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Denislav Petkov 
Applications Engineer, APP-BSR-CCP-Power Modules 

• Career 

– Electrical Engineering degree from Santa Clara University 

– Involved with power applications since 2005 

 

• Expertise 

– As an applications engineer in the power modules team I am 

responsible for customer and FAE support, writing datasheets 

and application notes, new product development, and creating 

training presentations and field collateral.   

 

 

 

 

2 



Detailed agenda 
• Understanding the Noise Sources 

– DC/DC converter operation overview 

– Noise components (high frequency vs low frequency)  

– Relevant parasitic elements in the circuit 

• Measuring Noise 

– What is “real” vs “fake” noise 

– Examples of measurement techniques (good vs. bad) 

• Reducing Noise (high frequency and low frequency) 

– Layout techniques and comparison (good vs. bad) 

– Passive component selection and placement 

– Filtering techniques and examples 
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Understanding the sources of noise 
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The buck regulator 
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Output ripple and noise (example) 
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“LF” Ripple at Buck switching frequency 

“HF” Noise at 100’s of MHz 
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LF ripple origin 

• Result of the inductor ripple current and output capacitor impedance 
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LF ripple with different capacitor types 

“47µF” Capacitor  
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HF noise origin 

• Who is generating the noise? 

– High di/dt current loop and any inductance in its path 

– Noise appears on the SW node as ringing at each edge 

 

 

 

 

 

 

 

 

 

 

• How is the ringing coupled to the output? 

– Parasitic capacitance 

• Across the inductor (could be a few 10’s of pF) 

• Between overlapping copper areas on the PCB 
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HF noise vs inductor parasitic capacitance 

Inductor A 
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Measuring noise 
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Measuring noise 

• Before we explore ways/tools for reducing the output noise, let’s make sure we 

are measuring it properly.  

• Improper measurement techniques can results in exaggerated output noise. 

• Exaggerated output noise measurements can result in overly conservative 

“methods” for fixing it. 

• It is important to know the “real” amount of noise before we start reducing it.  
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BAD Measurement (example) 
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Improved measurement (example) 
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Comparison 
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~2x difference in measured noise! 

 

The circuit is exactly the same.  

The difference is the measurement technique. 

 

~200mV pk-pk 

~100mV pk-pk 
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Making a 1x probe (example) 

• Short coax cable soldered 

to the output 

• 0.1µF coupling capacitor 

• 50Ω termination 
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• Probe frequency response 

• High pass filter with cutoff frequency 

at 31.8kHz. OK for most modern 

switchers with loaded output.  

• Probe OK for 250MHz scope BW 
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Advantage of 1x probe 
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Fuzzy due to the scope vertical 

sensitivity limitations of a 10x probe. 

Cannot zoom below 10mV/div 

 

Cleaner reading 

Can zoom to 1mV/div for sub 1mV 

measurements 
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1x 
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Reducing noise 
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Reducing noise - toolbox 

• LF Ripple 

– Inductor vs Switching Frequency 

– Output capacitor  

– Post filtering 

• HF Noise 

– Component placement 

– Component selection (with attention to packaging parasitics) 

– PCB routing and stack-up 

– Filtering 

• Input filters (conducted EMI) 

• Output filters (small HF capacitors) 
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LF ripple reduction 
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LF ripple reduction 
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How do we reduce this ripple? 
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LF ripple – switching frequency and inductance 

• We understand that the LF ripple is a function of the inductor ripple current and 

the output capacitor(s) impedance.  

• We can: 

– Lower the ripple current 

• For the same inductor, increase the switching frequency 

– Tradeoff: increased switching losses 

• For the same switching frequency, increase the inductance 

– Tradeoff: increased solution size 

– Lower the capacitor impedance 

• Use low ESR and low ESL capacitors 

– Tradeoff: perhaps cost 

• Use multiple capacitors in parallel 

– Tradeoff: cost, board space 
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LF ripple – second stage filter 

Buck with a second-stage LC filter 

• Certain applications, such as test and measurement, are sensitive to the voltage ripple and routinely 

require very low output voltage ripple, such as 0.1%. 

• To attain this level of attenuation it is required to add another pair of L and C to the output of a buck 

regulator as shown in the image below. 
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Second stage filter and output sense 

• Common concern is how to position the 2nd stage filter – before or after the feedback (VOUT) sense 

point.  

• Assumption: The second stage filter should be placed after the VOUT sensing point to avoid 

instabilities. 

• Reality: Regardless of the connection the filter still interacts with the original output capacitance and 

there is resonance created. 

• Connecting the filter before the VOUT sense: 

– allows us to account for it in the stability review 

– there is no load regulation penalty – resistive drop is compensated by the sense.  
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Second stage filter – component calculations 

L1

C1 C2

L2

RoVIN

S1

S2

Buck with a second-stage LC filter 

 

• Improper design of the second stage filter could make the converter unstable. 

• Two objectives 

1. Attenuation  

2. Loop stability 

 

60dB 40dB 
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Second stage filter – component calculations 
• To ensure low impedance and to make sure the filter doesn’t affect the loop substantially, the ratio of first stage (C1) to second 

stage capacitance (C2) is  set to 1:10 

• The value of the secondary inductor is then chosen for the remainder 40dB attenuation. 
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Second stage filter – Q and damping 
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VSW
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Placing the resistor parallel to the inductor damps the Q 

High Q results in low phase margin 
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• There may be a need to add a damping resistor in parallel with the inductor 
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LMZM23601 with a second-stage filter 

• LMZM23601 with second stage filter. 
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Filter Calculator with 

Equations 
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Second stage filter - results 

Example output voltage ripple attenuation 

Bode plot with and without the second-stage filter 

0.7mV/5V(0.014%) 

• LMZM23601 with second stage filter. 

Attenuation Stability 

Understanding → Measuring → Reducing Noise 

PM 

No Filter 

PM  

With Filter 

Gain 

No Filter 

Gain 

With Filter 



HF noise reduction 
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HF noise reduction 
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How do we reduce these HF spikes? 
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HF noise reduction – component placement 

• First step is to optimize (minimize) the area of the high di/dt loop. 

• For Buck, the high di/dt loop is formed by the input capacitor and the power 

MOSFETs (switches). 

– Input capacitor as close as possible to IC = Smaller loop area 

– Smaller loop area = Lower ringing on SW node 

– Lower ringing on SW node = Lower output noise 

• So first step = optimize input capacitor placement for Buck  
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HF noise reduction – component placement 

• For a Buck converter… 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 

– The INPUT cap position affects the OUTPUT noise! 
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• Buck Regulator comparison with Cin location  

• 12V input, 3.3V output, 2A Buck 
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• Buck Regulator comparison with Cin location (2 times smaller loop area) 

• 12V input, 3.3V output, 2A Buck 
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• Place bypass capacitors on same side of board  as 
component being decoupled 

• Locate as close to pin as possible 

• Keep trace width thick and short 
BAD!!!
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Bypass capacitor routing - example 



HF noise reduction – board layout tricks 
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Top Layer Mid 1 Layer 

VIN and VOUT Routing 

Mid 2 Layer Bot. Layer 

GND Plane Signal Layer GND Plane 

GND Plane GND Plane 
VIN and VOUT Routing 

and signals 
GND Plane 

Top Layer Mid 1 Layer Mid 2 Layer Bot. Layer 

• Same BOM! 

• Different stackup 

• Shielding the input (noisy) and 

output lines 

• Fail by ~5dB vs Pass by ~2dB 

Shielding 
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HF noise reduction – board layout tricks 
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HF noise reduction – board layout tricks 
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Via Stitching Perimeter Fencing 

Power I/O 

Fencing 
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Conducted EMI filter and radiated EMI performance 

Understanding → Measuring → Reducing Noise 

Input Filter 

Default 

configuration 



HF noise reduction – package level parasitics 

• Some packaging options are better for 

reducing inductance in the high di/dt 

loop.  

 

• Power module packages can integrate 

a high frequency bypass capacitor. 

 

• IC Pinout and Construction Matters 
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HF noise reduction – DC-DC power modules save you layout troubles 

• Reducing the high di/dt loop area  – integrated input capacitance. 

• Reducing the high dv/dt node area – integrated L and smaller switch node. 
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Discrete solution without optimized layout DC-DC Power Module 
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HF noise reduction – proper pinout 

• To minimize the di/dt loop, it is best if the Buck regulator has VIN and PGND 

pins next to each other. This allow for placing the input capacitor as close as 

possible to the IC.  
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IC package construction can help 

• Bond wire vs Copper pillar interconnects 
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HF filtering 

• After careful input capacitor placement and layout there will be some left over 

high frequency noise – we cannot completely eliminate parasitic L and C. 

 

 

 

 

 

 

 

• How can we reduce it? 
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HF filtering 

• Which one is better? 
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HF filtering 
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10µF 

10µF + 0.1µF + 0.1µF + 0.1µF 

10µF + 1.0µF + 0.1µF + 0.01µF 
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SIMetrix schematic example: 



HF filtering with wrong capacitor (example) 
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HF filtering - utilizing PCB parasitic inductance 
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HF filtering – strategy 
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• Leave footprint in the layout for 2-3 HF filter capacitors. 

• Measure the ringing frequency and pick a capacitor with an impedance notch 

close to, but lower than that frequency. 

• Use multiple capacitors of the same value in parallel to avoid new peaks in the 

impedance curve. 
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HF filtering – pick the correct capacitor 
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• Measure your 

caps 

• Mark up your 

capacitor kit! 

• This data may 

also be 

available from 

the capacitor 

vendor. 
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Summary 

• Understanding the Noise Sources 

 

• Measuring Noise 

 

• Reducing Noise (high frequency and low frequency) 
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Resources 

• Application Notes and Blogs on EMI and Noise Reduction 
– Simple Success With Conducted EMI From DCDC Converters  

– Simplify low EMI design with power modules  

– Wiki on Understanding, measuring, and reducing output voltage ripple  

– Design a second-stage filter for noise sensitive applications  

– PCB layout techniques for low noise power designs (in progress) 
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http://www.ti.com/lit/an/snva489c/snva489c.pdf
http://www.ti.com/lit/wp/slyy123/slyy123.pdf
https://e2e.ti.com/support/power_management/simple_switcher/w/simple_switcher_wiki/2243.understanding-measuring-and-reducing-output-voltage-ripple
https://e2e.ti.com/support/power_management/simple_switcher/w/simple_switcher_wiki/2243.understanding-measuring-and-reducing-output-voltage-ripple
https://e2e.ti.com/blogs_/b/powerhouse/archive/2018/01/18/design-a-second-stage-filter-for-sensitive-applications
https://e2e.ti.com/blogs_/b/powerhouse/archive/2018/01/18/design-a-second-stage-filter-for-sensitive-applications
https://e2e.ti.com/blogs_/b/powerhouse/archive/2018/01/18/design-a-second-stage-filter-for-sensitive-applications

