

1

5

6

7

TVP5150AM1 VBI Quick Start

ABSTRACT

The TVP5150AM1 video decoder has an internal vertical data processor (VDP) that can be used to slice various VBI data services such as V-Chip, Teletext (WST, NABTS), closed captioning (CC), wide screen signaling (WSS), copy generation management system (CGMS), video program system (VPS), electronic program guide (EPG or Gemstar), program delivery control (PDC) and vertical interval time code (VITC). This application report provides an introduction to the VBI data slicing capabilities of the TVP5150AM1 and focuses on configuring the TVP5150AM1 for the more commonly used VBI data services.

Contents

Introduction

2	VDP Configuration RAW	
3	Line Mode Registers	6
4	Sliced Data Retrieval	
5	Managing Data Retrieval	7
6	FIFO Access	
7	Ancillary Data	9
8	Full-Field Mode	
9	VBI Raw Data Mode	0
Appen	dix A Subset of the TVP5150AM1 VDP I ² C Registers	2
Appen		
Appen	dix C Example TVP5150AM1 C Code	1
Appen	dix D VBI Raw Data I ² C Registers	2
	List of Figures	
1	The VDP Configuration RAM is Loaded Prior to Line Mode Register Setup	3
2	Example Load of WSS/CGMS Configuration RAM	5
3	Line Mode Setup for WSS/CGMS	6
4	Example WSS/CGMS Data Retrieval	7

1	Supported Data Services	2
	Configuration RAM Recommended Settings	
3	Line Mode Configuration Bits for Supported Modes	6
4	Dedicated VDP Data Registers	7
5	Ancillary Data Header	ç
6	525-Line Raw Data Setup to Include Line 21	10

Line 21 Closed Caption ITU-R BT.656 Digital Output Capture with YUV Samples PresentRaw Data

Line 21 Closed Caption ITU-R BT.656 Digital Output Capture in Raw Data ModeUV (chroma) data are replaced with Y (luma) data

List of Tables

Introduction www.ti.com

1 Introduction

The TVP5150AM1 video decoder has an internal Vertical Data Processor (VDP) that can be used to slice various VBI data services such as V-Chip, Teletext (WST, NABTS), Closed Captioning (CC), Wide Screen Signaling (WSS), Copy Generation Management System (CGMS), Video Program System (VPS), Electronic Program Guide (EPG or Gemstar), Program Delivery Control (PDC), and Vertical Interval Time Code (VITC). These data services are typically transmitted during the vertical blanking interval of the video frame. Table 1 provides a summary of the supported data services including the line numbers on which they are typically transmitted.

VBI System Standard **Line Number Number of Bytes** Specification Teletext WST A SECAM 6-23 (field 1, 2) ITU-R BT 653-3 Teletext WST B 43 ITU-R BT 653-3 PAL 6-22 (field 1, 2) Teletext NABTS C NTSC-M 10-21 (field 1, 2) 34 ITU-R BT 653-3 Teletext NABTS D NTSC-J 10-21 (field 1, 2) 35 ITU-R BT 653-3 Closed Caption PAL 22 (field 1, 2) 2 EIA-608-D 21 (field 1, 2) Closed Caption NTSC EIA-608-D 2 WSS/CGMS PAL 23 (field 1, 2) 14 bits ITU-R BT 1119-1 WSS/CGMS NTSC 20 (field 1, 2) 20 bits IEC 61880 VITC PAL SMPTE 12M-1999 6-22 9 VITC NTSC SMPTE 12M-1999 10-20 9 VPS (PDC) PAL ETS 300 231 16 13 NTSC 21 (field 2) V-Chip 2 EIA-744-A Gemstar 1x **NTSC** 2 Gemstar 2x **NTSC** 5 with frame byte Programmable User Any Programmable

Table 1. Supported Data Services

A host or backend receiver can retrieve the sliced data using one of three methods:

- I²C access of dedicated Closed Caption, WSS, CGMS, VPS, Gemstar, VITC, and V-Chip data registers.
- I²C access of an internal 512-byte FIFO used primarily for high-bandwidth data services such as full-field teletext.
- As ITU-R BT.656 ancillary data, inserted by the TVP5150AM1 in the data stream during the horizontal blanking interval.

Note: This document will focus primarily on the more commonly used dedicated I²C data registers.

Prior to accessing the VBI sliced data, the TVP5150AM1 must be configured for the desired VBI data service. This includes loading of the VDP Configuration RAM (C-RAM) and the Line Mode registers that are used to enable various data services. Detailed descriptions of the VBI related I²C registers are shown in Appendix A.

www.ti.com Introduction

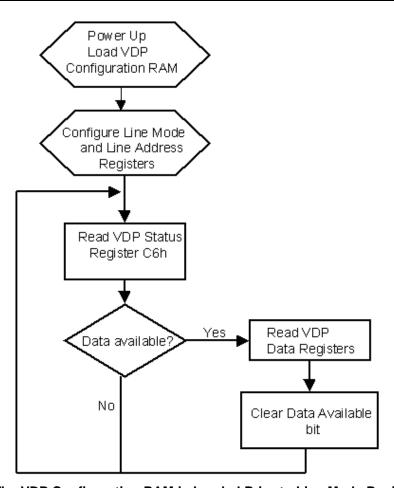


Figure 1. The VDP Configuration RAM is Loaded Prior to Line Mode Register Setup

VDP Configuration RAM www.ti.com

2 VDP Configuration RAM

The first step in configuring the TVP5150AM1 for VBI data slicing is to load the VDP Configuration RAM (C-RAM). The C-RAM defines the data slicing modes for the various data services, with each mode having its own unique RAM address and 16 byte block of memory. Table 2 shows the recommended setup values for the various data services that are supported. Prior to loading the C-RAM, the Line Mode registers must all be programmed with a value of FFh to avoid conflict between the VDP and microprocessor during the load process. Full field mode must also be disabled in I²C register CFh.

Index **Address** 1 2 3 4 5 7 8 В С D Ε F Reserved 000h Reserved WST SECAM 010h AΑ AA FF FF 2E B4 OE 0 7 0 10 0 E7 20 A6 E4 Reserved 020h Reserved WST PAL B 030h AA AA FF FF 27 2E 20 AB A4 72 10 0 7 0 10 0 Reserved 040h Reserved WST PAL C 10 050h AA AA FF FF E7 2E 20 22 A4 98 0D 0 0 0 0 Reserved 060h Reserved WST NTSC 070h 0 AA AA FF FF 27 2E 20 23 63 93 0D 0 0 0 10 Reserved 080h Reserved NABTS, NTSC 090h AΑ FF FF E7 2E 93 0D 0 7 0 15 0 AA 20 Α2 63 0A0h Reserved Reserved NABTS, NTSC-J 0B0h FF FF 2E 93 0D 0 7 10 0 AA AA Α7 20 АЗ 63 0 Reserved 0C0h Reserved CC, PAL/SECAM 0D0h AA 2A FF 3F 04 51 6E 02 Α4 7B 09 0 0 0 27 0 Reserved 0E0h Reserved 0F0h CC, NTSC AA 2A FF 3F 04 51 6E 02 63 8C 09 0 0 0 27 0 Reserved 100h Reserved WSS/CGMS, PAL/SECAM 110h 5B 55 C5 FF 0 71 6E 42 A4 CD 0F 0 0 0 ЗА 0 Reserved 120h Reserved 63 WSS/CGMS, NTSC C 130h 38 0 3F 0 0 71 6E 43 7C 80 0 0 0 39 0 Reserved 140h Reserved VITC, PAL/SECAM 150h 0 0 0 0 0 8F 6D 49 A4 85 80 0 0 0 4C 0 Reserved 160h Reserved VITC, NTSC 170h 0 0 0 0 0 8F 6D 49 63 94 08 0 0 0 4C 0 Reserved 180h Reserved VPS, PAL 190h AA FF 8D DA 0B AA FF BA CE 2B A4 0 7 0 60 0 Reserved 1A0h Reserved Gemstar Custom 1 1B0h 99 99 FF FF 05 51 6E 05 63 18 13 80

Table 2. Configuration RAM Recommended Settings

The C-RAM is accessed through the use of three I²C registers (C3h-C5h). Registers C4h and C5h must be programmed with the 9-bit starting address of the block of C-RAM to be programmed. I²C read and write operations are then performed indirectly using register C3h. The C-RAM address is automatically incremented following each I²C transaction. Only the portion of the C-RAM that includes the data service to be used needs to be programmed. If WSS/CGMS for NTSC is the only desired data service, for example, only the 16 bytes starting at C-RAM address 130h need to be programmed. Figure 2 shows example C code for loading the WSS/CGMS C-RAM.

www.ti.com

Configuration RAM I²C Access Registers

Address	C3h-C5h								
Address	7	6	5	4	3	2	1	0	
C3h		Configuration data							
C4h		RAM address [7:0]							
C5h		Reserved							

Example: (Write 2 data bytes starting at C-RAM address 130h).

- 1. Set C-RAM starting address.
 - (a) Write 30h to register C4h (C-RAM address [7:0]).
 - (b) Write 01h to register C5h (C-RAM address [8]).
- 2. Write the two bytes (38h and 00h)
 - (a) Write 38h to register C3h. Write first byte to C-RAM address 130h.
 - (b) Write 00h to register C3h. Write next byte to C-RAM address 131h.

```
// TVP5150AM1 NTSC WSS/CGMS C-RAM Load Example
#define TVP5150AM1 0xB8;
                                             // TVP5150AM1 main I2C address
byte I2C Data;
int CRAM_Address, count;
byte I2CData = \{0x14, 0x02\};
// recommended WSS/CGMS settings
\texttt{byte WSS\_ARRAY[]=\{0x38,0,0x3F,0,0,0x71,0x6E,0x43,0x63,0x7C,0x08,0,0,0,0x39,0\};}
I2C RegAddress = 0xD0;
                                            // starting address of Line Mode registers
I2C_Data = 0xFF;
For (count = 0; count < 44; count ++)
 I2CWriteByte(TVP5150AM1, I2C RegAddress, I2C Data); //write FFh to Line Mode
I2C RegAddress ++;
I2CWriteByte(TVP5150AM1, 0xCF, 0);
                                                   // disable full field mode
                                                // address of NTSC WSS/CGMS C-RAM block
CRAM\_Address = 0x130;
I2CWriteByte(TVP5150AM1, 0xC4, 0x30);
                                                  // load C4h with C-RAM address[7:0]
                                                  // load C5h with C-RAM address[8]
I2CWriteByte(TVP5150AM1, 0xC5, 0x01);
For (count = 0; count < 16; count++)
 I2CWriteByte(TVP5150AM1, 0xC3, WSS ARRAY[count]); // write 16 bytes of WSS/CGMS C-RAM
                                                   // data to register C3h.
```

Figure 2. Example Load of WSS/CGMS Configuration RAM

Line Mode Registers www.ti.com

3 Line Mode Registers

After the VDP Configuration RAM is loaded, the Line Mode Registers (D0h-FBh) must be properly configured for the desired VBI data service. Each register in this register bank is linked to a specific video line number and video field. Video lines 6 through 27 of both Field 1 and Field 2 are supported. For each desired data service, the proper mode configuration bits need to be loaded into the line mode register that is linked to the correct video line number. Additional data slicing options such as filtering, error correction, and FIFO routing are also available in the line mode registers. Unused line mode and line address registers must be programmed with FFh. A detailed description of these registers is shown in Appendix A.

The TVP5150AM1 VDP is based on an NTSC line numbering convention, resulting in a 3-line VDP offset relative to actual PAL line numbers. For PAL systems, the Line Mode register for line "N+3" must be used to configure a data service transmitted on line N of the input source. Figure 3 shows example C code for configuring WSS/CGMS data services for NTSC and PAL. Included in this example is an I²C write to the Pixel Alignment Registers (CBh-CCh), which define the horizontal position where data slicing begins. The value used (4Eh) is recommended for all data services.

Line Mode Register (D0h-FCh) Bits [3:0]	Name	Video Line Number	Description
0000b	WST SECAM	6-23 (field 1, 2)	Teletext, SECAM
0001b	WST PAL B	6-22 (field 1, 2)	Teletext, PAL, System B
0010b	WST PAL C	6-22 (field 1, 2)	Teletext, PAL, System C
0011b	WST, NTSC B	10-21 (field 1, 2)	Teletext, NTSC, System B
0100b	NABTS, NTSC C	10-21 (field 1, 2)	Teletext, NTSC, System C
0101b	NABTS, NTSC D	10-21 (field 1, 2)	Teletext, NTSC, System D (Japan)
0110b	CC, PAL/SECAM	22 (field 1, 2)	Closed caption PAL/SECAM
0111b	CC, NTSC	21 (field 1, 2)	Closed caption NTSC
1000b	WSS/CGMS, PAL/SECAM	23 (field 1, 2)	Wide-screen signal, PAL/SECAM
1001b	WSS/CGMS, NTSC	20 (field 1, 2)	Wide-screen signal, NTSC
1010b	VITC, PAL/SECAM	6-22	Vertical interval timecode, PAL/SECAM
1011b	VITC, NTSC	10-20	Vertical interval timecode, NTSC
1100b	VPS, PAL	16	Video program system, PAL
1101b	EPG/Gemstar		Electronic program guide - Custom mode
1110b	х	х	Reserved
1111b	Active Video	Active Video	Active video/full field

Table 3. Line Mode Configuration Bits for Supported Modes

```
// Example C Code for setting up WSS/CGMS Line Mode Registers
//
// Load C-RAM
//
// NTSC WSS/CGMS Line Mode setup for line 20 of both fields

I2CWriteByte(TVP5150AM1, 0xEC, 0x09); // line 20 field 1 (0xEC), mode bits = 0x09
I2CWriteByte(TVP5150AM1, 0xED, 0x09); // line 20 field 2 (0xED), mode bits = 0x09

I2CWriteByte(TVP5150AM1, 0xCB, 0x4E); // Set Pixel Alignment [7:0]to 0x4E
I2CWriteByte(TVP5150AM1, 0xCC, 0x00); // Set Pixel Alignment [9:8]to 0x00

// PAL WSS/CGMS Line Mode setup for line 23 (source input) of both fields.
// PAL line numbering has 3 line offset so the Line 26 line mode registers are used.

I2CWriteByte(TVP5150AM1, 0xF8, 0x08); // line 26 field 1 (0xF8), mode bits = 0x08
I2CWriteByte(TVP5150AM1, 0xF9, 0x08); // line 26 field 2 (0xF9), mode bits = 0x08

I2CWriteByte(TVP5150AM1, 0xCB, 0x4E); // Set Pixel Alignment [7:0]to 0x4E
I2CWriteByte(TVP5150AM1, 0xCC, 0x00); // Set Pixel Alignment [9:8]to 0x00
```

Figure 3. Line Mode Setup for WSS/CGMS

www.ti.com Sliced Data Retrieval

4 Sliced Data Retrieval

The TVP5150AM1 provides dedicated I²C registers (see Table 4) for the retrieval of sliced data. Due to higher bandwidth requirements, teletext data is stored in a 512-byte FIFO. With all other data services, sliced data can be automatically sent to the dedicated registers or to the FIFO depending on the line mode setup. The WSS/CGMS example in Figure 3 results in WSS/CGMS data being routed to the dedicated WSS/CGMS data registers.

Register Name	I ² C Address
VDP Closed Caption Data (field 1)	90h - 91h
VDP Closed Caption Data (field 2)	92h - 93h
VDP WSS/CGMS Data (field 1)	94h - 96h
VDP WSS/CGMS Data (field 2)	97h - 99h
VDP VPS (PAL) /Gemstar 2x (NTSC) Data	9Ah - A6h
VDP VITC Data	A7h - AFh

Table 4. Dedicated VDP Data Registers

The internal 512-byte FIFO is used primarily for high-bandwidth teletext acquisition but can also be used for capture of the other data services if enable in the Line Mode register. A header containing information about the sliced data precedes all sliced data that is routed to the FIFO. The FIFO can be directly accessed by the host at I²C address B0h. Bit 0 of the FIFO output control register (CDh) must be set to a logic1 to enable host access to the FIFO.

5 Managing Data Retrieval

The VDP Status Registers (C6h) can be used to determine if sliced data is available. Unmasked data available bits for the supported data services are available in this register.

VDP Status Register

Address C	6h						
7	6	5	4	3	2	1	0
FIFO full error	FIFO empty	TTX available	CC field 1 available	CC field 2 available	WSS/CGMS available	VPS/Gemstar 2x available	VITC available

A logic 1 indicates that sliced data is available. Once set, these bits need to be cleared after data retrieval. Writing a 1 to the appropriate bit(s) in this register clears the status bit. Figure 4 shows an example WSS/CGMS data retrieval.

Figure 4. Example WSS/CGMS Data Retrieval

FIFO Access www.ti.com

6 FIFO Access

The internal 512-byte FIFO is used primarily for high-bandwidth teletext acquisition but can also be used for capture of the other data services. The FIFO can be directly accessed by the host at I²C address B0h. Bit 0 of the VDP FIFO output control register (CDh) must be set to logic 1 to enable host access to the FIFO. A header containing information about the sliced data precedes all sliced data that is routed to the FIFO. A VDP FIFO Interrupt threshold register (C8h), FIFO word count register (C7h), and FIFO full/empty status bits (C6h) are available for managing FIFO data flow.

www.ti.com Ancillary Data

7 Ancillary Data

An option is available to enable transmission of sliced VBI data as ancillary data in the ITU-R BT.656 video data stream. In this mode, the sliced data is inserted on the Y[7:0] output terminals during the horizontal blanking interval. An 8-byte header containing information about the sliced data is also inserted in the data stream prior to the sliced data. The header includes a 00h, FFh, FFh preamble that identifies the data as VBI ancillary data, so the host or backend must be able to distinguish between this preamble and the ITU-R BT.656 embedded sync codes (FFh, 00h, 00h, E/SAV). The first header byte is inserted immediately following the EAV code during the horizontal blanking interval of the digital line where it occurred. The ancillary data header is summarized in Table 5.

The ancillary data mode is enabled by setting bit 6 in the appropriate line-mode register to a logic 1 and the host-access enable bit (bit 0) in register CDh to a logic 0. When the ancillary data mode is enabled in register CDh, sliced data is not routed to the internal 512-byte FIFO.

Bvte D7 (MSB) D6 D5 D4 D3 D2 D1 D0 (LSB) Description No. 0 Λ 0 0 Λ 0 n Λ 0 Ancillary data preamble 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 NEP ΕP DID2 DID1 DID0 Data ID (DID) 3 0 1 0 4 NEP ΕP F5 F4 F3 F2 F1 F0 Secondary data ID (SDID) 5 NEP FP N5 N4 N3 N2 N1 NΩ Number of 32 bit data (NN) 6 Video line # [7:0] Internal Data ID0 (IDD0) 0 0 Data error Match #1 Match #2 Video line # [9:8] Internal Data ID1 (IDD1) Data byte 8 1. Data 1st word 9 2 Data Data byte 10 3. Data Data byte 11 4. Data Data byte

Data byte

Data byte

Checksum

Fill byte

0

Nth word

Table 5. Ancillary Data Header

EP: Even parity for D0-D5
NEP: Negate even parity

0

...

4N + 7

DID: 91h: Sliced data from the vertical blanking interval of first field

O

53h: Sliced data from outside of the vertical blanking interval of first field55h: Sliced data from the vertical blanking interval of second field

0

97h: Sliced data from outside of the vertical blanking interval of second field

m-1. Data

m. Data

CS [7:0]

0

O

0

SDID: This field holds the data format taken from the line-mode register of the corresponding line.

NN: Number of Dwords beginning with byte 8 through 4N+7. Note that each Dword is 4 bytes.

IDID0: Transaction video line number [7:0]

0

IDID1: Bit 0/1: Transaction video line number [9:8]

Bit 2: Match 2 flag
Bit 3: Match 1 flag

Bit 4: Value = 1 if a single error was detected in the EDC block. Value = 0 if no error was detected.

CS: Sum of D0-D7 of 1.Data through last data byte.

Fill byte: Fill byte makes a multiple of 4 bytes from byte zero to last fill byte. Note: The number of bytes (m) varies depending on the VBI data service.

Full-Field Mode www.ti.com

8 Full-Field Mode

Some teletext services transmit data on multiple video lines occurring anywhere in the video field. The TVP5150AM1 provides a full-field mode which arms VDP slicing for all lines in the video field. When full-field mode is enabled, all video lines excluding those defined in the line-mode registers are sliced as specified in the VDP full-field mode register (FCh). The full-field mode register uses the same mode configuration format as the line-mode registers. Full-field mode is enabled by setting the full-field enable bit in register CFh to a logic 1. Sliced data is then retrieved by I²C FIFO access or as ancillary data in the ITU-R BT.656 data stream.

9 VBI Raw Data Mode

The TVP5150AM1 offers a VBI raw data mode for use in systems where VBI data slicing and processing is handled in the digital backend receiver instead of the video decoder. In this mode of operation, the decoders are configured to output raw 2× over-sampled luma data on the ITU-R BT.656 output during the defined VBLK (vertical blanking) interval. The raw, un-sliced A/D video data is transmitted during the active video portion of the line with chroma samples being replaced with the luma samples.

The default VBLK interval for Field 1 is defined as lines 1 through 20 for 525-line video formats and lines 623 through 23 for 625-line video formats. This interval may be adjusted to include additional lines. Support for NTSC line 21 closed caption data, for example, requires extension of the VBLK interval to include line 21.

The default VBLK interval for the TVP5150AM1 is defined as lines 1 through 20 for 525-line video formats and lines 623 through 23 for 625-line formats. The TVP5150AM1 VBLK interval can be adjusted with the VBLK Start and Stop registers (18h-19h). The TVP5150AM1 VBLK Start and Stop registers provide relative adjustments to the default VBLK interval. After configuring the desire VBLK interval, the Luma bypass (bit 4) in the Luminance Processing Control #1 register (07h) must be set to a logic 1 to enable raw data output. Table 6 shows the default I²C registers with a modified VBLK interval for Line 21 inclusion, while Table 7 shows the default 625-line setup. Also shown in Figure 5 and Figure 6 are digital captures of the TVP5150AM1 ITU-R BT.656 output for comparison of normal operation and raw data operation. Insertion of a 4-byte preamble (00h FFh FFh 60h) prior to the start of the raw data is optional in I²C register 07h.

Table 6. 525-Line Raw Data Setup to Include Line 21

I ² C Subaddress	Default	I ² C Data	Description
07h	00h	10h	Enable raw data (Luma bypass) and Preamble
18h	00h	00h	VBLK Start = default line 1
19h	00h	01h	VBLK Stop = default +1 to include line 21

Table 7. 625-Line Raw Data Setup

I ² C Subaddress	Default	I ² C Data	Description			
07h	00h	10h	Enable raw data (Luma bypass) and Preamble			
18h	00h	00h	VBLK Start LSB = default line 623			
19h	00h	00h	VBLK Stop = default			

Note: Detailed descriptions of the TVP5150AM1 I2C registers related to VBI Raw Data Mode are shown in Appendix A.

Example (set up NTSC for raw data on lines 1 through 21)

- 1. Set up VBLK interval.
 - (a) Write 01h to register 19h to include line 21.
- 2. Enable Raw Data Mode
 - (a) Write 10h to register 07h to enable raw data mode.

www.ti.com VBI Raw Data Mode

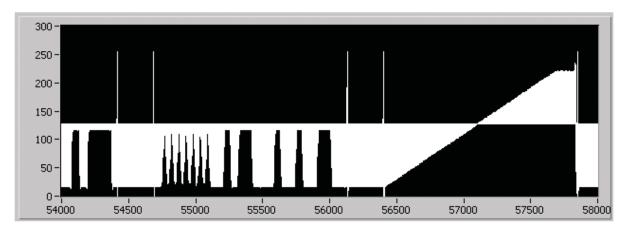


Figure 5. Line 21 Closed Caption ITU-R BT.656 Digital Output Capture with YUV Samples Present Raw Data Mode disabled

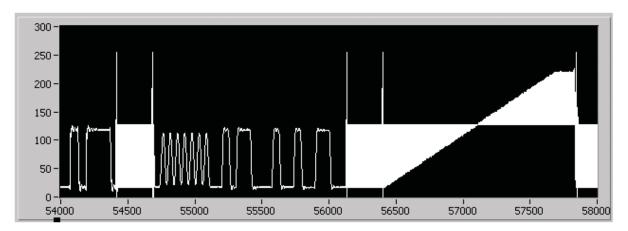


Figure 6. Line 21 Closed Caption ITU-R BT.656 Digital Output Capture in Raw Data Mode UV (chroma) data are replaced with Y (luma) data

Note: The full-scale transitions are embedded sync codes.

Appendix A Subset of the TVP5150AM1 VDP I²C Registers

VDP Closed Caption Data

Address	90h-93h
---------	---------

Read only

Address	7	6	5	4	3	2	1	0		
90h		Closed Caption Field 1 byte 1								
91h	Closed Caption Field 1 byte 2									
92h	Closed Caption Field 2 byte 1									
93h	Closed Caption Field 2 byte 2									

These registers contain the closed caption data arranged in bytes per field.

VDP WSS/CGMS Data

Address	94h-99h

WSS/CGMS NTSC:

Read only

Address	7	6	5	4	3	2	1	0	Byte
94h			b5	b4	b4	b2	b1	b0	WSS/CGMS Field 1 byte 1
95h	b13	b12	b11	b10	b9	b8	b7	b6	WSS/CGMS Field 1 byte 2
96h			b19	b18	b17	b16	b15	b14	WSS/CGMS Field 1 byte 3
97h			b5	b4	b4	b2	b1	b0	WSS/CGMS Field 2 byte 1
98h	b13	b12	b11	b10	b9	b8	b7	b6	WSS/CGMS Field 2 byte 2
99h			b19	b18	b17	b16	b15	b14	WSS/CGMS Field 2 byte 3

These registers contain the wide screen signaling data for NTSC.

Bits 0 - 1 Represent word 0, aspect ratio

Bits 2 - 5 Represent word 1, header code for word 2

Bits 6 - 13 Represent word 2, copy control

Bits 14 - 19 Represent word 3, CRC

WSS/CGMS PAL/SECAM:

Read only

12

Address	7	6	5	4	3	2	1	0	Byte
94h	b7	b6	b5	b4	b4	b2	b1	b0	WSS/CGMS Field 1 byte 1
95h			b13	b12	b11	b10	b9	b8	WSS/CGMS Field 1 byte 2
96h	Reserved								
97h	b7	b6	b5	b4	b4	b2	b1	b0	WSS/CGMS Field 2 byte 1
98h			b13	b12	b11	b10	b9	b8	WSS/CGMS Field 2 byte 2
99h	Reserved								

These registers contain the wide screen signaling data for PAL/SECAM:

Bits 0 - 3 Represent group 1, aspect ratio

Bits 4 - 7 Represent group 2, enhanced services

Bits 8 - 10 Represent group 3, subtitles

Bits 11 - 13 Represent group 4, others

www.ti.com Appendix A

VDP VPS, EPG Data

Address 9Ah-A6h

VPS:

Read only

Address	7	6	5	4	3	2	1	0		
9Ah		VPS byte 1								
9Bh		VPS byte 2								
9Ch		VPS byte 3								
9Dh		VPS byte 4								
9Eh				VPS	byte 5					
9Fh		VPS byte 6								
A0h				VPS	byte 7					
A1h				VPS	byte 8					
A2h				VPS	byte 9					
A3h				VPS	byte 10					
A4h				VPS	byte 11					
A5h		VPS byte 12								
A6h				VPS	byte 13					

These registers contain the entire VPS data line except the clock run-in code or the frame code.

EPG:

Read only

toda offiy										
Address	7	6	5	4	3	2	1	0		
9Ah		EPG Frame Code								
9Bh		EPG byte 1								
9Ch		EPG byte 2								
9Dh				EPG	byte 3					
9Eh				EPG	byte 4					
9Fh		Reserved								
A0h				Rese	erved					
A1h				Rese	erved					
A2h				Rese	erved					
A3h				Rese	erved					
A4h				Rese	erved					
A5h				Rese	erved					
A6h				Rese	erved					

VDP VITC Data

Address	A7h-AFh

Read only

Address	7	6	5	4	3	2	1	0		
A7h		VITC Frame byte 1								
A8h		VITC Frame byte 2								
A9h		VITC Seconds byte 1								
AAh		VITC Seconds byte 2								
ABh				VITC Minu	ites byte 1					
ACh				VITC Minu	ites byte 2					
ADh		VITC Hours byte 1								
AEh		VITC Hours byte 2								
AFh				VITC C	RC byte					

These registers contain the VITC data.

Appendix A www.ti.com

VDP FIFO Read Data

Address

Subaddress E	80h								
Read only									
7	6	5	4	3	2	1	0		
	FIFO read data [7:0]								

FIFO read data [7:0]: This register is provided to access VBI FIFO data through the host port. All forms of teletext data come directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO. Current status of the FIFO can be found at address C6h and the number of bytes in the FIFO is located at address C7h. If the host port is to be used to read data from the FIFO, the FIFO output control register CDh bit 0 must be set to 1.

VDP Configuration RAM Register C3h-C5h

Address	7	6	5	4	3	2	1	0	
C3h	Configuration data								
C4h		RAM address [7:0]							
C5h				Reserved				RAM address 8	

The configuration RAM data is provided to initialize the VDP with initial constants. The configuration RAM is 512 bytes organized as 32 different configurations of 16 bytes each. The first 12 configurations are defined for the current VBI standards. An additional 2 configurations can be used as a custom programmed mode for unique standards like Gemstar.

Address C3h is used to read or write to the RAM. The RAM internal address counter is automatically incremented with each transaction. Addresses C5h and C4h make up a 9-bit address to load the internal address counter with a specific start address. This can be used to write a subset of the RAM for only those standards of interest. Registers D0h-FBh must all be programmed with FFh, before writing or reading the configuration RAM. Full field mode (CFh) must be disabled as well.

www.ti.com Appendix A

VDP Status

Subaddress	C6h
------------	-----

7	6	5	4	3	2	1	0
FIFO full error	FIFO empty	TTX available	CC field 1 available	CC field 2 available	WSS/CGMS available	VPS/Gemstar 2x available	VITC available

The VDP status register indicates whether data is available in either the FIFO or data registers, and status information about the FIFO. Reading data from the corresponding register does not clear the status flags automatically. These flags are only reset by writing a 1 to the respective bit. However, bit 6 is updated automatically.

FIFO full error:

- 0 No FIFO full error
- 1 FIFO was full during a write to FIFO.

The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if the FIFO has only 10 bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no data is written because the entire teletext line will not fit. However, if the next VBI line is closed caption requiring only 2 bytes of data plus the header, this goes into the FIFO. Even if the full error flag is set.

FIFO empty:

- 0 FIFO is not empty.
- 1 FIFO is empty.

TTX available:

- 0 Teletext data is not available.
- Teletext data is available.

CC field 1 available:

- 0 Closed caption data from field 1 is not available.
- Closed caption data from field 1 is available.

CC field 2 available:

- O Closed caption data from field 2 is not available.
- 1 Closed caption data from field 2 is available.

WSS/CGMS available:

- 0 WSS/CGMS data is not available.
- 1 WSS/CGMS data is available.

VPS/Gemstar 2x available:

- 0 VPS/Gemstar 2x data is not available.
- 1 VPS/Gemstar 2x data is available.

VITC available:

- 0 VITC data is not available.
- 1 VITC data is available.

VDP FIFO Word Count

Subaddress	C7h									
7	6	5	4	3	2	1	0			
	Number of words									

This register provides the number of words in the FIFO. 1 word equals 2 bytes.

VDP FIFO Interrupt Threshold

Subaddress C	8h									
7	6	5	4	3	2	1	0			
	Number of words									

This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value (default 80h). This interrupt must be enabled at address C1h. 1 word equals 2 bytes.

Appendix A www.ti.com

VDP FIFO Reset

Subaddress	C9h						
7	6	5	4	3	2	1	0
			Any	data			

Writing any data to this register resets the FIFO and clears any data present.

VDP Line Number Interrupt

Subaddress C	Ah						
7	6	5	4	3	2	1	0
Field 1 enable	Field 2 enable			Line n	umber		

This register is programmed to trigger an interrupt when the video line number matches this value in bits 5:0. This interrupt must be enabled at address C1h. The value of 0 or 1 does not generate an interrupt.

Field 1 enable:

0 Disabled (default)

1 Enabled

Field 2 enable:

0 Disabled (default)

1 Enabled

Line number: (default 00h)

VDP Pixel Alignment

Subaddress	CBh-CCh							
Address	7	6	5	4	3	2	1	0
CBh		Switch pixel [7:0]						
CCh		Reserved Switch pixel [9:8]						

These registers form a 10-bit horizontal pixel position from the falling edge of sync, where the VDP controller initiates the program from one line standard to the next line standard. For example, the previous line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be programmed before the current settings are required.

VDP FIFO Output Control

Subaddress	CDh

Default (00h)

` '							
7	6	5	4	3	2	1	0
			Reserved				Host access enable

Host access enable: This register is programmed to allow host port access to the FIFO or allow all VDP data to go out the video port.

- Output FIFO data to the video output Y[7:0]
- 1 Allow host port access to the FIFO data (default)

TVP5150AM1 VBI Quick Start SLEA102-July 2010

www.ti.com Appendix A

VDP Full-Field Enable

Fh

Default (00h)

7	6	5	4	3	2	1	0
	Reserved						Full field enable

Full field enable:

- 0 Disable full field mode (default)
- 1 Enable full field mode

This register enables the full-field mode. In this mode, all lines outside the vertical blank area and all lines in the line-mode register programmed with FFh are sliced with the definition of register FCh. Values other than FFh in the line-mode registers allow a different slice mode for that particular line.

Appendix A www.ti.com

VDP Line Mode

Subaddress	D0h-FBh								
Address	7	6	5	4	3	2	1	0	
D0h		Line 6 Field 1							
D1h		Line 6 Field 2							
D2h		Line 7 Field 1							
D3h				Line 7	Field 2				
D4h				Line 8	Field 1				
D5h				Line 8	Field 2				
D6h				Line 9	Field 1				
D7h				Line 9	Field 2				
D8h				Line 1	0 Field 1				
D9h				Line 1	0 Field 2				
DAh				Line 1	1 Field 1				
DBh				Line 1	1 Field 2				
DCh				Line 1	2 Field 1				
DDh					2 Field 2				
DEh					3 Field 1				
DFh					3 Field 2				
E0h					4 Field 1				
E1h					4 Field 2				
E2h					5 Field 1				
E3h					5 Field 2				
E4h					6 Field 1				
E5h					6 Field 2				
E6h					7 Field 1				
E7h					7 Field 2				
E8h					8 Field 1				
E9h					8 Field 2				
EAh					9 Field 1				
EBh					9 Field 2				
ECh					0 Field 1				
EDh					0 Field 1				
EEh					1 Field 1				
EFh					1 Field 2				
F0h					2 Field 1 2 Field 2				
F1h									
F2h					3 Field 1				
F3h					3 Field 2				
F4h					4 Field 1				
F5h					4 Field 2				
F6h					5 Field 1				
F7h					5 Field 2				
F8h					6 Field 1				
F9h					6 Field 2				
FAh					7 Field 1				
FBh				Line 2	7 Field 2				

www.ti.com Appendix A

(continued)

These registers program the specific VBI standard at a specific line in the video field.

Bit 7:

- O Disable filtering of null bytes in closed caption modes
- 1 Enable filtering of null bytes in closed caption modes (default)

In teletext modes, bit 7 enables the data filter function for that particular line. If it is set to 0, then the data filter passes all data on that line.

Bit 6:

- 0 Send VBI data to registers only.
- 1 Send VBI data to FIFO and the registers. Teletext data only goes to FIFO. (default)

Bit 5:

- 0 Allow VBI data with errors in the FIFO
- 1 Do not allow VBI data with errors in the FIFO (default)

Bit 4:

- O Do not enable error detection and correction
- 1 Enable error detection and correction (when bits [3:0] = 1 2, 3, and 4 only) (default)

Bits [3:0]:

- 0000 WST SECAM
- 0001 WST PAL B
- 0010 WST PAL C
- 0011 WST NTSC
- 0100 NABTS NTSC
- 0101 TTX NTSC
- 0110 CC PAL
- 0111 CC NTSC
- 1000 WSS/CGMS-A PAL
- 1001 WSS/CGMS NTSC
- 1010 VITC PAL
- 1011 VITC NTSC
- 1100 VPS PAL
- 1101 Gemstar 2x Custom 1
- 1110 Custom 2
- 1111 Active video (VDP off) (default)

A value of FFh in the line mode registers is required for any line to be sliced as part of the full field mode.

VDP Full-Field Mode

FCh

Subaddress

Default (7Fh)							
7	6	5	4	3	2	1	0
			Full field r	mode [7:0]			

Full field mode [7:0]: This register programs the specific VBI standard for full-field mode. It can be any VBI standard. Individual line settings take priority over the full-field register. This allows each VBI line to be programmed independently but have the remaining lines in full-field mode. The full-field mode register has the same bits definition as line-mode registers. (default 7Fh)

Appendix B Sample WinVCC CMD File for VBI Setup

```
// These commands can be used with the WinVCC4 EVM software to configure the Line Mode
// registers for a typical NTSC VBI setup.
// The WR_REG commands are direct writes to the I2C registers.
// Each command shown writes 1 byte to the I2C address
// specified in the command line.
BEGIN DATASET
DATASET NAME, "TVP5150AM1 NTSC VDP/VBI SETUP"
INCLUDE, VDPRegsIdle.inc // Set VDP registers to their default state INCLUDE, SlicerRAM 601.inc // Load VDP configuration RAM
WR_REG, VID_DEC, 0x01, 0xD8, 0x44
WR_REG, VID_DEC, 0x01, 0xD9, 0x44
                                          // Line10 (Field 1) -TTX NTSC
                                          // Line10 (Field 2) -TTX NTSC
WR_REG,VID_DEC,0x01,0xE0,0x08
WR_REG,VID_DEC,0x01,0xE1,0x08
WR_REG,VID_DEC,0x01,0xEC,0x09
WR_REG,VID_DEC,0x01,0xED,0x09
                                          // Line14 (Field 1) -VITC NTSC
                                          // Line14 (Field 2) -VITC NTSC
                                          // Line20 (Field 1)-WSS/CGMS NTSC
                                          // Line20 (Field 2) -WSS/CGMS NTSC
                                          // Line21 (Field 1) -CC NTSC
// Line21 (Field 2) -CC NTSC
WR_REG, VID_DEC, 0x01, 0xEE, 0x07
WR REG, VID DEC, 0x01, 0xEF, 0x07
                                          // Enable FIFO access, disable ANC data
WR REG, VID DEC, 0x01, 0xCD, 0x01
WR_REG,VID_DEC,0x01,0xCB,0x4E
WR_REG,VID_DEC,0x01,0xCC,0x00
                                          // Set Pixel Alignment [7:0] to 4Eh
                                          // Set Pixel Alignment [9:8] to 0
END DATASET
// These commands can be used with the WinVCC4 EVM software to configure the Line Mode
\ensuremath{//} registers for a typical PAL VBI setup. For PAL systems, the Line Mode register has
// a +3 line offset relative to the actual line number. Each command shown writes
// 1 byte to the I2C address specified in the command line.
BEGIN DATASET
DATASET NAME, "TVP5150AM1 PAL VDP/VBI SETUP"
INCLUDE, VDPRegsIdle.inc
                                          // Set VDP registers to their default FFh state
INCLUDE, SlicerRAM_601.inc
                                          // Load VDP configuration RAM
WR_REG, VID_DEC, 0x01, 0xD8, 0x41
WR_REG, VID_DEC, 0x01, 0xD9, 0x41
                                        // Line10 (Field 1) -TTX-B PAL(Line7)
// Line10 (Field 2) -TTX-B PAL (Line7
WR REG, VID DEC, 0x01, 0xEA, 0x00
WR REG, VID DEC, 0x01, 0xEA, 0x00
WR REG, VID DEC, 0x01, 0xEB, 0x00
WR REG, VID DEC, 0x01, 0xF0, 0x0A
                                          // Line19 (Field 1) -VPS PAL (Line 16)
// Line19 (Field 2) -VPS PAL (Line 16)
                                          // Line22 (Field 1) -VITC PAL(Line 19)
WR_REG, VID_DEC, 0x01, 0xF1, 0x0A
WR_REG, VID_DEC, 0x01, 0xF6, 0x06
WR_REG, VID_DEC, 0x01, 0xF7, 0x06
WR_REG, VID_DEC, 0x01, 0xF7, 0x08
                                          // Line22 (Field 2) -VITC PAL(Line 19)
                                          // Line25 (Field 1) -CC PAL(Line 22)
                                          // Line25 (Field 2) -CC PAL(Line 22)
                                          // Line26 (Field 1) -WSS/CGMS PAL(Line 23)
                                          // Line26 (Field 2) -WSS/CGMS PAL(Line 23)
WR_REG, VID_DEC, 0x01, 0xF9, 0x08
WR_REG, VID_DEC, 0x01, 0xCD, 0x01
WR_REG, VID_DEC, 0x01, 0xCB, 0x4E
                                          // Enable FIFO access, disable ANC data
                                          // Set Pixel Alignment [7:0] to 4Eh // Set pixel Alignment [9:8] to 0
WR_REG, VID_DEC, 0x01, 0xCC, 0x00
END DATASET
```

20 TVP5150AM1 VBI Quick Start SLEA102-July 2010

Appendix C Example TVP5150AM1 C Code

```
// TVP5150AM1 WSS/CGMS Example
#define TVP5150AM1 0xB8;
                                          // TVP5150AM1 main I2C address
byte I2C RegAddress, Status;
byte I2C Data;
int CRAM_Address, count;
// recommended WSS/CGMS settings
\texttt{byte WSS\_ARRAY[]=\{0x38,0,0x3F,0,0x71,0x6E,0x43,0x63,0x7C,0x08,0,0,0,0x39,0\};}
byte WSSData[3];
                    // data array for WSS/CGMS
// initialize
// load WSS/CGMS C-RAM
I2C RegAddress = 0xD0;
                                         // starting address of Line Mode registers
I2C_Data = 0xFF;
For (count = 0; count < 44; count ++)
 I2CWriteByte(TVP5150AM1, I2C RegAddress, I2C Data); //write FFh to Line Mode
registers
 I2C RegAddress ++;
I2CWriteByte(TVP5150AM1, 0xCF, 0);
                                                // disable full field mode
                                             // address of NTSC WSS/CGMS C-RAM block
CRAM Address = 0x130;
I2CWriteByte(TVP5150AM1, 0xC4, 0x30);
                                               // load C4h with C-RAM address[7:0]
I2CWriteByte(TVP5150AM1, 0xC5, 0x01);
                                                // load C5h with C-RAM address[8]
For (count = 0; count < 16; count++)
 I2CWriteByte(TVP5150AM1, 0xC3, WSS ARRAY[count]);
                                                  // write 16 bytes of WSS/CGMS C-RAM
                                                // data to register C3h.
// NTSC WSS/CGMS Line Mode setup for line 20 of both fields
I2CWriteByte(TVP5150AM1, 0xEC, 0x09); // line 20 field 1 (0xEC), mode bits = 0x09 I2CWriteByte(TVP5150AM1, 0xED, 0x09); // line 20 field 2 (0xED), mode bits = 0x09
// PAL WSS/CGMS Line Mode setup for line 23 (source input) of both fields.
// PAL line numbering has 3 line offset so the Line 26 line mode registers are used.
 \begin{tabular}{ll} I2CWriteByte(TVP5150\,AM1, 0xF8, 0x08); & // line 26 field 1 (0xF8), mode bits = 0x08 \\ I2CWriteByte(TVP5150\,AM1, 0xF9, 0x08); & // line 26 field 2 (0xF9), mode bits = 0x08 \\ I2CWriteByte(TVP5150\,AM1, 0xCD, 0x01); & // disable ANC data, enable FIFO access. \\ \end{tabular} 
// check status and get sliced data
I2CReadBuffer(TVP5150AM1,0xC6,&Status,1); //read 1 byte(status)from register C6h
if ((Status & 0x20) ==1)
 I2CReadBuffer(TVP5150AM1,0x94,&WSSData[0],3); //if WSS/CGMS bit set,
                                            // read the 3 WSS/CGMS bytes
                                            // at WSS/CGMS data registers 94h-96h.
 I2CWriteByte(TVP5150AM1,0xC6,0x20);
                                              // clear WSS/CGMS available status bit
```


Appendix D VBI Raw Data I²C Registers

Luminance Processing Control #1 Register

Subaddress 0	7h						
7	6	5	4	3	2	1	0
Luma bypass mode	Pedestal not present	Disable raw header	Luma bypass\ during vertical blank	Luminance	e signal delay with	respect to chrom	inance signal

Luma bypass mode:

- 0 Input video bypasses the chroma trap and comb filters. Chroma outputs are forced to zero (default).
- Input video bypasses the whole luma processing. Raw A/D data is output alternatively as UV data and Y data at SCLK rate. The output data is properly clipped to comply with ITU-R BT.601 coding range. Only valid for 8-bit YUV output format (YUV output format = 100 or 111 at register 0Dh).

Pedestal not present:

- 0 7.5 IRE pedestal is present on the analog video input signal (default).
- 1 Pedestal is not present on the analog video input signal.

Disable raw header:

- 0 Insert 656 ancillary headers for raw data.
- 1 Disable 656 ancillary headers.

Luminance bypass enabled during vertical blanking:

- 0 Disabled (default)
- 1 Enabled

Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h. This feature may be used to prevent distortion of test and data signals present during the vertical blanking interval. Luma signal delay with respect to chroma signal in pixel clock increments (range -8 to +7 pixel clocks):

1111 -8 pixel clocks delay
1011 -4 pixel clocks delay
1000 -1 pixel clocks delay
0000 0 pixel clocks delay (default)
0011 3 pixel clocks delay
0111 7 pixel clocks delay

Vertical Blanking Start Register

Subaddress	18h						
7	6	5	4	3	2	1	0
			Vertical b	lanking start			

Vertical blanking (VBLK) start:

0111 1111	127 lines after start of vertical blanking interval
0000 0001	1 line after start of vertical blanking interval
0000 0000	Same time as start of vertical blanking interval (default)
1000 0001	1 line before start of vertical blanking interval
1111 1111	128 lines before start of vertical blanking interval

Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank. The setting in this register also determines the duration of the luma bypass function (see register 07h).

22 TVP5150AM1 VBI Quick Start SLEA102-July 2010

www.ti.com Appendix D

Vertical Blanking Stop Register

Vertical blanking start									
7	6	5	4	3	2	1	0		
Subaddress	19h								

Vertical blanking (VBLK) stop:

0111 1111	127 lines after stop of vertical blanking interval
0000 0001	1 line after stop of vertical blanking interval
0000 0000	Same time as op of vertical blanking interval (default)
1000 0001	1 line before op of vertical blanking interval
1111 1111	128 lines before stop of vertical blanking interval

Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see register 03h). The setting in this register also determines the duration of the luma bypass function (see register 07h).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps