Fuel-gauging considerations in battery backup storage systems

By Keith James Keller

Analog Field Applications

Accurate fuel gauging in battery backup systems requires special considerations. Using Texas Instruments (TI) battery fuel gauges with Impedance TrackTM technology offers the distinct advantage of not requiring a full discharge of the pack for learning as the cells age. This article discusses different implementations and techniques for completing a proper learning cycle in backup applications. Additionally, a case study of an aged battery pack's changes in capacity and impedance is reviewed.

TI's Impedance Track algorithm uses voltage, current, and impedance measurements of the cells to accurately calculate a battery pack's remaining capacity and run time. Proper selection of a cell's specific chemistry is required for the most accurate gauging. As of this writing, there are six distinct classes of chemistries, with several options within each class.

In determining a battery backup system's cell aging over time, the major concerns are (1) the maximum chemical capacity (Q_{max}) of the cell, specified in milliampere-hours (mAh), and (2) the actual measured impedance of the cells (R_a table values), which will determine true run time based on loading and temperature.

Most notably, high temperatures will adversely impact Q_{max} and the internal cell impedances. Charging and storing the cells at a lower voltage (between 3.9 and 4.1 V for standard 4.2-V cells) will increase their lifetime at the expense of shorter run times.

Older gas-gauging technologies require a complete discharge of the cells to update capacity information. Impedance Track technology eliminates this full-discharge requirement and instead uses two relaxed-voltage measurement points to update Q_{max} . In the default firmware, these voltage measurements are typically performed before and after the battery state of charge (SOC) has changed by about 40%. With modified firmware from TI, this SOC range can be decreased to as low as 10% for a "shallow" discharge. Decreasing the SOC range for the Q_{max} update will affect gauging accuracy; the more SOC range used, the better.

The two relaxed-voltage measurements need to be taken in a qualified voltage range based on the cell chemistry. For more information, please review Reference 1. To see an Excel[®] file with disqualified Q_{max} -update voltage ranges based on cell chemistry, go to http://www.ti.com/lit/zip/slua372 and click Open to view the WinZip[®] directory online (or click Save to download the WinZip file for offline use). Then open the file:

chemistry_specific_Qmax_disqv_voltages_table.xls Table 1 shows an excerpt from this file. As the table shows, if the chemical ID is 0100, then Q_{max} -update voltage measurements are not allowed between 3737 and 3800 mV due to the flatness of the voltage profile at this SOC. This disqualified voltage range is based on measuring the cell's relaxed voltage after a rest period of at least an hour. Impedance measurements and updates will happen during discharge with a load of greater than C/10. (A "C rate" is based on the cell's capacity. If a 3s2p pack has a design capacity of 4400 mAh, then the C/10 discharge rate is 440 mA. In this case, a safe discharge rate would be 500 mA.)

To store varying resistances at different SOC values, 15 grid points are used. Once one grid point has been recalculated, all subsequent grid points may be modified accordingly. A discharge needs to exceed 500 seconds to avoid transient effects and distortion of resistance values.

How to initiate a Q_{max} learning cycle

TI provides evaluation software that shows the status and allows controlling parameters of an Impedance Track gas gauge (see Related Web Sites). After confirming that the battery voltage is outside the disqualified range, a RESET command can be sent to the gauge that will set the R_DIS bit and clear the VOK bit. When a proper OCV measurement has been completed by the gauge, the R_DIS bit will be cleared. Now battery charging or discharging can be started which will set the VOK bit in a few seconds. With the firmware set for a shallow SOC change of 10%, allow the charge/discharge to change the SOC by at least 15%. After stopping the charge/discharge cycle, allow the cells to relax (up to 5 hours in a deeply depleted state) outside the disqualified voltage range. The VOK bit should clear, which is the indication that a second valid OCV measurement has been taken and a Q_{max} update has been completed successfully.

Table 1. Disqualified Q _{max} -update voltage rar	nges based on cell chemistry
--	------------------------------

Description	Chemical ID	Vqdis_min	Vqdis_max	SOC_min, %	SOC_max, %
LiCoO2/graphitized carbon (default)	0100	3737	3800	26	54
Mixed Co/Ni/Mn cathode	0101	3749	3796	28	51
Mixed Co/Mn cathode	0102	3672	3696	6	14
LiCoO2/carbon 2	0103	3737	3800	26	54
Mixed Co/Mn cathode 2	0104	4031	4062	77	88

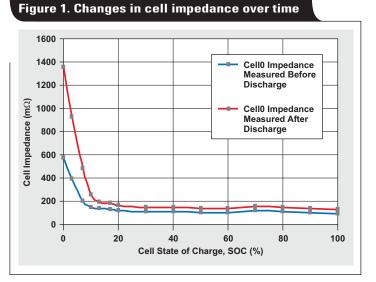
The following two examples describe different system implementations for battery backup systems.

Example 1: Passive discharge of cells

In this configuration, the active current of the gas-gauge chipset (\sim 375 µA) can be used to discharge the batteries over an extended period of time. Depending on the capacity of the pack, this could be several months. Keeping the gauge continuously in active mode is programmable by setting the SLEEP bit in the "Operation Cfg A" register to 0. Another option is to assert the /PRES GPI with the non-removable bit (NR = 0) set in the "Operation Cfg B" dataflash register.

With firmware modified for a shallow discharge such as 20% for a Q_{max} update, the pack can be allowed to discharge down to 75% of its capacity over time and can then be charged back up to full capacity. The Q_{max} parameter will be updated accordingly. Note that only the Q_{max} values, not the cell impedances (R_a table values), will be updated during this type of cycling. It is assumed that a rest period of several hours is allowed at the end of charge for the second relaxed-voltage measurement.

Example 2: Active discharge of cells


In this configuration, a discharge resistor in the system can be used to actively discharge the cells. This could be controlled by a host processor inside the battery packs or externally in the system. As discussed earlier, a discharge current of greater than C/10 for 500 seconds is required for impedance grid-point updates.

Even though the 10% minimum discharge requirement applies for a Q_{max} update, ideally the pack should be discharged through two impedance grid-point updates. These occur during discharge at SOC intervals of approximately 11% (i.e., at 89%, 78%, 63%, 52%, etc.). In this case, discharge from 100% to 75% capacity would be sufficient. If the battery is being stored with the SOC at 80% for longevity reasons, two impedance grid-point updates would happen within a 25% discharge.

A proper Q_{max} update will happen only after two consecutive relaxed-voltage measurements separated by a charge or discharge are taken (assuming that both measurements are outside the disqualified voltage range of the specific chemical ID). Therefore, after the pack is actively discharged to 75% of its capacity, a rest period of several hours is required, depending on the SOC. (Based on cell chemistry, up to 3.5 hours is required for a semicharged state, and up to 5 hours for a fully discharged state.)

Case study

The effects of long-term storage were studied by using a Microsun Technologies 3s4p 8.8-Ah battery pack that had LGDS218650 cells with the bq20z80 chipset produced in June of 2006. The pack was stored at about 45% capacity at room temperature for two years without being cycled. The parameters of interest were changes to Q_{max} and to the cell impedances, as well as the accuracy of remaining-capacity and time-to-empty calculations. The estimated

self-discharge of these cells is less than 4% per year.

A constant resistive load of 3 Ω was used for discharging the packs (equating to a discharge rate of approximately 3.5 A). Changes in Q_{max} and in the impedance values are respectively shown in Table 2 (on the next page) and Figure 1. On average, Q_{max} decreased by 3% and the impedances of the cells increased by 35%. Even with these changes in the cells, the accuracy of the initial discharge cycle following the two-year rest period was greater than 99%; specifically, a capacity of 67 mAh was reported when the terminate voltage was reached (67 mAh/8819 $Q_{max} =$ 0.00761, or an error of 0.761%).

Conclusion

TI's battery fuel gauges with Impedance Track technology provide an extremely accurate estimation of remaining battery capacity. Understanding how the technology works is especially important in designing storage and backup systems with long periods of rest. Examples were presented of using passive and active discharge of the pack to update Q_{max} and cell impedance values. Additionally, discharge results from an aged battery pack were shared to illustrate the concepts and overall accuracy of this technology.

Reference

For more information related to this article, you can download an Acrobat[®] Reader[®] file at www.ti.com/lit/*litnumber* and replace "*litnumber*" with the **TI Lit. #** listed below.

Document Title

TI Lit.

 Yevgen Barsukov, "Support of Multiple Li-Ion Chemistries With Impedance Track[™] Gas Gauges," Application Report...... slua372

Related Web sites

power.ti.com

www.ti.com/sc/device/bq20z95 To download bq evaluation software: www.ti.com/litv/zip/sluc107b

6

Cell Impedance Measurements Cell Impedance Measurements Q_{max} (mAh) Before O_{max} (mAh) After **Before Discharge** After Discharge xCell0 R_a 0 = 93 Cell0 R_a 0 = 124 xCell0 R_a 1 = 102 Cell0 R_a 1 = 136 xCell0 R_a 2 = 112 Cell0 R_a 2 = 149 xCell0 R a 3 = 117 CellO R a 3 = 156 xCell0 R_a 4 = 103 Cell0 R_a 4 = 137 xCell0 R_a 5 = 102 Cell0 R_a 5 = 136 xCell0 R_a 6 = 112 Cell0 R_a 6 = 149 **CELLO** xCell0 R_a 7 = 112 Cell0 R_a 7 = 148 9096 8819 xCell0 R_a 8 = 117 Cell0 R_a 8 = 165 xCell0 R_a 9 = 128 Cell0 R_a 9 = 179 xCell0 R_a 10 = 138 Cell0 R_a 10 = 195 xCell0 R_a 11 = 146 Cell0 R_a 11 = 259 xCell0 R_a 12 = 204 Cell0 R_a 12 = 479 xCell0 R_a 13 = 393 Cell0 R_a 13 = 927 xCell0 R_a 14 = 573 Cell0 R_a 14 = 1355 xCell1 R_a 0 = 71 Cell1 R_a 0 = 98 xCell1 R_a 1 = 79 Cell1 R_a 1 = 109 xCell1 R_a 2 = 88 Cell1 R_a 2 = 122 xCell1 R_a 3 = 95 Cell1 R_a 3 = 131 xCell1 R_a 4 = 79 Cell1 R_a 4 = 109 xCell1 R_a 5 = 80 Cell1 R_a 5 = 111 xCell1 R_a 6 = 89 Cell1 R a 6 = 123 CELL1 xCell1 R_a 7 = 87 9102 Cell1 R_a 7 = 125 8833 xCell1 R_a 8 = 90 Cell1 R_a 8 = 139 xCell1 R_a 9 = 98 Cell1 R_a 9 = 147 xCell1 R_a 10 = 108 Cell1 R_a 10 = 164 xCell1 R_a 11 = 114 Cell1 R_a 11 = 223 xCell1 R_a 12 = 159 Cell1 R_a 12 = 453 xCell1 R_a 13 = 338 Cell1 R_a 13 = 960 xCell1 R_a 14 = 491 Cell1 R_a 14 = 1397 xCell2 R_a 0 = 56 xCell2 R_a 0 = 83 xCell2 R_a 1 = 63 xCell2 R_a 1 = 93 xCell2 R_a 2 = 71 xCell2 R_a 2 = 105 xCell2 R_a 3 = 79 xCell2 R_a 3 = 117 xCell2 R_a 4 = 65 xCell2 R_a 4 = 96 xCell2 R_a 5 = 62 xCell2 R_a 5 = 92 xCell2 R_a 6 = 73 xCell2 R_a 6 = 108 CELL2 xCell2 R_a 7 = 69 xCell2 R_a 7 = 108 9096 8823 xCell2 R_a 8 = 73 xCell2 R_a 8 = 118 xCell2 R_a 9 = 82 xCell2 R_a 9 = 127 xCell2 R_a 10 = 89 xCell2 R_a 10 = 145 xCell2 R_a 11 = 93 xCell2 R_a 11 = 211 xCell2 R_a 12 = 134 xCell2 R_a 12 = 304 xCell2 R_a 13 = 323 xCell2 R_a 13 = 734

Table 2. Ω_{max} and cell impedance values before and after discharge of a sample pack

xCell2 R_a 14 = 475

xCell2 R_a 14 = 1079

7

Internet

TI Semiconductor Product Information Center Home Page support.ti.com

TI E2E Community Home Page

e2e.ti.com

Product Information Centers

Americas	Phone	+1(972) 644-5580
Brazil	Phone	0800-891-2616
Mexico	Phone	0800-670-7544
Interne	Fax et/Email	+1(972) 927-6377 support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

European Free Call	00800-ASK-TEXAS (00800 275 83927)
International	+49 (0) 8161 80 2121
Russian Support	+7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

 Fax
 +(49) (0) 8161 80 2045

 Internet
 support.ti.com/sc/pic/euro.htm

Japan

Phone	Domestic	0120-92-3326
Fax	International	+81-3-3344-5317
	Domestic	0120-81-0036
Internet/Email	International	support.ti.com/sc/pic/japan.htm
	Domestic	www.tij.co.jp/pic

Asia

Phone			
Internatio	nal	+91-80-41381665	
Domestic		Toll-Free Number	
Austral	ia	1-800-999-084	
China		800-820-8682	
Hong K	long	800-96-5941	
India		1-800-425-7888	
Indone	sia	001-803-8861-1006	
Korea		080-551-2804	
Malays	ia	1-800-80-3973	
New Zealand		0800-446-934	
Philippines		1-800-765-7404	
Singap	ore	800-886-1028	
Taiwan		0800-006800	
Thailan	nd 001-800-886-0010		
Fax	+886-2-2378-6808		
Email	tiasia@ti.com or ti-china@ti.com		
Internet	support.ti.com/sc/pic/asia.htm		

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

E121709

Impedance Track is a trademark of Texas Instruments. Acrobat and Reader are registered trademarks of Adobe Systems Incorporated. Excel is a registered trademark of Microsoft Corporation. WinZip is a registered trademark of WinZip International LLC. All other trademarks are the property of their respective owners.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated