
SimpleLinkTM SDK RTOS Solutions

Todd Mullanix

TI-RTOS Apps Manager

Oct. 16, 2017

1

Agenda

Here’s the high-level view of what we will cover in this presentation:

1. SimpleLink SDK

2. When to use an RTOS

3. RTOS Options in SimpleLink SDK

1. TI-RTOS

2. FreeRTOS

3. POSIX

4. TI Drivers & RTOS

5. What is a Task and when to use one?

6. Resources

2

SimpleLink™ MCU platform

Wireless Network

Processor
Wireless Microcontrollers Microcontroller

Common software Unified toolchain & resources

3

SimpleLink™ MCU SDK

SDK Components

Drivers
• TI Drivers portable, feature-rich access to peripherals

• DriverLib hardware abstraction layer (HAL) access

for device specific optimization

• Support for TI Drivers without kernel coming soon

OS/Kernel
• Real-time Multi-tasking operating system

• POSIX compliant API enables use of a variety of

RTOS kernels – validated with TI-RTOS & FreeRTOS

Middleware
• Communication stacks

• Common libraries (i.e. graphics, CapTouch, FatFs)

Examples and documentation
• Large number of examples, documentation and

training make it easy to start developing applications

TI SimpleLink™ MCUs

T
I
S

im
p

le
L

in
k
™

 M
C

U
 S

D
K

DriverLib (HAL)

TI Drivers

OS

Kernel

E
X

A
M

P
L

E
S

SDK PLUG-INS

Customer Applications

D
e
li
v
e
re

d
 b

y
 T

I
R

e
s
o

u
rc

e
 E

x
p

lo
re

r

MSP432 CC2640R2F CC13xx CC3220

POSIX

Middleware

Graphi Graphics Graphics Sub-1GHz/802.15.4 Graphic BLE/WiFi

4

RTOS vs General Purpose Operating System

A real-time application has hard timing constraints. At a high level, an RTOS allows those

constraints to be met, while a General Purpose Operating System (e.g. Linux) does not.

Here is a brief highlight of the differences between the two operating systems.

5

Traits RTOS GPOS

Scheduling Efficient and Predictable Efficient but not predictable

Features Relatively simple Wider range

Latency Minimize More focused on maximizing throughput at

the expense of potential increased latency

Memory Model Generally Flat. Memory appears as

a single contiguous address space

Generally Paged. User vs kernel space

Size Small and very scalable Larger and less scalable

Booting Fast (e.g. <1ms) Not so fast

When to consider an RTOS

• The advantage of using an RTOS increase with application complexity

• Key considerations that influence how beneficial an RTOS would be include:

– Number of interrupts that require processing too complex for an ISR

– Number of different system functions the application must run

• Note that communication stacks often need to create one or more threads

– Size of the application

• Code re-use becomes more important as the application is large, as rewriting from scratch has too great a

schedule impact

6

of deferred

Interrupt sources

of system

functions
Code Reuse

1-2 3-5 >6 1-2 3-5 >6 Unimportant Important

Use RTOS? No Maybe Yes No Maybe Yes No Yes

Non-RTOS vs Bare-bones RTOS vs Full RTOS
Comparison between non-OS and RTOS execution structure.

7

Bare-bones RTOS non-RTOS RTOS with Tasking

main()

{

 init

 BIOS_start()

}

Idle loop

 loop with non

 real-time work

Hwi

 get buffer

 process it

 Log_print0()

Hwi

 get buffer

 process it

 printf()

main()

{

 init

 while(1) {

 non real-time

 }

}

main()

{

 init

 BIOS_start()

}

Idle loop

 loop with non

 real-time work

Hwi

 get buffer

 sem_post

taskB

 while(1) {

 sem_pend

 process

 }

taskA

 while(1) {

 sem_pend

 process

 }

Benefits of using an RTOS

• An RTOS helps manage complexity and creates a more maintainable and reusable

codebase

– The multithreading paradigm encourages a compartmentalized design

– The priority-based preemptive scheduling paradigm enables new system functions to be

added without affected the response to the most critical real-time events

– RTOS offerings are designed to work with many applications and naturally scale as an

application evolves

• A custom scheduler or loop will likely need on-going enhancement

– An RTOS and its associated drivers abstract away the HW specifics and inherently encourage

a more portable design

• Note that a ‘No OS’ application using the SimpleLink SDK can gain much of this benefit by

using TI drivers

8

POSIX vs. RTOS

• POSIX is an IEEE industry API

standard for OS compatibility

• The SDK’s POSIX APIs sit on top

of TI-RTOS (or FreeRTOS)

• TI-RTOS APIs can be used

along with POSIX APIs

• Not all the threading features of

the RTOS are exposed with

the POSIX APIs

• POSIX does not include ISR

support

• Note: TI Drivers are not part of

this since they are RTOS-agnostic

9

Debug &

Analysis:
Logging,

diagnostics,

Hooks, stack

checking,

exception

management

Device-specific services: Interrupt and

power management, timers, real-time clock

Threading:
Tasks,

Software

Interrupts,

Clock threads,

IDLE Loop

IPCs:
Events,

Mailboxes,

Semaphores,

Gates

Memory

Managers:
Heap, fixed-

sized buffers

POSIX malloc

Both RTOS kernels (and No OS) have full SDK entitlement

10

SDK Feature TI-RTOS FreeRTOS No RTOS

Examples
Yes Yes Yes, about 75% of total. Multithreading

applications not supported

Drivers (incl. network stacks) Yes Yes Yes

Board initialization Yes Yes Yes

Power management Yes Yes Yes

CCS support Yes Yes Yes

IAR support Yes Yes Yes

GCC support Yes Yes Yes

RTOS support by SimpleLink MCU family

11

MCU TI-RTOS FreeRTOS No OS

CC3220 Yes Yes Yes

MSP432 Yes Yes Yes

CC13xx Yes, kernel in ROM No Yes

CC26xx Yes, kernel in ROM No Yes

• TI-RTOS is included in SimpleLink SDK

• FreeRTOS kernel must be downloaded separately from: …

– Note that FreeRTOS DPL and POSIX threads API layer is included in SimpleLink SDK

TI-RTOS, FreeRTOS business considerations

12

TI-RTOS

• Cost: OS and associated OS-

aware tools are free

• License: Open Source (BSD)

• Support: Kernel and associated

tools are supported directly by TI

• Above also apply to TI’s ‘No OS’

solution

FreeRTOS

• Cost: OS is free. Associated OS-

aware tools may require cost.

• License: Open Source (modified

GPL v2). Exception allows

customers not to ship the rest of

their application source code.

• Support: Kernel supported by

FreeRTOS.org. Associated tools

may require support agreements

with appropriate third-parties

RTOS configuration

13

TI-RTOS

• Configuration is done via a

Javascript .cfg file

• Kernel then built by xdctools and

user’s development tools

FreeRTOS

• Configuration is done via .h file

• Kernel is then built with user’s

development tools

• SimpleLink SDK provides ‘canned’ configurations for FreeRTOS and TI-RTOS

– These are set up in ‘kernel’ projects that are then imported to an actual CCS or IAR project for

an example or the customer’s application

• Having the ‘kernel’ project importation approach allows the kernel configuration to be

managed in a single location by the selected OS expert

– In the case of TI-RTOS, the other application developers don’t see .cfg files or .xdc tools

• These kernel project configurations will be referred to as a ‘build’ going forward

RTOS Support in the SimpleLink SDK

Device Header Files

Hardware Abstraction Layer

(formerly DriverLib)

Drivers

TI Drivers API

Driver Porting

Layer
POSIX (applicable subset)

Middleware (e.g. BLE Stack)

Examples

BSP

TI-RTOS FreeRTOS

Common Drivers:

UART, SPI, I2C, …

Device-specific

Drivers: RF, Wi-Fi, …

Power

Manager
No OS

Thread Types

15

P
ri

o
ri

ty

Hwi
Hardware Interrupts

 Hardware event triggers Hwi to run
 BIOS handles context save/restore, nesting
 Hwi triggers follow-up processing
 Depending device, priorities maybe configurable

Swi
Software Interrupts

 Software posts Swi to run
 Performs Hwi ‘follow-up’ activity (process data)
 Up to 32 priority levels (16 on C28x/MSP430)

Task
Tasks

 Usually enabled to run by posting a ‘semaphore’
 Designed to run concurrently – blocks when waiting for data
 Up to 32 priority levels (16 on C28x/MSP430/55x)

Idle
Background

 Runs as an infinite while(1) loop
 Users can assign multiple functions to Idle
 Single priority level

Typical Task

Here is a typical Task function. Tasks generally

loop on some condition and “wait” for something

to occur.

The “waiting” is generally a blocking call that

does not use the CPU and allows other threads

to execute.

Here are typical blocking calls that

a task uses:

– Semaphore_pend

– Mailbox_pend

– Event_pend

– Driver APIs (e.g. UART_read or I2C_transfer)

– Stacks (e.g. recv, read)

– Task_sleep

16

Void taskFxn(Arg arg0, Arg arg1)

{

 /* Prolog */

 while (‘condition’) {

 /*

 * Block waiting for

 * notification/data

 * (e.g Semaphore_pend).

 */

 /* Process */

 }

 /* Epilog */

}

Interrupt vs Task

A common question is whether to use a Interrupt or Task? It’s really up to the

application writer.

Tasks are generally better when dealing with drivers and middleware stacks (e.g.

networking stack, BLE stack, etc.).
17

ISR unblock

Task States

18

The highest priority task (call it TaskA) runs until

- A higher priority thread (Task, Swi or Hwi) becomes ready. The task (TaskA) moves to the

ready/preempted state and the higher priority thread runs.

- That task becomes blocked (e.g. calls Task_sleep() or Semaphore_pend()). Then the

new highest priority task that is ready will run.

- The task terminates.

Here is a pictorial view

Task Stacks

Each Task has it’s own unique stack. This is required since they must maintain their state.

Items on the stack includes local variables, registers and return addresses.

When the task is created, the user can specify the stack size and supply the actual stack.

#define TASKSTACKSIZE 512

Char taskStack[TASKSTACKSIZE];

Task_Params_init(&taskParams);

taskParams.stackSize = TASKSTACKSIZE;

taskParams.stack = &task1Stack;

Task_construct(&taskStruct, (Task_FuncPtr)myTask, &taskParams, &eb);

Here’s a good video/presentation on how to manage your task stacks:

https://training.ti.com/debugging-common-application-issues-ti-rtos

19

https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos

Task Priorities

Task priorities range from -1 to Task.numPriorities (specified in the

TI-RTOS configuration file). Where

-1 is for inactive tasks

0 is reserved for the Idle Task

A lower values means the task is a lower priority.

At start-up (e.g. when BIOS_start() is called), the highest priority task runs first*. If

there are multiple tasks with the same priority, the order of creation dictates the order.

Once the system is running, the highest priority task runs*. If there are multiple tasks with

the same priority, the one that became ready first runs.

The fact that tasks of the same priority cannot be running at the same time can be used as a

simple mutual exclusion.

* After any Hwi or Swi that is ready

20

Task Priorities Startup

Let’s look at an application with three tasks the same priority and one task with a higher

priority. Note the start-up order of execution of the tasks with the same priority. The first one

created in the .cfg (MidA) runs before the other Mid tasks. Once it blocks, MidB runs.

– MidA: created first in .cfg file priority 4

– MidB: created second in .cfg file priority 4

– MidC: created first in main() priority 4

– High: created second in main() priority 8

21

High

MidC

MidB

MidA

Idle

Running

Blocked

Preempted

Time

P
ri
o

ri
ty

BIOS_start

Ready

Task Communication: Mailboxes

A common use-case for a task is to centralize a functionality into one location. For example, a task

could be used to update an LCD display. Other tasks could send a Mailbox message to the LCD

Task.

Mailbox is copied based. For large buffers, it common to pass the address of buffer instead of the

content. 22

Void lcdTask(Arg arg0, Arg arg1)

{

 MyMsg msg;

 initLCD()

 while (true) {

 Mailbox_pend(mailboxLCD, &msg

 BIOS_WAIT_FOREVER);

 updateLCD(msg);

 }

}

Void taskA(Arg arg0, Arg arg1)

{

 MyMsg msg;

 while(true) {

 …

 msg.text = “Please select”

 msg.duration = 5;

 msg.color = BLUE;

 Mailbox_post(mailboxLCD, &msg,

 BIOS_WAIT_FOREVER);

 }

}

Task Communication: Mailboxes

Could you use Mailbox from an ISR?

23

Void lcdTask(Arg arg0, Arg arg1)

{

 MyMsg msg;

 initLCD()

 while (true) {

 Mailbox_pend(mailboxLCD, &msg

 BIOS_WAIT_FOREVER);

 updateLCD(msg);

 }

}

Void myISR(Arg arg0)

{

 MyMsg msg;

 msg.text = “Please select”

 msg.duration = 5;

 msg.color = BLUE;

 rc = Mailbox_post(mailboxLCD, &msg, 0);

 if (rc == FALSE){

 // Mailbox was full

 // handle accordingly…

}

Yes! You just need to use a zero timeout.

Task Communication: Wait on Multiple

A task can wait on multiple things with the Event module. The following is a simplified copy

of the “event” example in the SimpleLink SDK.

24

Void readertask(UArg arg0, UArg arg1) {

 MsgObj msg;

 UInt posted;

 for (;;) {

 posted = Event_pend(evtHandle,

 Event_Id_00 + Event_Id_01,

 Event_Id_02,

 TIMEOUT);

 if (posted == 0) {

 continue;//expired

 }

 if ((posted & Event_Id_00) &&

 (posted & Event_Id_01)) {

 // both event and sem were posted

 }

 if (posted & Event_Id_02) {

 // Msg in Mailbox

Void clk0Fxn(UArg arg0){

 Event_post(evtHandle, Event_Id_00);

}

Void clk1Fxn(UArg arg0){

 // this sem tied to Event_Id_01

 Semaphore_post(semHandle);

}

Void writertask(UArg arg0, UArg arg1){

 MsgObj msg;

 while(true) {

 msg.id = i;

 msg.val = i + 'a';

 Mailbox_post(mbxHandle, &msg,

 TIMEOUT);

 } // mailbox tied to Event_Id_02

}

RTOS footprint benchmarks – MSP432

25

Application
Flash

(code)

RAM

(data)

HWI

stack

peak

Task Stack

Peak
Free

Heap

Space temp console

Portable POSIX TI-RTOS 26249 36886 456 600 576 30528

Portable POSIX FreeRTOS 26820 37424

Portable Native TI-RTOS 22485 36782 440 568 496 30688

Portable Native FreeRTOS 23300 37392

• Uses SimpleLink MSP432 SDK 1.30.00 CCA, release build

• RAM usage includes Task and System Stacks and 32KB heap

• The FreeRTOS release build includes asserts enabled, which TI-RTOS lacks in its release build.

This inflates the FreeRTOS numbers by 1620.

Breaking down the ‘RTOS overhead’

26

Component .text .const .cinit .resetVecs Total

TI-RTOS 9882 982 0 60 10924

POSIX API layer 1528 0 0 0 1528

C RTS 1764 96 0 0 1860

Drivers 8590 177 0 0 8857

‘memory holes’ 274 0 7 0 281

Application 1536 676 577 0 2789

Total 23674 1931 584 60 26249

• Detailed breakdown of Portable POSIX TI-RTOS application

• Note total POSIX overhead is greater because of other dependencies

• Includes UART, I2C, and GPIO

SimpleLink CC26xx SDK 1.30.00, CCS Codegen. Release kernel builds

Note: RAM usage includes Task stack, System stack and 4K Heap for all cases.

Benchmarks

Application Flash

(code)

RAM

(data)

Hwi Stack

Peak

Task Stack Peaks Free Heap

 Space
temp console

Portable POSIX TI-RTOS 21564 8206 448 408 540 2120

Portable Native TI-RTOS 19260 8110 392 360 444 2280

27

Flash Usage on CC2640R2

28

Application .text .const .cinit .resetVecs .ccfg Total

TI-RTOS (includes pthreads) 3850 899 200 0 0 4949

Drivers 11990 328 0 0 0 12318

RTS 1702 0 0 0 0 1702

Holes 10 5 3 0 0 18

Application 1540 484 405 60 88 2577

Total 19092 1716 608 60 88 21564

• Based on Portable POSIX TI-RTOS application

• TI-RTOS kernel is mostly in ROM, hence the lower .text footprint

SimpleLink Academy

SimpleLink Academy at http://dev.ti.com/tirex/#/ offers hands-on lab/quizzes/videos/etc. for

many components in the SimpleLink SDKs.

29

http://dev.ti.com/tirex/#/

Additional Resources (outside of SDK)

• TI-RTOS
– 2-Day Workshop: https://training.ti.com/ti-rtos-workshop-series

– Numerous topics on http://processors.wiki.ti.com/index.php/Category:TI-RTOS

• FreeRTOS
– http://www.freertos.org/

• POSIX
– Your favorite search engine…

• TI Online Support
– https://e2e.ti.com/ Actively maintained by TI engineers.

30

https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
http://processors.wiki.ti.com/index.php/Category:TI-RTOS
http://processors.wiki.ti.com/index.php/Category:TI-RTOS
http://processors.wiki.ti.com/index.php/Category:TI-RTOS
http://www.freertos.org/
https://e2e.ti.com/

31

