Reference Design

-48-V ATCA Hot Swap Reference Design Using the TPS2393

Reference Design

-48-V ATCA Hot Swap Reference Design Using the TPS2393

Jim Bird

Power Supply Control Products

ABSTRACT

This reference design controls the dual –48-V power interface for a 200-W board in compliance with ATCA requirements. Although similar to the standard TPS2393 design, a number of components have been added to satisfy ATCA energy storage requirements and to protect the pass fet. These changes accommodate the large energy storage requirements of ATCA and improve board survivability.

1 Introduction

Nominal values for UV/OV and over current thresholds, as well as fault and ramp timing, are presented. If the designer needs to change any of these parameters the procedures are thoroughly covered in the User's Guide TI Literature number SLUU155.

ATCA specific circuitry includes R3, R14, RT1, Q4, D7, and components feeding INSA and INSB. R3 and R14 function as a power limiter which bleeds current into the ISENS pin of the TPS2393. As V_{IN} increases in magnitude more current is bled into ISENS, which effectively prebiases the overcurrent (OC) comparator. As the prebias current increases less load current is required to trip the OC comparator.

RT1 limits current into the bulk storage capacitor C5 during charging. This prevents the TPS2393 from declaring an OC fault condition while the capacitor is charging at startup. D7 allows current to flow from C5 to the load without being limited by RT1. During quiescent operation RT1 dissipates 0 W. During the charge cycle it could see 72 V and temporarily dissipate over 10 W. For this reason a positive temperature coefficient resistor is used.

Q4 and U2 prevent C5 from charging until the TPS2393 has asserted power good, PG. This allows sequential charging of the onboard bulk capacitors. The $100 - 200 \mu$ F capacitors typically required at the input to power converters are allowed to charge first. Once they have completed charging and the TPS2393 declares power good Q4 is turned on and C5 is allowed to charge at a rate determined by RT1.

Insertion detection (ID) pins provided by ATCA are named ENABLE_A and ENABLE_B. These pins are tied to RTN_A and RTN_B, respectively, on the backplane. ID is not required by ATCA but some designs may use it. Since ATCA requires that boards remain operational even if one power feed disappears there can be a conflict with certain ID implementations. If a single return line goes open the associated ENABLE pin could sense a nonexistent module extraction which causes the board to shut down. The design presented is not susceptible to such false failures and continues to operate despite the loss of a single power feed. As ATCA designs mature the ID function will most likely migrate into the intelligent platform management interface (IPMI) controller, thus allowing more flexibility in response to ID events. If the designer does not need ID then INSA and INSB can simply be tied to the –VIN pin of the TPS2393.

Table 1 shows alternate component values for lower power boards.

POWER LEVEL (W)	R17 (m Ω)	C5 (μ F)
50	16	1400
80	10	2240
130	6	3640
180	4.5	5040

Table 1. Component Values For Alternate Power Levels

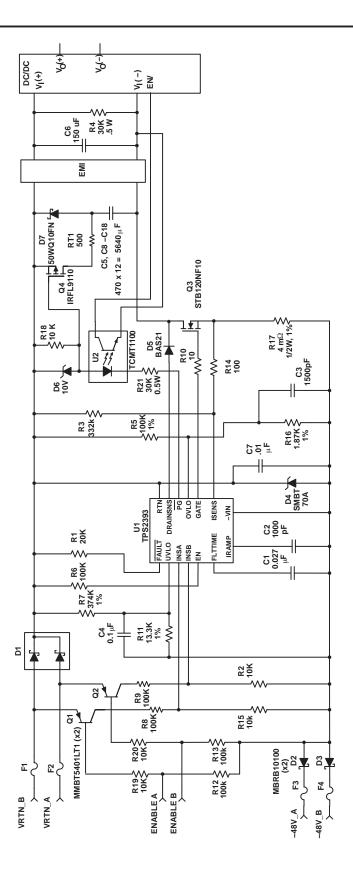


Figure 1. –48-V Hot Swap Power Manager Reference Design Schematic

4

REF DES	COUNT	DESCRIPTION	MFR	PART NUMBER
C6	1			EEV-FK2A151M
C1	1	Capacitor, ceramic, 0.027 µF, 16 V, X7R, 10%, 805	Vishay	STD
C7	1	Capacitor, ceramic, 0.01 µF, 100 V, X7R, 10%, 1206	Panasonic	ECJ-3FB2J103K
C5, C8 – C18	12	Capacitor, aluminum, axial lead, 470 μF ±20%, 100 V, 38 mm x 18 mm	BC Components	2222 138 19471
C2	1	Capacitor, ceramic, 1000 pF, 16 V, X7R, 10%, 805	Vishay	STD
C3	1	Capacitor, ceramic, 1500 pF, 50 V, X7R, 10%, 805	Vishay	STD
C4	1	Capacitor, ceramic, 0.1 µF, 50 V, X7R, 10%, 805	Vishay	STD
D1	1	Diode, dual schottky, 20 A, 100 V, 326600	Vishay	MBRB20100CT
D2, D3	2	Diode, schottky, 10 A, 100 V, TO-263AB	Vishay	MBRB10100
D4	1	Diode, zener, 100 V TVS, SMB	Diodes Inc	SMBT70A
D5	1	Diode, switching, 200 mA, 200 V, 330 mW, SOT-23	Vishay	BAS21
D6	1	Diode, zener, 10 V, 350 mW, SOT-23	Vishay	BZX84C10
D7	1	Diode, schottky, 5.5 A, 100 V, DPAK	IR	50WQ10FN
F1, F2	2	Fuse, 10 A, 3AB	LittelFuse	325010
F3, F4	2	Fuse, 7 A, 3AB	LittelFuse	325007
U1	1	IC, -48-V Hot-Swap Power Controller, PW14	TI	TPS2393PW
U2	1	IC, optoc-coupler, MF4	Vishay	TCMT1100
Q1, Q2	1	Transistor, PNP, 150 V, 0.5 A, SOT–23	OnSemi	MMBT5401LT1
Q3	1	MOSFET, N-channel, 100 V, 120 A, 0.009 Ω, D2–PAK	ST Micro	STB120NF10
Q4	1	MOSFET, P-channel, 100 V, 1.1 A, 1.2 Ω, SOT–223	IR	IRFL9110
R1	1	Resistor, chip, 20 kΩ, 1 W, 5%, 2512	Vishay	CRCW2512-203J
R10	1	Resistor, chip, 10 Ω, 1/10 W, 1%, 805	Std	Std
R14	1	Resistor, chip, 100 Ω, 1/10 W, 1%, 805	Std	Std
R17	1	Resistor, chip, 0.004 Ω, 1/2 W, 1%, 2010	Vishay	WSL-2010.004<1%
R16	1	Resistor, chip, 1.87 kΩ, 1/10 W, 1%, 805	Std	Std
R5, R6, R8, R9, R12, R13	6	Resistor, chip, 100 kΩ, 1/10 W, 1%, 805	Std	Std
R11	1	Resistor, chip, 13.3 kΩ, 1/10 W, 1%, 805	Std	Std
R4, R21	2	Resistor, chip, 30 kΩ, 1/2 W, 5%, 2010	Vishay	CRCW2010-303J
R3	1	Resistor, chip, 332 kΩ, 1/10 W, 1%, 805	Std	Std
R7	1	Resistor, chip, 374 kΩ, 1/10 W, 1%, 805	Std	Std
R2, R15, RR18, R19, R20	5	Resistor, chip,10 kΩ, 1/10 W, 1%, 805	Std	Std
RT1	1	Resistor, positive temperature coefficient, 500 Ω , radial lead, 5 mm x 3.2 mm	BC Components	2322 660 52893

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated