Application Note Using the Hercules UART Boot Loader

ABSTRACT

This application note describes how to communicate with the Hercules UART boot
loader. The UART boot loader is a small piece of code that can be programmed at the
beginning of flash to act as an application loader as well as an update mechanism for
applications running on a Hercules Cortex-R4 based microcontroller (RM4x and
TMS570LSx).

Table of Contents

ABSTRACTccovrevevercecnrenreneseeee o o evoeveeenenaeere o SRRccooererreenenreneec 8@ neenemeneeseeseerersens 1
BLIE=1) (=T 01 0o] 1= o £ U 1
T INEFOAUCTION ...t sttt b e et e e et e e be e s beestbesbaeebbeetaeeabeeabeeabeente saeensenans 3
2. Software Coding and Compilationcccceiiiiiiiiiiierice et 4
3. ONReset....... 0 .o eveeeee e S e eeveeeeeer ... W....coeverecreneeneeeennrneresens sasenessnenenns 4
4. During Bootloader EXECULION..........ccciiiiicii ettt se e te e sre e s esee st e e nte e ennaens 5
5. MCU Initialization during Bootloader EXeCUtionccoveveiiininincncceeeeeeeeeeen 5
6. The Protocol Used in UART BOOHOAAETcccconiiieiei et 5
7. UART Bootloader OPeration..........cccceiiiieiieriiieeseseeiese sttt ste e se e sreesessesseensenes 7
8. HyperTerminal ConfigUurationccccioieiiiiciecececee et 10
S T (Y (T (=Y g ot TSROSO 11
Figure 1, The FlowChart of UART BOOOAETccooirieiiieieeeeee et 6
Figure 2, The UART Bootloader Is Loaded Through The JTAG port........ccccevveveeieceneneececeeeennn, 7
Figure 3, UART Bootloader Main MENU...........cccviiuieiiiiieieeiee sttt te e e e ste e sreesrnesnne e 8
Figure 4, The User Application Code Is Loaded Through The UART Bootloader.ccccceuc.... 9
Figure 5, The UART Bootloader Jumps to Application Code.........cccceviiieieveiieciene e 10
Figure 6, COM POrIt PrOPErti€S.......ccviiiiiuieieiiiciieie sttt ettt et te st steeaesbeste e s e besrsesaesaesraensens 11
Table 1, List of Source Code Files Used in SPI BOOt LOAAENoccuveveeeeeiiiieeeeeeeeee et 3
Table 2, Vector Table in CAN BOOt LOAUETee oottt eeeeee e s e e eeesaeeeeesasneeens 4

Application Note Using the Hercules UART Boot Loader

2|Page

Application Note Using the Hercules UART Boot Loader

1. Introduction

An important requirement for most flash-memory-based systems is the ability to update

firmware when installed in the end product. This ability is referred to as in-application
programming (IAP). The UART bootloader provides a means of writing, reading, and
erasing a predefined section of the program flash memory that typically holds the user

application code.

This document describes how to work with and customize the Hercules UART boot
loader application. The boot loader is provided as source code which allows any part of
the boot loader to be completely customized. The bootloader has been built and
validated using CCSv5 on the RM48 Hercules Development HDK.

The following is an overview of the organization of the source code provided with the

boot loader.

Table 1, List of Source Code Files Used in SPI Boot Loader

sys_startup.c The start-up code used when TI's Code Composer Studio (CCS) compiler
is being used to build the boot loader.

bl_check.c The code to check if a firmware update is required, or if a firmware
update is being requested by the user.

bl_check.h Prototypes for the update check code.

bl_commands.h The list of commands and return messages supported by the boot
loader.

bl_config.h Boot loader configuration file. This contains all of the possible
configuration values.

bl_flash.c The functions for erasing, programming the flash, and functions for
erase/program check

bl_flash.h Prototypes for flash operations

bl_link.cmd The linker script used when the CCS compiler is being used to build the
boot loader.

bl_main.c The main control loop of the boot loader.

bl_packet.c The functions for handling the packet processing of commands
and responses.

bl_packet.h Prototypes for the packet handling functions.

bl _uart.h Prototypes for the UARTO transfer functions.

bl _uart.c The functions for transferring data via the COMO port.

bl_vimram.c VIM RAM table definition and initialization

hw_gio.c Low level GIO driver

hw_gio.h Prototypes for low level gio driver

hw_het.c Low level NHET driver

hw_het.h Prototypes for low level NHET driver

hw_interrupt_handler.c Define the INT handlers

hw_pinmux.c Function for define the pinmux

3|Page

Application Note Using the Hercules UART Boot Loader

hw_pinmux.h Prototypes for pinmux functions

hw_sci.c Low level SCI driver

hw_sci.h Prototypes for low level SCI driver
hw_system.c Initialize system registers and PLL
bl_ymodem.c Function for define the ymodem protocol
bl_ymodem.h Prototype define the variables and functions
startup_eabi.c Global variables initialization
sys_intvecs.asm Interrupt vectors

Sys_svc.asm SW INT routines

2. Software Coding and Compilation

e The bootloader code is implemented in C, ARM Cortex-R4F assembly coding is
used only when absolutely necessary. The IDE is TI CCS5.2.1.

e The bootloader is compiled in the 32-BIT ARM mode.

e The bootloader is compiled and linked with the TI TMS470 code generation tools
V 4.9.5.

e The maximum size of the bootloader executable is less than 32KB (Size of the 1°
sector flash on RM48 and TMS570LS31x devices).

3. On Reset

On reset, the MCU enters in supervisor mode and starts executing the bootloader.
The interrupt vectors are setup as follows:

Table 2, Vector Table in CAN Boot Loader

Offset | Vector Action
0x00 Reset Vector Branch to entry point of bootloader (c_int00)
0x04 Undefined Instruction Branch to application vector table
Interrupt
0x08 Software Interrupt Branch to application vector table
0x0C Abort (Prefetch) Interrupt Branch to application vector table
0x10 Abort (Data) Interrupt Branch to application vector table
0x14 Reserved Endless loop (branch to itself)
0x18 IRQ Interrupt Branch to VIM
0x1C FIQ Interrupt Branch to VIM

4|Page

Application Note Using the Hercules UART Boot Loader

4. During Bootloader Execution

During bootloader execution:

MCU operates in supervisor mode
MCU Clock is reconfigured and is maintained throughout the bootloader
execution.
o Clock Source: OSCIN = 16MHz
o System clock: HCLK = 160Mhz
o0 Peripheral clock: VCLK = 80 Mhz
No interrupts are used.
Fix point is used throughout the bootloader execution.
F021 API V1.5 executes in RAM
The SCI is configured as 115200, 8-N-1

5. MCU Initialization during Bootloader Execution

Operating Mode: supervisor mode
HCLK Frequency: OSCIN x 120 / 12
VCLK Frequency: VCLK = HCLK / 2
Peripheral Control: Peripherals enabled

SCI setup: The SCI/LIN is setup for SCI communication. The setup is 115200 8-
N-1

MCU do self-test, pbist, parity check at startup.

6. The Protocol Used in UART Bootloader

The bootloader is based on Ymodem protocol. The Ymodem protocol sends data in 1024-byte
blocks. Error detection is applied to data blocks transmitted to the RM48 internal RAM. This is
done through a comparison between the transmitted and received data. Blocks received
unsuccessfully are acknowledged with a NAK (Negative Acknowledgement). For more details
about the Ymodem protocol, please refer to the existing literature.

5|Page

Application Note Using the Hercules UART Boot Loader

START
Init Device

Pushbutton

Is pressed? Valid Flag?

YES

v
Initialize MCU
UART Y
| Swi
. witch to user
D|splay the application
main menu
Download/Upload
Or Execute the
application code

#1 #2 #3 #4 #5

v v v v v
Receive a Thransmit image Switch to user Sw HW

» . . >

binary file from internal flash application Version Info

\

|
«NO NO Goto Goto
Menu Menu

YES 'YES
Program the Write Data
Flash to File

Complete?

Complete?

Update Flag

Goto Main
Menu

Display the
name and size
of receiyed file

Goto‘Main
Menu

Figure 1, The FlowChart of UART Bootloader

6|Page

Application Note Using the Hercules UART Boot Loader

7. UART Bootloader Operation

The UART bootloader is built with CCSv5.x and loaded through the JTAG port into the

lower part of the program memory at 0x0000.

Application Code

0x00020000

UART Bootloader
Code

.intVector

0x00000000

Host System

Figure 2, The UART Bootloader Is Loaded Through The JTAG port

After HDK reset, the start-up code copies the Flash API of boot loader from flash to
SRAM, and execute the boot loader in Flash.

First, it will checks to see if the GPIO_A7 pin is pulled. If GPIO-A7 is pulled LOW, the
application code is forced to be updated. The GPIO pin check can be enabled with
ENABLE UPDATE_CHECK in the bl_config.h header file. On RM48 HDK, the push
button S1can toggle GPIO-A7.

Then, it will check the flag at 0x0007FFO. If the flag is a valid number (Ox5A5A5A5A),
the bootloader will jump to the application code at 0x00020000. If the flag is not the
valid number, it will configure the UART, then start to update the user application code
by calling UpdaterUart(). After all the application code is programmed successfully, the
flag is also updated.

The updating results in the following menu displayed in the HyperTerminal window.

7|Page

Application Note Using the Hercules UART Boot Loader

“& WQUITEST - HyperTerminal
File Edit Wiew Call Transfer Help

Hercules MCU RM&8 SPI/DCAN/UART BootlLoader
by 0J Wang, Safety MCU Application Team, qjwang@ti.com

================== Wain Menu ==========================
. Download Application Image To the RH48 Internal Flash
. Upload The Bpplication Image From the RM48 Internal Flash

1
2
3. Execute The Application Code
4. Get Bootloader VYersion

9

. Get Device Information

< >
Connected 0:05:47 Auka detect 115200 8-M-1

Figure 3, UART Bootloader Main Menu

1. Download the user application code to RM48 flash.

To download a binary file via HyperTerminal to the RM48 internal flash, follow the
procedure below:

e Press “1” on the keyboard to choose the menu “Download image to internal
Flash”

Then, in the Transfer menu, select “Send file...”

e In the Filename field, type the name and the path of the binary file to be sent.
e In the Protocol list, choose the Ymodem protocol,

e Click the “Send” button.

Following these steps, the bootloader loads the binary file into the RM48 internal
Flash. The bootloader will display the file name, and file size in the Hyperterminal
window.

8|Page

Application Note Using the Hercules UART Boot Loader

Application Code

0x00020000
FLAG
No Flag: 0xX5A5A5A5A
UART Q
User Application Code Loaded Through CAN Bootloader Co

.intVector T

0x00000000

Figure 4, The User Application Code Is Loaded Through The UART Bootloader.

2. Upload the application code from RM48 flash

To upload a copy of the internal Flash memory started from the user application
address, do as follows:

e Press 2 on the keyboard to select Upload image from the RM48 internal Flash
e Select Receive File in the Transfer menu.

e Choose the Directory of the binary file you want to create.

e From the Protocol list, select the Ymodem protocol.

e Click on the Receive button.

The file UploadedApplicationlmage.bin is uploaded to the directory you
defined in step 2.
3. Execute the application

Once the new application is downloaded successfully, press 3 on the keyboard to
select the Execute.

9|Page

Application Note Using the Hercules UART Boot Loader

Application Code

0x00020000
Valid Flag: Ox5A5A5A5,

FLAG

UART
Bootloader Code

.intVector

0x00000000

Figure 5, The UART Bootloader Jumps to Application Code

4. Get Bootloader SW Version

To get the SW version, press 4 on the keyboard to retrieve the SW version from
RM48 UAR bootloader.

5. Get the RM48 Device Information

To get the device information, press 5 on the keyboard to retrieve the device
information from RM48 UAR bootloader.

8. HyperTerminal Configuration

The bootloader requires a PC running HyperTerminal with the following settings:

10| Page

Application Note Using the Hercules UART Boot Loader

COM26 Properties

Port Settings

Bits per second: | 115200 v |
Diata bits: |a v|
Parity: | None v|

Stop tits: |1 v |

Elow control: | None v

[RBestore Defaultz]

[(]][Cancel] Apply

Figure 6, COM Port Properties

9. References

e Datasheet of RM48Lx50 16/32-Bit RISC Flash Microcontroller (SPNS174)
e F021 Flash API (V1.5, SPNU501A)

11| Page

