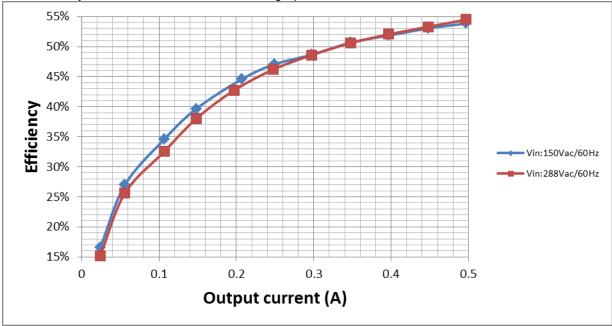

1 Photo

The photographs below show the PMP9044 Rev A assembly. This circuit was built on a PMP9044 Rev A PCB.

Top side


Bottom side

2 Converter Efficiency

V_{in}=150V_{AC}/60Hz, single phase

Vin(V)	lin(mA)	Pin(W)	Vout(V)	lout(A)	Pout(W)	Losses(W)	Efficiency (%)
150.07	41.4	3.092	3.35	0.497	1.66495	1.42705	53.85%
150.08	38.59	2.83	3.35	0.448	1.5008	1.3292	53.03%
150.08	35.6	2.557	3.34	0.397	1.32598	1.23102	51.86%
150.09	32.67	2.294	3.34	0.348	1.16232	1.13168	50.67%
150.09	29.61	2.028	3.32	0.297	0.98604	1.04196	48.62%
150.1	26.52	1.768	3.34	0.249	0.83166	0.93634	47.04%
150.1	23.87	1.551	3.34	0.207	0.69138	0.85962	44.58%
150.11	20.03	1.251	3.35	0.148	0.4958	0.7552	39.63%
150.12	17.181	1.039	3.36	0.107	0.35952	0.67948	34.60%
150.13	12.592	0.7052	3.4	0.056	0.1904	0.5148	27.00%
150.13	9.4	0.4947	3.41	0.024	0.08184	0.41286	16.54%
150.13	6.867	0.3464	3.44	0	0	0.3464	0.00%

PMP9044 Rev A Test Results

V_{in}=288V_{AC}/50Hz, single phase

	AU	, - <u>J</u> - I					
Vin(V)	lin(mA)	Pin(W)	Vout(V)	lout(A)	Pout(W)	Losses(W)	Efficiency (%)
288	27.3	3.065	3.36	0.497	1.66992	1.39508	54.48%
288	25.51	2.816	3.35	0.448	1.5008	1.3152	53.30%
288	23.57	2.556	3.35	0.397	1.32995	1.22605	52.03%
288	21.66	2.304	3.35	0.348	1.1658	1.1382	50.60%
288	19.663	2.042	3.34	0.297	0.99198	1.05002	48.58%
288	17.686	1.793	3.34	0.248	0.82832	0.96468	46.20%
288	15.595	1.54	3.34	0.197	0.65798	0.88202	42.73%
288	13.575	1.305	3.35	0.148	0.4958	0.8092	37.99%
288	11.818	1.104	3.36	0.107	0.35952	0.74448	32.57%
288	8.306	0.7408	3.39	0.056	0.18984	0.55096	25.63%
288	6.015	0.535	3.39	0.024	0.08136	0.45364	15.21%
288	4.333	0.3905	3.4	0	0	0.3905	0.00%

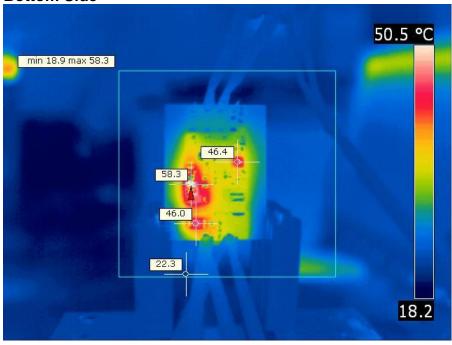
3 Thermal Images

The thermal images below show a top view and bottom view of the board. The ambient temperature was 20° C with no forced air flow. The output was at full load: 3.3V/0.5A.

V_{in}=150V_{AC}/60Hz, single phase

Top Side

Bottom Side



V_{in}=288V_{AC}/50Hz, single phase

Bottom Side

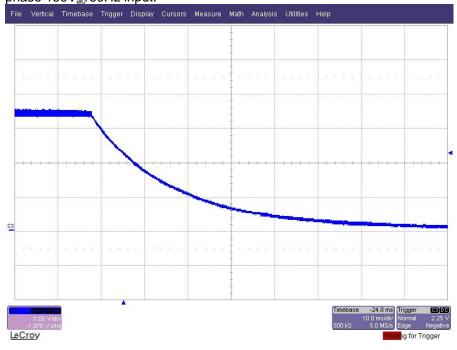

4 Startup

The output voltages at startup are shown in the images below with single phase input voltage.

4.1 Start Up @ 150V_{ac}: 3.3V/0.5A.

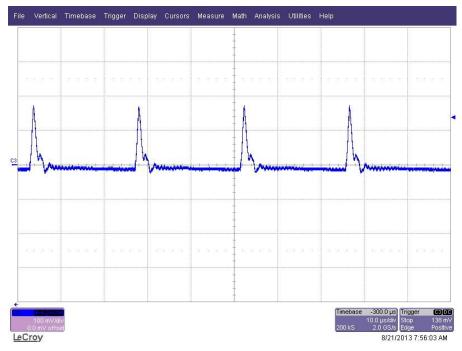
4.2 Start Up @ 150Vac: no load.

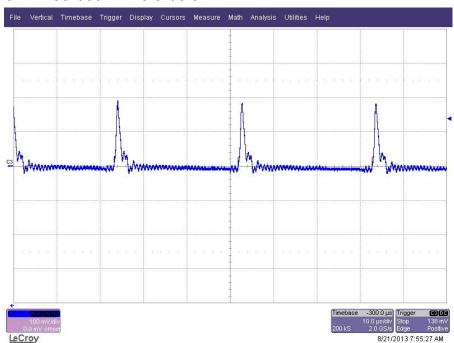
4.3 Start Up @ 288V_{ac}: 3.3V/0.5A.


4.4 Start Up @ 288Vac: no load.

5 Turn off

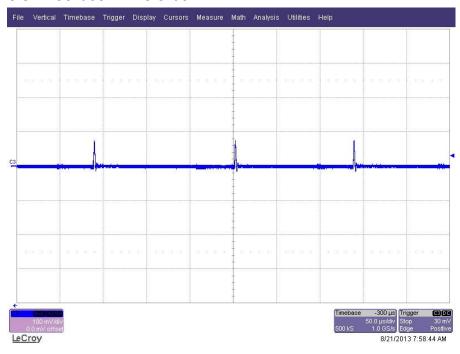
The output voltage at turn off transient is shown in the image below at full load (3.3V/0.5A) and a single phase $150V_{ac}/60Hz$ input.




6 Output Ripple Voltages

The output ripple voltages are shown in the plots below with single phase input voltage.

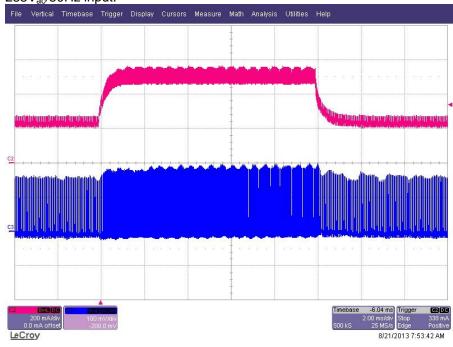
6.1 150V/60Hz - 3.3V/0.5A



6.2 288V/50Hz - 3.3V/0.5A

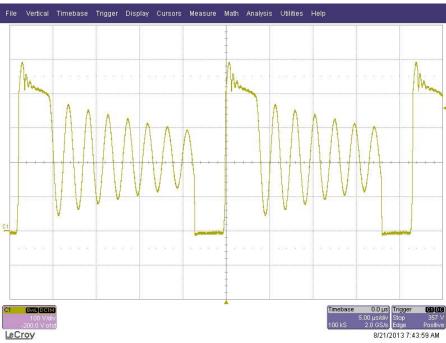


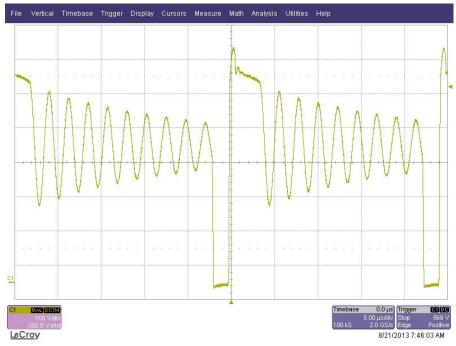
6.3 150V/60Hz - 3.3V/0A


6.4 288V/50Hz - 3.3V/0A

7 Load Transient

The image below shows $3.3V_{out}$ voltage response to a **0.25A** to **0.5A** load transient at a single phase $288V_{ad}/50Hz$ input.




8 Switching Waveforms

The images below show key switching waveforms of PMP9044RevA. The waveforms are measured with 0.5A full load.

8.1 Primary BJT Q₁ @ single phase 150V_{ac}/60Hz

8.2 Primary BJT Q₁ @ single phase 288V_{ac}/50Hz

8.3 Primary BJT Q₁ @ single phase 220V_{ac}/50Hz, first switching pulse

CH1: Q1 collector to GND, CH3: Q1 base to GND, CH4: Q1 emitter to GND.

8.4 Primary BJT Q₁ @ single phase 220V_{ac}/50Hz, normal operation

CH1: Q1 collector to GND, CH3: Q1 base to GND, CH4: Q1 emitter to GND.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated