

DSP280x C/C++ Header Files and Peripheral Examples

Version 1.10
April 18, 2005

1

C280x C/C++ Header Files and Peripheral Examples

1 Introduction: ...2

1.1 Where Files are Located (Directory Structure) ..3
2 Understanding The Peripheral Bit-Field Structure Approach ...6

2.1 Traditional #define approach:.. 6
2.2 Bit-field and Structure Approach: ..7

2.2.1 Peripheral Register Structures...7
2.3 Adding Bit-Fields...9

2.3.1 Read-Modify-Write Considerations When Using Bit-Fields: 10
2.3.2 Code-Size Considerations when using Bit-Fields: .. 11

3 Peripheral Example Projects ... 12
3.1 Getting Started.. 12
3.2 Example Program Structure.. 15

3.2.1 Include Files .. 15
3.2.2 Source Code ... 16
3.2.3 Linker Command Files .. 16

3.3 Example Program Flow... 18
3.4 Included Examples:... 19
3.5 Executing the Examples From Flash... 21

4 Steps for Incorporating the Header Files and Sample Code ... 24
4.1 Before you begin... 24
4.2 Including the DSP280x Peripheral Header Files ... 24
4.3 Including Common Example Code.. 28

5 Troubleshooting Tips & Frequently Asked Questions... 30
5.1 Effects of read-modify-write instructions.. 32

5.1.1 Registers with multiple flag bits in which writing a 1 clears that flag........................... 32
5.1.2 Registers with Volatile Bits. ... 33

6 Migration Tips from DSP281x to DSP280x.. 34
7 Packet Contents: .. 36

7.1 Header File Support – DSP280x_headers .. 36
7.1.1 DSP280x Header Files – Main Files .. 36
7.1.2 DSP280x Header Files – Peripheral Bit-Field and Register Structure Definition Files 37
7.1.3 Code Composer .gel Files ... 37
7.1.4 Variable Names and Data Sections... 38

7.2 Common Example Code – DSP280x_common... 39
7.2.1 Peripheral Interrupt Expansion (PIE) Block Support .. 39
7.2.2 Peripheral Specific Files.. 40
7.2.3 Utility Function Source Files .. 41
7.2.4 Example Linker .cmd files.. 41

 DSP280x V1.10 Readme

2

1 Introduction:

The DSP280x C/C++ peripheral header files and example projects facilitate writing in C/C++
Code for the Texas Instruments ‘280x DSPs. The code can be used as a learning tool or as the
basis for a development platform depending on the current needs of the user.

• Learning Tool:

This download includes several example Code Composer Studio™† projects for a ‘280x
development platform. One such platform is the eZdsp™†† F2808 USB from Spectrum
Digital Inc. (www.spectrumdigital.com).

These examples demonstrate the steps required to initialize the device and utilize the on-
chip peripherals. The provided examples can be copied and modified giving the user a
platform to quickly experiment with different peripheral configurations.

These projects can also be migrated to the ‘2801 and ‘2806 devices by simply changing the
memory allocation in the linker command file.

• Development Platform:

The peripheral header files can easily be incorporated into a new or existing project to
provide a platform for accessing the on-chip peripherals using C or C++ code. In addition,
the user can pick and choose functions from the provided code samples as needed and
discard the rest.

To get started this document provides the following information:

• Overview of the bit-field structure approach used in the DSP280x C/C++ peripheral header
files.

• Overview of the included peripheral example projects.

• Steps for integrating the peripheral header files into a new or existing project.

• Troubleshooting tips and frequently asked questions.

• Migration tips for users moving from the DSP281x header files to the DSP280x header files.

Finally, this document does not provide a tutorial on writing C code, using Code Composer
Studio, or the C28x Compiler and Assembler. It is assumed that the reader already has a 2808
hardware platform setup and connected to a host with Code Composer Studio installed. The
user should have a basic understanding of how to use Code Composer Studio to download code
through JTAG and perform basic debug operations.

† Code Composer Studio is a trademark of Texas Instruments (www.ti.com).
†† eZdsp is a trademark of Spectrum Digital Inc (www.spectrumdigital.com).
Trademarks are the property of their respective owners.

DSP280x V1.10 Readme

 3

1.1 Revision History

V1.10

Changes to Header Files:

a) DSP280x_EPwm.h:
Added the following Hi-Resolution ePWM (HiRes) registers:

Register
Name

Address
offset

Description

TBPHSHR 0x0002 HiRes extension of phase TBPHS register
CMPAHR 0x0008 HiRes extension of compare A CMPA register
HRCNFG 0x0020 HiRes Configuration register

The header file definition of the CMPA and TBPHS registers have been changed to a
union with the HiRes extension registers to provide for .half (16-bit) and .all (32-bit)
accesses. This was done to allow 16-bit access to CMPA and TBPHS as well as 32-bit
access to the extended registers CMPA:CMPAHR and TBPHS:TBPHSHR.

Accessing the registers is done as follows:

EPwm1Regs.CMPA.half.CMPA = 0x1234; // Access 16-bit CMPA register
EPwm1Regs.CMPA.half.CMPAHR = 0x5600; // Access only HiRes extension
EPwm1Regs.CMPA.all = 0x12345600; // 32-bit write CMPA:CMPAHR

EPwm1Regs.TBPHS.half.TBPHS = 0x1234; // Access 16-bit TBPHS register
EPwm1Regs.TBPHS.half.TBPHSHR = 0x5600; // Access only HiRes extension
EPwm1Regs.TBPHS.all = 0x12345600; // 32-bit write TBPHS:TBPHSHR

Note, accesses to COMPB remain as is and do not require .all:
EPwm1Regs.CMPB = 0x5000;

This change requires users migrating from the DSP280x 1.00 header files to make
modifications to their ePWM code. The changes required are as follows:

 DSP280x V1.00 DSP280x V1.10

Access
CMPA EPwm1Regs.CMPA=VALUE; EPwm1Regs.CMPA.half.CMPA=VALUE;

Access
TBPHS EPwm1Regs.TBPHS=VALUE; Epwm1Regs.TBPHS.half.TBPHS=VALUE;

Note:

The HiRes extension is not available on all ePWM modules. The register file definition
used, however, is identical for all ePWM modules. Thus, HiRes register definitions will
appear even if the ePWM module does not include the HiRes extension.

 DSP280x V1.10 Readme

4

b) DSP280x_EPwm.h
Made the following changes to the DBCTL register (Dead Band Control)

 Changed the MODE bit-field name to OUT_MODE

 Changed reserved bits 5:4 to the IN_MODE bit field

This corresponds to a silicon change made on Flash devices as of Rev A silicon.

c) DSP280x_ECap.h
The STOPVALUE bit-field in the ECCTL2 register was changed to STOP_WRAP. This
corresponds to a silicon change made on Flash devices as of Rev A silicon. This register
was previously used as a stop value for one-shot capture mode. It is now also used to
specify a wrap value when using continuous capture mode.

d) DSP280x_EQep.h
Added UPEVNT (bit 7) to the QEPSTS register. This reflects changes made as of F280x
Rev A devices.

e) DSP280x_Spi.h
Added definitions for SPI-B, SPI-C, SPI-D.

f) DSP280x_Headers_nonBIOS.cmd and
DSP280x_Headers_BIOS.cmd
Updated the memory space allocated for ePWM1 – ePWM6 registers to include the
HiRes configuration register (HRCNFG).

g) DSP280x_Peripheral.gel:
The hotmenu item for EPwm2Regs was repeated twice. Removed the duplicate instance.

h) DSP280x_EPwm_defines.h:
Added useful #defines for the HiRes.

Changes to examples:

a) The root of the default path in all example project files was changed from
C:\tidcs\c28\DSP280x\v100\ to C:\tidcs\c28\DSP280x\v110\ to reflect the version change.

b) ecap_capture_pwm example:
Updated the function that initializes the eCAP peripheral.

c) Updated the CMPA and TBPHS register accesses in all ePWM and eQEP examples to
use the .half of the union introduced for HiRes register extension.

d) Added two ePWM with HiRes extension example.

e) Updates to examples as required for changes described above to the header files.

V1.00

 This version was the first customer release of the DSP280x header files and examples.

DSP280x V1.10 Readme

 5

1.2 Where Files are Located (Directory Structure)

As installed, the C280x C/C++ Header Files and Peripheral
Examples is partitioned into a well-defined directory
structure. By default, the source code is installed into the
c:\tidcs\c28\DSP280x\<version> directory.

Table 1 describes the contents of the main directories used
by DSP280x:

Table 1. DSP280x Main Directory Structure

Directory Description

<base> Base install directory. By default this is c:\tidcs\c28\DSP280x\v110. For the rest of this
document <base> will be omitted from the directory names.

<base>\doc Documentation including the revision history from the previous release.

<base>\DSP280x_headers Files required to incorporate the peripheral header files into a project .
The header files use the bit-field structure approach described in Section 2.
Integrating the header files into a new or existing project is described in Section 4.

<base>\DSP280x_examples Example Code Composer Studio projects based on the DSP280x header files. These
example projects illustrate how to configure many of the ‘280x on-chip peripherals. An
overview of the examples is given in Section 3.

<base>DSP280x_common Common source files shared across a number of the DSP280x example projects to
illustrate how to perform tasks using the DSP280x header file approach. Use of these
files is optional, but may be useful in new projects. A list of these files is in Section 6.

Under the DSP280x_headers and DSP280x_common directories the source files are further
broken down into sub-directories each indicating the type of file. Table 2 lists the sub-directories
and describes the types of files found within each:

Table 2. DSP280x Sub-Directory Structure

Sub-Directory Description

DSP280x_headers\cmd Linker command files that allocate the bit-field structures described in Section 2.

DSP280x_headers\source Source files required to incorporate the header files into a new or existing project.

DSP280x_headers\include Header files for each of the 280x on-chip peripherals.

DSP280x_common\cmd Example memory command files that allocate memory on the ‘280x devices.

DSP280x_common\include Common .h files that are used by the peripheral examples.

DSP280x_common\source Common .c files that are used by the peripheral examples.

DSP280x_common\lib Common library (.lib) files that are used by the peripheral examples.

 DSP280x V1.10 Readme

6

2 Understanding The Peripheral Bit-Field Structure Approach

The DSP280x C/C++ Header Files and Peripheral Examples in C use a bit-field structure
approach for mapping and accessing peripheral registers on the TI ‘280x based DSPs. This
section will describe this approach and compare it to the more traditional #define approach.

2.1 Traditional #define approach:

The traditional approach for accessing registers in C-code has been to use #define macros to
create an address label for each register. For example:

/**
* Traditional header file
**/

 // Memory Map
 // Addr Register
#define CPUTIMER0_TIM (volatile unsigned long *)0x0C00 // 0xC00 Timer0 Count Low
 // 0xC01 Timer0 Count High
#define CPUTIMER0_TIM (volatile unsigned long *)0x0C02 // 0xC02 Timer0 Period Low
 // 0xC03 Timer0 Period High
#define CPUTIMER0_TIM (volatile unsigned int *)0x0C04 // 0xC04 Timer0 Control
 // 0xC05 reserved
#define CPUTIMER0_TIM (volatile unsigned int *)0x0C06 // 0xC06 Timer0 Pre-scale Low
#define CPUTIMER0_TIM (volatile unsigned int *)0x0C07 // 0xC07 Timer0 Pre-scale High

This same #define approach would then be repeated for every peripheral register on every
peripheral. Even if the peripheral were a duplicate, such as in the case of SCI-A and SCI-B,
each register would have to be specified separately with its given address. The disadvantages
to the traditional #define approach include:

• Bit-fields within the registers are not easily accessible.

• Cannot easily display bit-fields within the Code Composer Studio watch window.

• Cannot take advantage of Code Maestro, which is the auto-completion feature of Code
Composer Studio.

• The header file developer cannot take advantage of re-use for duplicate peripherals.

DSP280x V1.10 Readme

 7

2.2 Bit-field and Structure Approach:

The bit-field and structure approach uses C-code structures to group together all of the registers
belonging to a particular peripheral. Each C-code structure is then memory mapped over the
peripheral registers by the linker. This mapping allows the compiler to access the peripheral
registers directly using the CPU’s data page pointer (DP). In addition, bit-fields are defined for
many registers allowing the compiler to read or manipulate single bit fields within a register.

2.2.1 Peripheral Register Structures

In Section 2.1 we defined the CPU Timer 0 registers using the traditional #define approach. In
this section, we will define the same CPU Timer 0 registers, but instead will use C-code
structures to group the CPU Timer registers together. The linker will then be used to map the
structure over the CPU-Timer 0 registers in memory.

The following code example shows the C-Code structure that corresponds to a ‘280x CPU-
Timer peripheral:

/**
* CPU-Timer header file using structures
**/

struct CPUTIMER_REGS
{
 Uint32 TIM; // Timer counter register
 Uint32 PRD; // Period register
 Uint16 TCR; // Timer control register
 Uint16 rsvd1; // reserved
 Uint16 TPR; // Timer pre-scale low
 Uint16 TPRH; // Timer pre-scale high
};

Notice the following points:

• The register names appear in the same order as they are arranged in memory.

• Locations that are reserved in memory are held within the structure by a reserved variable
(rsvd1, rsvd2 etc). The reserved structure members are not used except to hold the space
in memory.

• Uint16 and Uint32 are typedefs for unsigned 16-bit and 32-bit values, respectively. In the
case of the '28x, these are unsigned int and unsigned long. This is done for portability. The
corresponding typedef statements can be found in the file:
<base>\DSP280x_headers\include\DSP280x_Device.h.

 DSP280x V1.10 Readme

8

The register file structure definition is then used to declare a variable that will be used to
access the registers. This is done for each of the peripherals on the device. Multiple
instances of the same peripheral use the same structure definition. For example, if there
are three CPU-Timers on a device, then three variables of type volatile struct
CPUTIMER_REGS can be created as:

/**
* CPU-Timer header file using structures
**/

volatile struct CPUTIMER_REGS CpuTimer0Regs;
volatile struct CPUTIMER_REGS CpuTimer1Regs;
volatile struct CPUTIMER_REGS CpuTimer2Regs;

The volatile keyword is important in the variable declaration. Volatile indicates to the compiler
that the contents of the variable can be changed by hardware and thus the compiler will not
optimize out code that uses a volatile variable.

Each variable corresponding to a peripheral register structure is then assigned to a data section
using the compiler’s DATA_SECTION #pragma. In the example shown below, the variable
CpuTimer0Regs is assigned to the data section CpuTimer0RegsFile.

/**
* DSP280x_headers\source\DSP280x_GlobalVariableDefs.c
**/
/* Assign the variable CpuTimer0Regs to the CpuTimer0RegsFile output section
 using the #pragma compiler statement
 C and C++ use different forms of the #pragma statement
 When compiling a C++ program, the compiler will define __cplusplus automatically
*/

#ifdef __cplusplus // used by C++
#pragma DATA_SECTION("CpuTimer0RegsFile")
#else // used by C
#pragma DATA_SECTION(CpuTimer0Regs,"CpuTimer0RegsFile");
#endif
volatile struct CPUTIMER_REGS CpuTimer0Regs; // variable CpuTimer0Regs
 // of type CPUTIMER_REGS

This data section assignment is repeated for each peripheral register structure variable for the
device. With each structure assigned to its own data section, the linker is then used to map
each data section directly to the memory mapped registers for that peripheral as shown below.

/**
* DSP280x_headers\include\DSP280x_Headers_nonBIOS.cmd
**/
MEMORY
{
 PAGE 1:
 CPU_TIMER0 : origin = 0x000C00, length = 0x000008 /* CPU Timer0 registers
}
SECTIONS
{
 CpuTimer0RegsFile : > CPU_TIMER0, PAGE = 1
}

DSP280x V1.10 Readme

 9

By mapping the variable directly to the same memory address of the peripheral registers, the
user can now access the registers in C-code by simply accessing the required member of the
variable. For example, to write to the CPU-Timer 0 TCR register, the user just has to access
the TCR member of the CpuTimer0Regs variable:

/**
* User’s source file
**/

CpuTimer0Regs.TCR.all = TSS_MASK; // Example of accessing the TCR register

2.3 Adding Bit-Fields

It is often desirable to access bit fields within the registers directly. With the bit-field structure
approach C280x C/C++ Header Files and Peripheral Examples in C provides bit-field definitions
for many of the on-chip peripheral registers. For example, a bit-field definition can be
established for each of the CPU-Timer registers. The bit-field definitions for the CPU-Timer
control register is shown below:

/**
* DSP280x_headers\include\DSP280x_CpuTimers.h CPU-Timer header file
**/

struct TCR_BITS { // bits description
 Uint16 rsvd1:4; // 3:0 reserved
 Uint16 TSS:1; // 4 Timer Start/Stop
 Uint16 TRB:1; // 5 Timer reload
 Uint16 rsvd2:4; // 9:6 reserved
 Uint16 SOFT:1; // 10 Emulation modes
 Uint16 FREE:1; // 11
 Uint16 rsvd3:2; // 12:13 reserved
 Uint16 TIE:1; // 14 Output enable
 Uint16 TIF:1; // 15 Interrupt flag
};

A union declaration is then used to allow the register to be accessed in terms of the defined bit
field structure or as a whole 16-bit or 32-bit quantity. For example, the timer control register
union definition is shown below:

/**
* DSP280x_headers\include\DSP280x_CpuTimers.h CPU-Timer header file
**/

union TCR_REG {
 Uint16 all;
 struct TCR_BITS bit;
};

 DSP280x V1.10 Readme

10

Once bit-field and union definitions are established for each of the registers, the CPU-Timer
register structure can be re-written in terms of the union definitions.

/**
* DSP280x_headers\include\DSP280x_CpuTimers.h CPU-Timer header file
**/

struct CPUTIMER_REGS
{
 union TIM_GROUP TIM; // Timer counter register
 union PRD_GROUP PRD; // Period register
 union TCR_REG TCR; // Timer control register
 Uint16 rsvd1; // reserved
 union TPR_REG TPR; // Timer pre-scale low
 union TPRH_REG TPRH; // Timer pre-scale high
};

In C-code the CpuTimer register can now be accessed either by bit-fields or as a single quantity:

/**
* User’s source file
**/

CpuTimer0Regs.TCR.bit.TSS = 1; // Example of accessing a single bit
CpuTimer0Regs.TCR.all = TSS_MASK; // Example of accessing the whole register

The bit-field structure approach has the following advantages:

• Bit-fields can be manipulated without the user needing to determine mask values

• Register files and bit-fields can be viewed in the Code Composer Studio watch window

• When using Code Composer Studio, the editor will prompt you with a list of possible
structure/bit field elements as you type. This auto completion feature makes it easier to
code without having to refer to documentation for the register and bit field names.

2.3.1 Read-Modify-Write Considerations When Using Bit-Fields:

When writing to a single bit-field within a register, a read-modify-write operation is performed in
hardware. That is, the register contents are read, the single bit field is modified and the whole
register is written back. This can happen as quickly as a single cycle on the ‘28x.

When the write-back occurs, other bits within the register will be written to with the same value
as what was read. If this value was a 1, and the bit is “write one to clear” then this read-modify
write operation will have the effect of clearing that bit which may not be desired.

DSP280x V1.10 Readme

 11

Some registers do not have unions defined because it is not recommended to access them in
this manner. Exceptions are made when it may be beneficial to poll (read) single bits within the
registers. This includes:

• Registers with write-1-to-clear bits.

• Registers with bits which must be written to in a particular manner whenever accessing the
register such as the watchdog control register.

Registers that do not have bit-field and union definitions are accessed without the .bit or .all
designations. For example:

/**
* User’s source file
**/

SysCtrlRegs.WDCR = 0x0068;

2.3.2 Code-Size Considerations when using Bit-Fields:

Using the bit-field definitions to access registers results in code that is easy to read, easy to
modify, and easy to maintain. This approach is also efficient when accessing a single bit within
a register or when polling a bit. Keep in mind, however, that if a number of accesses to one
register are made, then using the defined .bit fields for each access may result in more code
then using .all to write to the register all at once. For example:

/**
* User’s source file
**/

CpuTimer0Regs.TCR.bit.TSS = 1; // 1 = Stop timer
CpuTimer0Regs.TCR.bit.TRB = 1; // 1 = reload timer
CpuTimer0Regs.TCR.bit.SOFT = 1; // Timer Free Run
CpuTimer2Regs.TCR.bit.FREE = 1; // Timer Free Run
CpuTimer2Regs.TCR.bit.TIE = 1; // 1 = Enable Timer Interrupt

This results in very readable code that is easy to modify. The penalty is slight code overhead. If
code size is of greater concern then use the .all structure to write to the register all at once.

/**
* User’s source file
**/

 CpuTimer0Regs.TCR.all = TCR_MASK;

 DSP280x V1.10 Readme

12

3 Peripheral Example Projects

In the DSP280x_examples\ directory of C280x C/C++ Header Files and Peripheral Examples in
C there are several example projects that use the DSP280x header files to configure the on-
chip peripherals. A listing of the examples is included in Section 3.4.

3.1 Getting Started

To get started, follow these steps to load the DSP280x CPU-Timer example. Other examples
are set-up in a similar manner.

1. Have a 280x hardware platform, such as the eZdsp F2808 USB, connected to a host
with Code Composer Studio installed.

 NOTE: As supplied, the example projects are built for the ‘2808 device. If you are using
another device within the ‘280x family (ie ‘2806 or 2801), the memory definition in the
linker command file (.cmd) will need to be modified and the project rebuilt.

2. Load the example’s GEL file (.gel) or Project file (.pjt).

Each example includes a Code Composer Studio GEL file to help automate loading of the
project, compiling of the code and populating of the watch window. Alternatively, the project
file itself (.pjt) can be loaded instead of using the included GEL file.

To load the CPU-Timer example’s GEL file follow these steps:

a. In Code Composer Studio: File->Load GEL

b. Browse to the CPU Timer example directory: DSP280x_examples\cpu_timer

c. Select Example_280xCpuTimer.gel and click on open.

d. From the Code Composer GEL pull-down menu select

DSP280x CpuTimerExample-> Load_and_Build_Project

This will load the project and build compile the project.

3. Review the comments at the top of the main source file: Example_280xCpuTimer.c.

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file of each
example. In some cases you may be required to make external connections for the example
to work properly.

DSP280x V1.10 Readme

 13

4. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The DSP280x
CPU-Timer example only requires that the hardware be setup for “Boot to SARAM” mode.
Other examples may require additional hardware configuration such as connecting pins
together or pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for your reference. Refer to the
documentation for your hardware platform for information on configuring the boot mode pins.
For more information on the ‘280x boot modes refer to the TMS320x280x Boot ROM
Reference Guide (SPRU722).

Table 3. 280x Boot Mode Settings

GPIO18 GPIO29 GPIO34 Mode

1 1 1 Boot to flash 0x3F7FF6

1 1 0 Call SCI-A boot loader

1 0 1 Call SPI-A boot loader

1 0 0 Call I2C boot loader

0 1 1 Call eCAN-A boot loader

0 1 0 Boot to M0 SARAM 0x000000

0 0 1 Boot to OTP 0x3D7800

0 0 0 Call parallel boot loader

5. Load the code

Once any hardware configuration has been completed, from the Code Composer GEL pull-
down menu select

DSP280x CpuTimerExample-> Load_Code

This will load the .out file into the 28x device, populate the watch window with variables of
interest, reset the part and execute code to the start of the main function. The GEL file is
setup to reload the code every time the device is reset so if this behavior is not desired, the
GEL file can be removed at this time. To remove the GEL file, right click on its name and
select remove.

6. Run the example, add variables to the watch window or examine the memory
contents.

7. Experiment, modify, re-build the example.

If you wish to modify the examples it is suggested that you make a copy of the entire
DSP280x packet to modify or at least create a backup of the original files first. New
examples provided by TI will assume that the base files are as supplied.

Sections 3.2 and 3.3 describe the structure and flow of the examples in more detail.

 DSP280x V1.10 Readme

14

8. When done, remove the example’s GEL file and project from Code Composer
Studio.

To remove the GEL file, right click on its name and select remove.

The examples use the header files in the DSP280x_headers directory and shared source in the
DSP280x_common directory. Only example files specific to a particular example are located
within in the example directory.

Note: Most of the example code included uses the .bit field structures to access registers.
This is done to help the user learn how to use the peripheral and device. Using the bit
fields has the advantage of yielding code that is easier to read and modify. This method
will result in a slight code overhead when compared to using the .all method. In addition,
the example projects have the compiler optimizer turned off. The user can change the
compiler settings to turn on the optimizer if desired.

DSP280x V1.10 Readme

 15

3.2 Example Program Structure

Each of the example programs has a very similar structure. This structure includes unique
source code, shared source code, header files and linker command files.

3.2.1 Include Files

All of the example source code #include two header files as shown below:

/**
* DSP280x_examples\cpu_timer\Example_280xCpuTimer.c
**/

#include "DSP280x_Device.h" // DSP280x Headerfile Include File
#include "DSP280x_Examples.h" // DSP280x Examples Include File

• DSP280x_Device.h

This header file is required to use the DSP280x peripheral header files. This file includes all
of the required peripheral specific header files and includes device specific macros and
typedef statements. This file is found in the <base>\DSP280x_headers\include directory.

DSP280x_GlobalVariableDefs.c
This source file is required to use the DSP280x peripheral
header files.

Example Specific Source Code

Common (shared) Source Code
Used by more then one example. These files
contain generic functions for setting up peripherals
to a defined state or functions that may be useful to
re-use in different applications.

Shared Source Code

DSP280x_Headers_nonBIOS.cmd
Linker file required by the peripheral specific header files.

Memory block specific linker command file

 DSP280x V1.10 Readme

16

• DSP280x_Examples.h

This header file defines parameters that are used by the example code. This file is not
required to use just the DSP280x peripheral header files but is required by some of the
common source files. This file is found in the <base>\DSP280x_common\include directory.

3.2.2 Source Code

Each of the example projects consists of source code that is unique to the example as well as
source code that is common or shared across examples.

• DSP280x_GlobalVariableDefs.c

Any project that uses the DSP280x peripheral header files must include this source file. In
this file are the declarations for the peripheral register structure variables and data section
assignments. This file is found in the <base>\DSP280x_headers\source directory.

• Example specific source code:

Files that are specific to a particular example have the prefix Example_280x on their
filename. For example Example_280xCpuTimer.c is specific to the CPU Timer example
and not used for any other example. Example specific files are located in the
<base>\DSP280x_examples\<example> directory.

• Common source code:

The remaining source files are shared across the examples. These files contain common
functions for peripherals or useful utility functions that may be re-used. Shared source files
are located in the DSP280x_shared\source directory. Users may choose to incorporate
none, some, or the entire shared source into their own new or existing projects.

3.2.3 Linker Command Files

Each example uses two linker command files. These files specify the memory where the linker
will place code and data sections. One linker file is used for assigning compiler generated
sections to the memory blocks on the device while the other is used to assign the data sections
of the peripheral register structures used by the DSP280x peripheral header files.

• Memory block linker allocation:

The linker files shown in Table 4 are used to assign sections to memory blocks on the device.
These linker files are located in the <base>\DSP280x_common\cmd directory. Each example
will use one of the following files depending on the memory used by the example.

DSP280x V1.10 Readme

 17

Table 4. Included Memory Linker Command Files

Memory Linker Command

File Examples
Location Description

2808_eZdsp_RAM_lnk.cmd DSP280x_common\cmd eZdsp F2808 USB memory map that only
allocates SARAM locations. No Flash, OTP, or
CSM password protected locations are used.
This linker command file is used for most of the
examples.

F2808.cmd DSP280x_common\cmd F2808 memory linker command file. Includes
all Flash, OTP and CSM password protected
memory locations.

F2806.cmd DSP280x_common\cmd F2806 memory linker command file.

F2801.cmd DSP280x_common\cmd F2801 memory linker command file.

• DSP280x header file structure data section allocation:

Any project that uses the DSP280x header file peripheral structures must include a linker
command file that assigns the peripheral register structure data sections to the proper
memory location. These files are described in Table 5.

Table 5. DSP280x Peripheral Header Linker Command File

DSP280x Peripheral Header File
Linker Command File

Location Description

DSP280x_Headers_BIOS.cmd DSP280x_headers\cmd Linker .cmd file to assign the header file variables in
a BIOS project. This file must be included in any
BIOS project that uses the header files. Refer to
section 4.2.

DSP280x_Headers_nonBIOS.cmd DSP280x_headers\cmd Linker .cmd file to assign the header file variables in
a non-BIOS project. This file must be included in any
non-BIOS project that uses the header files. Refer to
section 4.2.

 DSP280x V1.10 Readme

18

3.3 Example Program Flow

All of the example programs follow a similar recommended flow for setting up the 280x devices.
Figure 1 outlines this basic flow:

Reset

Boot Sequence

DSP280x_CodeStartBranch.asm

Disable WD (Optional)
Branch to C Init Routine

C Init

Initialize System Control

Initalize GPIO

Initialize PIE Vector Table

Initalize Peripherals

Example Specific Code
Enable Interrupts

main()
{

}

Boot ROM

DSP280x_CodeStartBranch.asm
Used to re-direct code execution from the boot
entry point to the C Init routine.
Code can be configured to disable the
WatchDog if the WD is timing out before main()
is reached.
Assigned to the BEGIN section by the linker.
Located at 0x000000 for Boot to M0
Located at 0x3F7FF6 for Boot to Flash

C Init Routine
The Compiler's boot.asm which is
automatically included with the runtime
library. This will set OBJMODE to 28x.

Init PLL, Turn on Peripheral Clocks and set the
clock pre-scalers
Disable the WatchDog

Configure GPIO Pins to their peripheral function
or as an input or output as required by the
example.

Initalize the entire PIE Vector Table with pointers
to default Interrupt Service Routines (ISRs) found
in DSP280x_DefaultIsr.c. It is useful for debug
purposes to have the entire table initalized even if
the ISR is not going to be used.

Remap PIE vectors used by the example to ISR
functions found within the example program.

Initalize the peripherals as required by the
example.

Enable the required PIE and CPU interrupts.
Any additional code required for the example.

Additional Functions and
Interrupt Service Routines

Figure 1. Flow for Example Programs

DSP280x V1.10 Readme

 19

3.4 Included Examples:

Table 6. Included Examples

Example Description

adc_seq_ovd_tests ADC test using the sequencer override feature.

adc_seqmode_test ADC Seq Mode Test. Channel A0 is converted forever and logged in a buffer

adc_soc ADC example to convert two channels: ADCINA3 and ADCINA2. Interrupts are
enabled and PWM1 is configured to generate a periodic ADC SOC on SEQ1.

cpu_timer Configures CPU Timer0 and increments a count each time the ISR is serviced.

ecan_a_to_b_xmit Transmit from eCANa to eCANb

ecan_back2back eCAN self-test mode example. Transmits eCAN data back-to-back at high speed
without stopping.

ecap_apwm This example sets up the alternate eCAP pins in the APWM mode

ecap_capture_pwm Captures the edges of a ePWM signal.

epwm_deadband Example deadband generation via ePWM3

epwm_timer_interrupts Starts ePWM1-ePWM6 timers. Every period an interrupt is taken for each ePWM.

epwm_trip_zone Uses the trip zone signals to set the ePWM signals to a particular state.

epwm_up_aq Generate a PWM waveform using an up count time base ePWM1-ePWM3 are used.

epwm_updown_aq Generate a PWM waveform using an up/down time base. ePWM1 – ePWM3 are used.

eqep_freqcal Frequency cal using eQEP1

eqep_pos_speed Pos/speed calculation using eQEP1

external_interrupt Configures GPIO0 as XINT1 and GPIO1 as XINT2. The interrupts are fired by toggling
GPIO30 and GPIO31 which are connected to XINT1 (GPIO0) and XINT2 (GPIO1)
externally by the user.

flash ePWM timer interrupt project moved from SARAM to Flash. Includes steps that were
used to convert the project from SARAM to Flash. Some interrupt service routines are
copied from FLASH to SARAM for faster execution.

gpio_setup Three examples of different pinout configurations.

gpio_toggle Toggles all of the I/O pins using different methods – DATA, SET/CLEAR and TOGGLE
registers. The pins can be observed using an oscilloscope.

hires_epwm Sets up ePWM1-ePWM4 and controls the edge of output A using the HiRes extension.
Both rising edge and falling edge are controlled.

hires_epwm_slider This is the same as the hires_epwm example except the control of CMPAHR is now
controlled by the user via a slider bar. The included .gel file sets up the slider.

i2c_eeprom Communicate with the EEPROM on the eZdsp F2808 USB platform via I2C

sci_autobaud Externally connect SCI-A to SCI-B and send data between the two peripherals. Baud
lock is performed using the autobaud feature of the SCI. This test is repeated for
different baud rates.

sci_echoback SCI-A example that can be used to echoback to a terminal program such as
hyperterminal. A transceiver and a connection to a PC is required.

scia_loopback SCI-A example code that uses the loop-back test mode of the SCI module to send
characters This example uses bit polling and does not use interrupts.

scia_loopback_interrupts SCI-A example code that uses the internal loop-back test mode to transfer data through
SCI-A. Interrupts and FIFOs are both used in this example.

spi_loopback SPI-A example that uses the peripherals loop-back test mode to send data.

spi_loopback_interrupts SPI-A example that uses the peripherals loop-back test mode to send data. Both
interrupts and FIFOs are used in this example.

 DSP280x V1.10 Readme

20

sw_prioritized_interrupts The standard hardware prioritization of interrupts can be used for most applications.

This example shows a method for software to re-prioritize interrupts if required.

watchdog Illustrates feeding the dog and re-directing the watchdog to an interrupt.

DSP280x V1.10 Readme

 21

3.5 Executing the Examples From Flash

Most of the DSP280x examples execute from SARAM in “boot to SARAM” mode. One example,
DSP280x_examples\Flash, executes from flash memory in “boot to flash” mode. This example
is the PWM timer interrupt example with the following changes made to execute out of flash:

1. Change the linker command file to link the code to flash.

Remove 2808_eZdsp_RAM_lnk.cmdfrom the project and add F2808.cmd, F2806.cmd or
F2801.cmd. F2808.cmd, F2806.cmd and F2801.cmd are located in the
<base>DSP280x_common\cmd\ directory.

2. Add the DSP280x_common\source\DSP280x_CSMPasswords.asm to the project.

This file contains the passwords that will be programmed into the Code Security Module
(CSM) password locations. Leaving the passwords set to 0xFFFF during development is
recommended as the device can easily be unlocked. For more information on the CSM refer
to the TMS320x280x System Control and Interrupts Reference Guide (spru712).

3. Modify the source code to copy all functions that must be executed out of SARAM
from their load address in flash to their run address in SARAM.

In particular, the flash wait state initialization routine must be executed out of SARAM. In
the DSP280x examples, functions that are to be executed from SARAM have been
assigned to the ramfuncs section by compiler CODE_SECTION #pragma statements as
shown in the example below.

/**
* DSP280x_common\source\DSP280x_SysCtrl.c
**/

#pragma CODE_SECTION(InitFlash, "ramfuncs");

The ramfuncs section is then assigned to a load address in flash and a run address in
SARAM by the memory linker command file as shown below:

/**
* DSP280x_common\include\F2808.cmd
**/
SECTIONS
{
 ramfuncs : LOAD = FLASHD,
 RUN = RAML0,
 LOAD_START(_RamfuncsLoadStart),
 LOAD_END(_RamfuncsLoadEnd),
 RUN_START(_RamfuncsRunStart),
 PAGE = 0
}

 DSP280x V1.10 Readme

22

The linker will assign symbols as specified above to specific addresses as follows:

Address Symbol

Load start address RamfuncsLoadStart

Load end address RamfuncsLoadEnd

Run start address RamfuncsRunStart

These symbols can then be used to copy the functions from the Flash to SARAM using the
included example MemCopy routine or the C library standard memcopy() function.

To perform this copy from flash to SARAM using the included example MemCopy function:

a. Add the file DSP280x_common\source\DSP280x_MemCopy.c to the project.

b. Add the following function prototype to the example source code. This is done for you in
the DSP280x_Examples.h file.

/**
* DSP280x_common\include\DSP280x_Examples.h
**/

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

c. Add the following variable declaration to your source code to tell the compiler that these
variables exist. The linker command file will assign the address of each of these
variables as specified in the linker command file as shown in step 3. For the DSP280x
example code this has is already done in DSP280x_Examples.h.

/**
* DSP280x_common\include\DSP280x_GlobalPrototypes.h
**/

extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;

d. Modify the code to call the example MemCopy function for each section that needs to be
copied from flash to SARAM.

/**
* DSP280x_examples\Flash source file
**/

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

DSP280x V1.10 Readme

 23

4. Modify the code to call the flash initialization routine:

This function will initialize the wait states for the flash and enable the Flash Pipeline mode.

/**
* DSP280x peripheral example .c file
**/

InitFlash();

5. Set the required jumpers for “boot to Flash” mode.

The required jumper settings for each boot mode are shown in

Table 7. 280x Boot Mode Settings

GPIO18 GPIO29 GPIO34 Mode

1 1 1 Boot to flash 0x3F7FF6

1 1 0 Call SCI-A boot loader

1 0 1 Call SPI-A boot loader

1 0 0 Call I2C boot loader

0 1 1 Call eCAN-A boot loader

0 1 0 Boot to M0 SARAM 0x000000

0 0 1 Boot to OTP 0x3D7800

0 0 0 Call parallel boot loader

Refer to the documentation for your hardware platform for information on configuring the
boot mode selection pins.

For more information on the ‘280x boot modes refer to the TMS320x280x Boot ROM
Reference Guide (SPRU722).

6. Program the device with the built code.

This can be done using SDFlash available from Spectrum Digital’s website
(www.spectrumdigital.com). In addition the C2000 on-chip Flash programmer plug-in for
Code Composer Studio will be available for the F280x family in 2Q05.

7. To debug, load the project in CCS, select File->Load Symbols->Load Symbols Only.

It is useful to load only symbol information when working in a debugging environment where
the debugger cannot or need not load the object code, such as when the code is in ROM or
flash. This operation loads the symbol information from the specified file.

 DSP280x V1.10 Readme

24

4 Steps for Incorporating the Header Files and Sample Code

Follow these steps to incorporate the peripheral header files and sample code into your own
projects. If you already have a project that uses the DSP281x header files then also refer to
Section 6 for migration tips.

4.1 Before you begin

Before you include the header files and any sample code into your own project, it is
recommended that you perform the following:

1. Load and step through an example project.

Load and step through an example project to get familiar with the header files and sample
code. This is described in Section 3.

2. Create a copy of the source files you want to use.

– DSP280x_headers: code required to incorporate the header files into your project

– DSP280x_common: shared source code much of which is used in the example projects.

– DSP280x_examples: example projects that use the header files and shared code.

4.2 Including the DSP280x Peripheral Header Files

Including the DSP280x header files in your project will allow you to use the bit-field structure
approach in your code to access the peripherals on the DSP. To incorporate the header files in
a new or existing project, perform the following steps:

3. #include “DSP280x_Device.h” in your source files.

This include file will in-turn include all of the peripheral specific header files and required
definitions to use the bit-field structure approach to access the peripherals.

/**
* User’s source file
**/

#include “DSP280x_Device.h”

4. Edit DSP280x_Device.h and select the target you are building for:

In the below example, the file is configured to build for the ‘2808 device.

/**
* DSP280x_headers\include\DSP280x_Device.h
**/

#define TARGET 1
#define DSP28_2808 TARGET
#define DSP28_2806 0
#define DSP28_2801 0

 By default, the ‘2808 device is selected. This is a superset of the other devices.

DSP280x V1.10 Readme

 25

5. Add the source file DSP280x_GlobalVariableDefs.c to the project.

This file is found in the DSP280x_headers\source\ directory and includes:

– Declarations for the variables that are used to access the peripheral registers.

– Data section #pragma assignments that are used by the linker to place the variables in
the proper locations in memory.

6. Add the appropriate DSP280x header linker command file to the project.

As described in Section 2.2, when using the DSP280x header file approach, the data
sections of the peripheral register structures are assigned to the memory locations of the
peripheral registers by the linker.

To perform this memory allocation in your project, one of the following linker command
files located in DSP280x_headers\cmd\ must be included in your project:

– For non-DSP/BIOS† projects: DSP280x_Headers_nonBIOS.cmd

– For DSP/BIOS projects: DSP280x_Headers_BIOS.cmd

The method for adding the header linker file to the project depends on the version of Code
Composer Studio being used.

Code Composer Studio V2.2 and later:

As of CCS 2.2, more then one linker command
file can be included in a project.

Add the appropriate header linker command file
(BIOS or nonBIOS) directly to the project.

Code Composer Studio prior to V2.2

Prior to CCS 2.2, each project contained only
one main linker command file. This file can, however, call additional .cmd files as needed.
To include the required memory allocations for the DSP280x header files, perform the
following two steps:

1) Update the project’s main linker command (.cmd) file to call one of the supplied DSP280x
peripheral structure linker command files using the -l option.

/**
* User’s linker .cmd file
**/

/* Use this include file only for non-BIOS applications */
-l DSP280x_Headers_nonBIOS.cmd
/* Use this include file only for BIOS applications */
/* -l DSP280x_Headers_BIOS.cmd */

† DSP/BIOS is a trademark of Texas Instruments

 DSP280x V1.10 Readme

26

2) Add the directory path to the DSP280x peripheral linker .cmd file to your project.

a. Open the menu: Project->Build Options

b. Select the Linker tab and then Select Basic.

c. In the Library Search Path, add the directory path to the location of the
DSP280x_headers\cmd directory on your system.

7. Add the directory path to the DSP280x header files to your project.

To specify the directory where the
header files are located:

a. Open the menu:

Project->Build Options

b. Select the Compiler tab

c. Select pre-processor.

d. In the Include Search Path,
add the directory path to the
location of
DSP280x_headers\include on
your system.

8. Additional suggested build options:

The following are additional compiler and linker options. The options can all be set via the
Project->Build Options menu.

– Compiler Tab:

 -ml Select Advanced and check –ml

Build for large memory model. This setting allows data sections to reside anywhere
within the 4M-memory reach of the 28x devices.

 -pdr Select Diagnostics and check –pdr

Issue non-serious warnings. The compiler uses a warning to indicate code that is
valid but questionable. In many cases, these warnings issued by enabling -pdr can
alert you to code that may cause problems later on.

– Linker Tab:

 -w Select Advanced and check –w

Warn about output sections. This option will alert you if any unassigned memory
sections exist in your code. By default the linker will attempt to place any
unassigned code or data section to an available memory location without alerting the
user. This can cause problems, however, when the section is placed in an
unexpected location.

DSP280x V1.10 Readme

 27

 -e Select Basic and enter Code Entry Point –e

Defines a global symbol that specifies the primary entry point for the output module.
For the DSP280x examples, this is the symbol “code_start”. This symbol is defined
in the DSP280x_common\source\DSP280x_CodeStartBranch.asm file. When you
load the code in Code Composer Studio, the debugger will set the PC to the address
of this symbol. If you do not define a entry point using the –e option, then the linker
will use _c_int00 by default.

 DSP280x V1.10 Readme

28

4.3 Including Common Example Code

Including the common source code in your project will allow you to leverage code that is already
written for the device. To incorporate the shared source code into a new or existing project,
perform the following steps:

1. #include “DSP280x_Examples.h” in your source files.

This include file will include common definitions and declarations used by the example code.

/**
* User’s source file
**/

#include “DSP280x_Examples.h”

2. Add the directory path to the example include files to your project.

To specify the directory where
the header files are located:

a. Open the menu:

Project->Build Options

b. Select the Compiler tab

c. Select pre-processor.

d. In the Include Search Path,
add the directory path to the
location of
DSP280x_common/include
on your system.
Use a semicolon between
directories.

For example the directory path for the included projects is:
..\..\DSP280x_headers\include;..\..\DSP280x_common\include

3. Add a linker command file to your project.

The following memory linker .cmd files are provided as examples in the
DSP280x_common\cmd directory. For getting started the basic
2808_eZdsp_RAM_lnk.cmd file is suggested and used by most of the examples.

DSP280x V1.10 Readme

 29

Table 8. Included Main Linker Command Files

Main Liner Command File
Examples

Description

2808_eZdsp_RAM_lnk.cmd Main eZdsp F2808 USB example linker file. Only uses only
SARAM locations that are not protected by the code security
module. This memory map is used for all of the examples to
run out of the box on an eZdsp F2808 USB platform. No Flash
or OTP locations are used.

F2808.cmd Main F2808 linker command file. Includes all Flash and OTP
memory locations.

F2806.cmd Main F2806 linker command file. Includes all Flash, OTP
memory locations.

F2801.cmd Main F2801 linker command file. Includes all Flash, OTP
memory locations.

4. Set the CPU Frequency

In the DSP280x_common\include\DSP280x_Examples.h file specify the proper CPU
frequency. Some examples are included in the file.

/**
* DSP280x_common\include\DSP280x_Examples.h
**/

#define CPU_RATE 10.000L // for a 100MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 13.330L // for a 75MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)

5. Add desired common source files to the project.

The common source files are found in the DSP280x_common\source\ directory.

6. Include .c files for the PIE.

Since all catalog ‘280x applications make use of the PIE interrupt block, you will want to
include the PIE support .c files to help with initializing the PIE. The shell ISR functions can
be used directly or you can re-map your own function into the PIE vector table provided. A
list of these files can be found in section 7.2.1.

 DSP280x V1.10 Readme

30

5 Troubleshooting Tips & Frequently Asked Questions

• In the examples, what do “EALLOW;” and “EDIS;” do?

EALLOW; is a macro defined in DSP280x_Device.h for the assembly instruction EALLOW
and likewise EDIS is a macro for the EDIS instruction. That is EALLOW; is the same as
embedding the assembly instruction asm(“ EALLOW”);

Several control registers on the 28x devices are protected from spurious CPU writes by the
EALLOW protection mechanism. The EALLOW bit in status register 1 indicates if the
protection is enabled or disabled. While protected, all CPU writes to the register are ignored
and only CPU reads, JTAG reads and JTAG writes are allowed. If this bit has been set by
execution of the EALLOW instruction, then the CPU is allowed to freely write to the
protected registers. After modifying the registers, they can once again be protected by
executing the EDIS assembly instruction to clear the EALLOW bit.

For a complete list of protected registers, refer to TMS320x280x Control and Interrupts
Reference Guide (SPRU712).

• Peripheral registers read back 0x0000 and/or cannot be written to.

There are a few things to check:

• Peripheral registers cannot be modified or unless the clock to the specific peripheral is
enabled. The function InitPeripheralClocks() in the DSP280x_common\source directory
shows an example of enabling the peripheral clocks.

• Some peripherals are not present on all 280x family derivatives. Refer to the device
datasheet for information on which peripherals are available.

• The EALLOW bit protects some registers from spurious writes by the CPU. If your
program seems unable to write to a register, then check to see if it is EALLOW
protected. If it is, then enable access using the EALLOW assembly instruction.
TMS320x280x Control and Interrupts Reference Guide (SPRU712) for a complete list
of EALLOW protected registers.

• Memory block L0, L1 read back all 0x0000.

In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Refer to the for information on the code security
module.

• Code cannot write to L0 or L1 memory blocks.

In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Code that is executing from outside of the protected
cannot read or write to protected memory while the CSM is locked. Refer to the
TMS320x280x Control and Interrupts Reference Guide (SPRU712) for information on the
code security module

DSP280x V1.10 Readme

 31

• A peripheral register reads back ok, but cannot be written to.

The EALLOW bit protects some registers from spurious writes by the CPU. If your program
seems unable to write to a register, then check to see if it is EALLOW protected. If it is,
then enable access using the EALLOW assembly instruction. TMS320x280x Control and
Interrupts Reference Guide (SPRU712) for a complete list of EALLOW protected registers.

• I re-built one of the projects to run from Flash and now it doesn’t work. What could be
wrong?

Make sure all initialized sections have been moved to flash such as .econst and .switch.

If you are using SDFlash, make sure that all initialized sections, including .econst, are
allocated to page 0 in the linker command file (.cmd). SDFlash will only program sections
in the .out file that are allocated to page 0.

• Why do the examples populate the PIE vector table and then re-assign some of the
function pointers to other ISRs?

The examples share a common default ISR file. This file is used to populate the PIE vector
table with pointers to default interrupt service routines. Any ISR used within the example is
then remapped to a function within the same source file. This is done for the following
reasons:

– The entire PIE vector table is enabled, even if the ISR is not used within the example.
This can be very useful for debug purposes.

– The default ISR file is left un-modified for use with other examples or your own project
as you see fit.

– It illustrates how the PIE table can be updated at a later time.

• When I build the examples, the linker outputs the following: warning: entry point
other than _c_int00 specified. What does this mean?

This warning is given when a symbol other then _c_int00 is defined as the code entry point
of the project. For these examples, the symbol code_start is the first code that is executed
after exiting the boot ROM code and thus is defined as the entry point via the –e linker
option. This symbol is defined in the DSP280x_CodeStartBranch.asm file. The entry point
symbol is used by the debugger and by the hex utility. When you load the code, CCS will
set the PC to the entry point symbol. By default, this is the _c_int00 symbol which marks
the start of the C initialization routine. For the DSP280x examples, the code_start symbol is
used instead. Refer to the source code for more information.

• When I build many of the examples, the compiler outputs the following: remark:
controlling expression is constant. What does this mean?

Some of the examples run forever until the user stops execution by using a while(1) {} loop
The remark refers to the while loop using a constant and thus the loop will never be exited.

• When I build some of the examples, the compiler outputs the following: warning:
statement is unreachable. What does this mean?

Some of the examples run forever until the user stops execution by using a while(1) {} loop.
If there is code after this while(1) loop then it will never be reached.

 DSP280x V1.10 Readme

32

• I changed the build configuration of one of the projects from “Debug” to “Release”
and now the project will not build. What could be wrong?

When you switch to a new build configuration (Project->Configurations) the compiler and
linker options changed for the project. The user must enter other options such as include
search path and the library search path. Open the build options menu (Project->Build
Options) and enter the following information:

– Compiler Tab, Preprocessor: Include search path

– Linker Tab, Basic: Library search path

– Linker Tab, Basic: Include libraries (ie rts2800_ml.lib)

Refer to section 3.5 for more details.

• In the flash example I loaded the symbols and ran to main. I then set a breakpoint but
the breakpoint is never hit. What could be wrong?

In the Flash example, the InitFlash function and several of the ISR functions are copied out
of flash into SARAM. When you set a breakpoint in one of these functions, Code Composer
will insert an ESTOP0 instruction into the SARAM location. When the ESTOP0 instruction
is hit, program execution is halted. CCS will then remove the ESTOP0 and replace it with
the original opcode. In the case of the flash program, when one of these functions is
copied from Flash into SARAM, the ESTOP0 instruction is overwritten code. This is why the
breakpoint is never hit. To avoid this, set the breakpoint after the SARAM functions have
been copied to SARAM.

• The eCAN control registers require 32-bit write accesses.

The compiler will instead make a 16-bit write accesses if it can in order to improve codesize
and/or performance. This can result in unpredictable results.

One method to avoid this is to create a duplicate copy of the eCAN control registers in RAM.
Use this copy as a shadow register. First copy the contents of the eCAN register you want
to modify into the shadow register. Make the changes to the shadow register and then write
the data back as a 32-bit value. This method is shown in the DSP280x_examples\
ecan_back2back example project.

5.1 Effects of read-modify-write instructions.

When writing any code, whether it be C or assembly, keep in mind the effects of read-modify-
write instructions.

The ‘28x DSP will write to registers or memory locations 16 or 32-bits at a time. Any instruction
that seems to write to a single bit is actually reading the register, modifying the single bit, and
then writing back the results. This is referred to as a read-modify-write instruction. For most
registers this operation does not pose a problem. A notable exception is:

5.1.1 Registers with multiple flag bits in which writing a 1 clears that flag.

For example, consider the PIEACK register. Bits within this register are cleared when writing a 1
to that bit. If more then one bit is set, performing a read-modify-write on the register may clear
more bits then intended.

DSP280x V1.10 Readme

 33

The below solution is incorrect. It will write a 1 to any bit set and thus clear all of them:

/**
* User’s source file
**/

 PieCtrl.PIEACK.bit.Ack1 = 1; // INCORRECT! May clear more bits.

The correct solution is to write a mask value to the register in which only the intended bit will
have a 1 written to it:

/**
* User’s source file
**/

 #define PIEACK_GROUP1 0x0001
 ……
 PieCtrl.PIEACK.all = PIEACK_GROUP1; // CORRECT!

5.1.2 Registers with Volatile Bits.

Some registers have volatile bits that can be set by external hardware.

Consider the PIEIFRx registers. An atomic read-modify-write instruction will read the 16-bit
register, modify the value and then write it back. During the modify portion of the operation a bit
in the PIEIFRx register could change due to an external hardware event and thus the value may
get corrupted during the write.

The rule for registers of this nature is to never modify them during runtime. Let the CPU take the
interrupt and clear the IFR flag.

 DSP280x V1.10 Readme

34

6 Migration Tips for moving from the 281x header files (DSP281x V1.00)
to the 280x header files (DSP280x V1.10)

This section includes suggestions for moving a project from the 281x header files to the 280x
header files.

1. Create a copy of your project to work with or back-up your current project.

2. Open the project (.pjt) file in a text editor

Replace DSP281x with DSP280x so that the appropriate source files are used. Check the
path names to make sure they point to the appropriate header file and source code
directories.

3. Load the project into Code Composer Studio

Use the edit-> find in files dialog to find instances of DSP281x_Device.h and
DSP281x_Example.h. Replace these with DSP280x_Device.h and DSP280x_Example.h
respectively.

4. Make sure you are using the correct linker command files (.cmd) appropriate for
your device and for the DSP280x header files.

You will have one file for the memory definitions and one file for the header file structure
definitions. Using a 281x memory file can cause issues since the H0 memory block has
moved to a new location on the 280x devices.

5. Build the project.

The compiler will highlight areas that have changed. Most of these changes will fall into one
of the following categories:

- Bit-name or register name corrections to align with the peripheral user guides. See
Table 9 for a listing of these changes.

- Code that was written for the 281x event manager (EV) will need to be re-written for the
280x ePWM, eCAP and eQEP peripherals.

- Code for the 281x McBSP and XINTF will need to be removed as these peripherals are
not available on the 280x devices.

DSP280x V1.10 Readme

 35

Table 9. Summary of Register and Bit-Name Changes from DSP281x V1.00 to DSP280x V1.00 or
V1.10

 Bit Name

Peripheral Register Old New Comment

AdcRegs

 ADCTRL2 EVB_SOC_
SEQ2

EPWM_SOCB_
SEQ2

SOC is now performed by ePWM

 EVA_SOC_
SEQ1

EPWM_SOCA_
SEQ1

SOC is now performed by ePWM

 EVB_SOC_
SEQ

EPWM_SOCB_
SEQ

SOC is now performed by ePWM

DevEmuRegs

 DEVICEID PARTID
REVID

Split into two registers, PARTID and
REVID

EcanaRegs

 CANMDL BYTE1 BYTE3 Order of bytes was incorrect

 BYTE3 BYTE1

 BYTE4 BYTE0

 CANMDH BYTE5 BYTE7 Order of bytes was incorrect

 BYTE7 BYTE5

 BYTE8 BYTE4

GpioMuxRegs

 The GPIO peripheral has been
redesigned from the 281x. All of the
registers have moved from 16-bit to
32-bits. The GpioMuxRegs are now
the GpioCtrlRegs and the bit
definitions have all changed. Please
refer to TMS320x280x Control and
Interrupts Reference Guide
(SPRU712) for more information on
the GPIO peripheral.

PieCtrlRegs

 PIECTRL PIECRTL PIECTRL Typo

SciaRegs, ScibRegs

 SCIFFTX TXFFILIL TXFFIL Typo

 TXINTCLR TXFFINTCLR Alignment with user’s guide.

 SCIFFRX RXFIFST RXFFST Typo – Also corrected in user’s guide

 DSP280x V1.10 Readme

36

7 Packet Contents:

This section lists all of the files included in the release.

7.1 Header File Support – DSP280x_headers

The DSP280x header files are located in the <base>\DSP280x_headers\ directory.

7.1.1 DSP280x Header Files – Main Files

The following files must be added to any project that uses the DSP280x header files. Refer to
section 4.2 for information on incorporating the header files into a new or existing project.

Table 10. DSP280x Header Files – Main Files

File Location Description

DSP280x_Device.h DSP280x_headers\include Main include file. Include this one file in any of
your .c source files. This file in-turn includes all of
the peripheral specific .h files listed below. In
addition the file includes typedef statements and
commonly used mask values. Refer to section 4.2.

DSP280x_GlobalVariableDefs.c DSP280x_headers\source Defines the variables that are used to access the
peripheral structures and data section #pragma
assignment statements. This file must be included
in any project that uses the header files. Refer to
section 4.2.

DSP280x_Headers_BIOS.cmd DSP280x_headers\cmd Linker .cmd file to assign the header file variables
in a BIOS project. This file must be included in
any BIOS project that uses the header files. Refer
to section 4.2.

DSP280x_Headers_nonBIOS.cmd DSP280x_headers\cmd Linker .cmd file to assign the header file variables
in a non-BIOS project. This file must be included
in any non-BIOS project that uses the header files.
Refer to section 4.2.

DSP280x V1.10 Readme

 37

7.1.2 DSP280x Header Files – Peripheral Bit-Field and Register Structure Definition
Files

The following files define the bit-fields and register structures for each of the peripherals on the
280x devices. These files are automatically included in the project by including
DSP280x_Device.h. Refer to section 4.2 for more information on incorporating the header files
into a new or existing project.

Table 11. DSP280x Header File Bit-Field & Register Structure Definition Files

File Location Description

DSP280x_Adc.h DSP280x_headers\include ADC register structure and bit-field definitions.

DSP280x_CpuTimers.h DSP280x_headers\include CPU-Timer register structure and bit-field definitions.

DSP280x_DevEmu.h DSP280x_headers\include Emulation register definitions

DSP280x_ECan.h DSP280x_headers\include eCAN register structures and bit-field definitions.

DSP280x_ECap.h DSP280x_headers\include eCAP register structures and bit-field definitions.

DSP280x_EPwm.h DSP280x_headers\include ePWM register structures and bit-field definitions.

DSP280x_EQep.h DSP280x_headers\include eQEP register structures and bit-field definitions.

DSP280x_Gpio.h DSP280x_headers\include General Purpose I/O (GPIO) register structures and
bit-field definitions.

DSP280x_I2c.h DSP280x_headers\include I2C register structure and bit-field definitions.

DSP280x_PieCtrl.h DSP280x_headers\include PIE control register structure and bit-field definitions.

DSP280x_PieVect.h DSP280x_headers\include Structure definition for the entire PIE vector table.

DSP280x_Sci.h DSP280x_headers\include SCI register structure and bit-field definitions.

DSP280x_Spi.h DSP280x_headers\include SPI register structure and bit-field definitions.

DSP280x_SysCtrl.h DSP280x_headers\include System register definitions. Includes Watchdog, PLL,
CSM, Flash/OTP, Clock registers.

DSP280x_XIntrupt.h DSP280x_headers\include External interrupt register structure and bit-field
definitions.

7.1.3 Code Composer .gel Files

The following Code Composer Studio .gel files are included for use with the DSP280x Header
File peripheral register structures.

Table 12. DSP280x Included GEL Files

File Location Description

DSP280x_Peripheral.gel DSP280x_headers\gel Provides GEL pull-down menus to load the DSP280x data
structures into the watch window.
You may want to have CCS load this file automatically by
adding a
GEL_LoadGel(“<base>DSP280x_headers\/gel\DSP280x_p
eripheral.gel”) function to the standard F2808.gel that was
included with CCS.

 DSP280x V1.10 Readme

38

7.1.4 Variable Names and Data Sections

This section is a summary of the variable names and data sections allocated by the
DSP280x_headers\source\DSP280x_GlobalVariableDefs.c file. Note that all peripherals may
not be available on a particular 280x device. Refer to the device datasheet for the peripheral
mix available on each 280x family derivative.

Table 13. DSP280x Variable Names and Data Sections

Peripheral Starting Address Structure Variable Name

ADC 0x007100 AdcRegs

ADC Mirrored Result Registers 0x000B00 AdcMirror

Code Security Module 0x000AE0 CsmRegs

Code Security Module Password Locations 0x3F7FF6-
0x3F7FFF

CsmPwl

CPU Timer 0 0x000C00 CpuTimer0Regs

Device and Emulation Registers 0x000880 DevEmuRegs

eCAN-A 0x006000 ECanaRegs

eCAN-A Mail Boxes 0x006100 ECanaMboxes

eCAN-A Local Acceptance Masks 0x006040 ECanaLAMRegs

eCAN-A Message Object Time Stamps 0x006080 ECanaMOTSRegs

eCAN-A Message Object Time-Out 0x0060C0 ECanaMOTORegs

eCAN-B 0x006200 ECanbRegs

eCAN-B Mail Boxes 0x006300 ECanbMboxes

eCAN-B Local Acceptance Masks 0x006240 ECanbLAMRegs

eCAN-B Message Object Time Stamps 0x006280 ECanbMOTSRegs

eCAN-B Message Object Time-Out 0x0062C0 ECanbMOTORegs

ePWM1 0x006800 EPwm1Regs

ePWM2 0x006840 EPwm2Regs

ePWM3 0x006880 EPwm3Regs

ePWM4 0x0068C0 EPwm4Regs

ePWM5 0x006900 EPwm5Regs

ePWM6 0x006940 EPwm6Regs

eCAP1 0x006A00 ECap1Regs

eCAP2 0x006A20 ECap2Regs

eCAP3 0x006A40 ECap3Regs

eCAP4 0x006A60 ECap4Regs

eQEP1 0x006B00 EQep1Regs

eQEP2 0x006B40 EQep2Regs

External Interrupt Registers 0x007070, XIntruptRegs

Flash & OTP Configuration Registers 0x000A80 FlashRegs

General Purpose I/O Data Registers 0x006fC0 GpioDataRegs

General Purpose Control Registers 0x006F80 GpioCtrlRegs

General Purpose Interrupt Registers 0x006fE0 GpioIntRegs

I2C 0x007900 I2caRegs

DSP280x V1.10 Readme

 39

Peripheral Starting Address Structure Variable Name

PIE Control 0x000CE0 PieCtrlRegs

SCI-A 0x007050 SciaRegs

SCI-B 0x007750 ScibRegs

SPI-A 0x007040 SpiaRegs

SPI-B 0x007740 SpibRegs

SPI-C 0x007760 SpicRegs

SPI-D 0x007780 SpidRegs

7.2 Common Example Code – DSP280x_common

7.2.1 Peripheral Interrupt Expansion (PIE) Block Support

In addition to the register definitions defined in DSP280x_PieCtrl.h, this packet provides the
basic ISR structure for the PIE block. These files are:

Table 14. Basic PIE Block Specific Support Files

File Location Description

DSP280x_DefaultIsr.c DSP280x_common\source Shell interrupt service routines (ISRs) for the entire PIE vector
table. You can choose to populate one of functions or re-map
your own ISR to the PIE vector table. Note: This file is not
used for DSP/BIOS projects.

DSP280x_DefaultIsr.h DSP280x_common\include Function prototype statements for the ISRs in
DSP280x_DefaultIsr.c. Note: This file is not used for
DSP/BIOS projects.

DSP280x_PieVect.c DSP280x_common\source Creates an instance of the PIE vector table structure initialized
with pointers to the ISR functions in DSP280x_DefaultIsr.c.
This instance can be copied to the PIE vector table in order to
initialize it with the default ISR locations.

In addition, the following files are included for software prioritization of interrupts. These files are
used in place of those above when additional software prioritization of the interrupts is required.
Refer to the example and documentation in DSP280x_examples\sw_prioritized_interrupts for
more information.

 DSP280x V1.10 Readme

40

Table 15. Software Prioritized Interrupt PIE Block Specific Support Files

File Location Description

DSP280x_SWPrioritizedDefaultIsr.c DSP280x_common\source Default shell interrupt service routines (ISRs).
These are shell ISRs for all of the PIE interrupts.
You can choose to populate one of functions or
re-map your own interrupt service routine to the
PIE vector table. Note: This file is not used for
DSP/BIOS projects.

DSP280x_SWPrioritizedIsrLevels.h DSP280x_common\include Function prototype statements for the ISRs in
DSP280x_DefaultIsr.c. Note: This file is not
used for DSP/BIOS projects.

DSP280x_SWPrioritizedPieVect.c DSP280x_common\source Creates an instance of the PIE vector table
structure initialized with pointers to the default
ISR functions that are included in
DSP280x_DefaultIsr.c. This instance can be
copied to the PIE vector table in order to initialize
it with the default ISR locations.

7.2.2 Peripheral Specific Files

Several peripheral specific initialization routines and support functions are included in the
peripheral .c source files in the DSP280x_common\src\ directory. These files include:

Table 16. Included Peripheral Specific Files

File Description

DSP280x_GlobalPrototypes.h Function prototypes for the peripheral specific functions included in these files.

DSP280x_Adc.c ADC specific functions and macros.

DSP280x_CpuTimers.c CPU-Timer specific functions and macros.

DSP280x_ECan.c Enhanced CAN specific functions and macros.

DSP280x_ECap.c eCAP module specific functions and macros.

DSP280x_EPwm.c ePWM module specific functions and macros.

DSP280x_EPwm_defines.h #define macros that are used for the ePWM examples

DSP280x_EQep.c eQEP module specific functions and macros.

DSP280x_Gpio.c General-purpose IO (GPIO) specific functions and macros.

DSP280x_I2C.c I2C specific functions and macros.

DSP280x_I2c_defines.h #define macros that are used for the I2C examples

DSP280x_PieCtrl.c PIE control specific functions and macros.

DSP280x_Sci.c SCI specific functions and macros.

DSP280x_Spi.c SPI specific functions and macros.

DSP280x_SysCtrl.c System control (watchdog, clock, PLL etc) specific functions and macros.

Note: The specific routines are under development and may not all be available as of this release. They will be
added and distributed as more examples are developed.

DSP280x V1.10 Readme

 41

7.2.3 Utility Function Source Files

Table 17. Included Utility Function Source Files

File Description

DSP280x_CodeStartBranch.asm Branch to the start of code execution. This is used to re-direct code execution
when booting to Flash, OTP or M0 SARAM memory. An option to disable the
watchdog before the C init routine is included.

DSP280x_DBGIER.asm Assembly function to manipulate the DEBIER register from C.

DSP280x_DisInt.asm Disable interrupt and restore interrupt functions. These functions allow you to
disable INTM and DBGM and then later restore their state.

DSP280x_usDelay.asm Assembly function to insert a delay time in microseconds. This function is cycle
dependant and must be executed from zero wait-stated RAM to be accurate.
Refer to DSP280x_examples\adc for an example of its use.

DSP280x_CSMPasswords.asm Include in a project to program the code security module passwords and
reserved locations.

7.2.4 Example Linker .cmd files

Example memory linker command files are located in the DSP280x_common\cmd directory. For
getting started using the 280x devices, the basic 2808_eZdsp_RAM_lnk.cmd file is suggested
and used by many of the included examples.

On 280x devices, the SARAM blocks L1, L2 and H0 are mirrored. For simplicity these memory
maps only include one instance of these memory blocks.

Table 18. Included Main Linker Command Files

Main Liner Command File

Examples
Description

2808_eZdsp_RAM_lnk.cmd eZdsp F2808 USB memory linker example. Only allocates
SARAM locations. This memory map is used for all of the
examples that run out of the box on an eZdsp F2808 USB.

No Flash, OTP, or CSM password protected locations are used.

F2808.cmd F2808 memory linker command file. Includes all Flash, OTP
and CSM password protected memory locations.

F2806.cmd F2806 memory linker command file. . Includes all Flash, OTP
and CSM password protected memory locations.

F2801.cmd F2801 memory linker command file. . Includes all Flash, OTP
and CSM password protected memory locations.

 DSP280x V1.10 Readme

42

7.2.5 Example Library .lib Files

Example library files are located in the DSP280x_common\lib directory. For this release only the
IQMath library is included for use in the example projects. Please refer to the C28x IQMath
Library - A Virtual Floating Point Engine (SPRC087) for more information on IQMath and the
most recent IQMath library.

Table 19. Included Library Files

Main Liner Command File

Examples
Description

IQmath.lib Please refer to the C28x IQMath Library - A Virtual Floating
Point Engine (SPRC087) for more information on IQMath.

IQmathLib.h IQMath header file.

