFINET expects TSN-enabled Ethernet to be just one data-link layer over which to run the protocol.

IEEE TSN defines layer-2 functionality and LAN-level switching, including the concept of time. What it does not define is the software interface with which to configure these hardware features. This means that management software for a switch from vendor A will need to use one application programming interface (API) to another API for vendor B.

A second (and perhaps more unique) area outside the scope of IEEE specifications centers around the concept of latency and the variation or the jitter of latency in the data-path software. As we mentioned, earlier sockets are great but do not even try to address real time or latency.

It is very likely that the API and software architecture around the data path for TSN networks will evolve over time. The PRU-ICSS-based programmable TSN solution addresses both the software stack portion of latency and configuration and management incrementally. The TSN solution can adapt to a software architecture that requires a very specific buffering mechanism for real time, while supporting mainline Linux® networking in parallel. And once Linux leverages more real-time features, a programmable solution can adapt to the new software architecture. TI is working within the Linaro group to enable more determinism and an open-source configuration API for TSN hardware.

Industrial Ethernet protocols like PROFINET® and EtherNet/IP™ already assume the IEEE Ethernet learning bridge as the underlying switching technology. These protocols can now adapt the extension of TAS and frame pre-emption to use standard TSN hardware for industrial Ethernet. Although EtherNet/IP uses User Datagram Protocol (UDP) packets for data exchange, PROFINET supports a direct layer-2 buffer model for consumer and provider data. Both PROFINET and EtherNet/IP are compatible with the TSN switching layer and can benefit from the real-time enhancements.

The IEEE standardization of redundancy protocols are not yet finished, and it remains to be seen whether 802.1CB will replace the redundancy protocols of PROFINET and EtherNet/IP, such as media redundancy protocol (MRP) and device level ring (DLR). The transition from existing industrial communication protocols to new standards typically spans many years. During that transition phase,
old and new protocols are used concurrently in production systems.

Gateway functions that bridge between existing and new protocols will accelerate the introduction of TSN hardware for industrial communication. Possible gateway applications include:

- Legacy field buses (DeviceNet™, PROFINET®) to new Ethernet protocols (EtherNet/IP at TSN, PROFINET at TSN).
- Industrial Ethernet, which cannot work with TSN in the same network (EtherCAT®, SERCOS® III).
- A gateway between the field level (controller) and the control level (device).
- An IO-Link master gateway to the TSN network.
- The object linking and embedding for process control unified architecture (OPC UA) over TSN-to-cloud interfaces using standard wired and wireless Ethernet.
- A combination of protocols at the field and control levels with an uplink into the cloud.

Sitara AM57x processors can realize any of the gateway functions on this list. Two sets of industrial communication subsystems (PRU-ICSS), an additional gigabit switch and the ability to interface to a Wi-Fi® module mean that the AM57x processor can support up to seven communication channels from a single device. Each PRU-ICSS can implement either controller- or device-side industrial Ethernet protocols.

Figure 5 shows possible gateway options to deploy at different levels in a production system. The AM572x Industrial Development Kit supports four real-time Ethernet ports, two gigabit Ethernet ports and Peripheral Component Interface Express (PCIe).

Conclusion

TSN is moving in the right direction to provide a rich set of capabilities with which to stream packets through a larger industrial network with guaranteed latency. Leading industrial Ethernet organizations are adopting TSN technology and integrating it into existing engineering systems and application profiles.

Higher-layer control systems and other applications outside the factory may also work with central network configuration tools that are independent of the application. TSN is not limited to a 100 Mb transfer rate and also supports the higher bandwidth of Gigabit Ethernet. Using catalog products with integrated TSN hardware switches can accelerate the transition from 100 Mb to 1 Gb industrial Ethernet.

Related resources

Industry 4.0 page on TI.com

TSN overview presentation

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Sitara ia is a trademark of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THATrelates TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm, evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated