
Application Report
SNVA157A–April 2006–Revised April 2013

AN-1460 Emulating the PowerWise Interface Using GPIOs
and Software

...

ABSTRACT

PowerWise Interface (PWI) compatible Energy Management Units (EMUs) from Texas Instruments are
flexible, highly integrated, and digitally programmable system power managers that can be used in a
variety of applications. Controlling or programming the EMU in the system is achieved using the PWI
open-standard (www.pwistandard.org). The method for using the PWI1.0 connected EMU in systems with
a processor containing a hardware PWI master like the Advanced Power Controller (APC) is obvious
(http://www.ti.com/ww/en/analog/power_management/powerwise-avs.shtml). Using the PWI connected
EMU in a system where the processor does not contain a hardware-based PWI master is straight forward
using a GPIO port and a PWI protocol software driver.

Contents
1 Introduction .. 2
2 PWI Discussion .. 2
3 PWI Emulation ... 2
4 Software For PWI Emulation .. 3

All trademarks are the property of their respective owners.

1SNVA157A–April 2006–Revised April 2013 AN-1460 Emulating the PowerWise Interface Using GPIOs and Software
Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

http://www.pwistandard.org
http://www.ti.com/ww/en/analog/power_management/powerwise-avs.shtml
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA157A

VCORE

LP555x

RESET#

ENABLE

PWROK
GPI02

GPI01

Additional
Programmable

Voltage Outputs

SCLK

SPWI

To system power
indicator,
supervisory
circuitry, or digital
POR circuit

From supervisory
circuitry or tied to
supply voltage

Microprocessor/

Microcontroller/

PLD/DSP/ etc.

PWI

Introduction www.ti.com

1 Introduction

This application report describes a strategy for emulating a PWI master using general purpose
input/output pins – GPIOs – and a PWI master software driver. This strategy can be deployed with a
variety of processors, DSPs, and PLDs. Example C code for such a driver is included later in this
document. The code presented has been verified using TI’s COP8 microcontroller and the LP5550
PowerWise EMU, but should be easily portable to any processor architecture. This application applies
specifically to PWI1.0, but a similar scheme could be used for PWI2.0 functionality.

2 PWI Discussion

The PWI 1.0 specification provides for a single-master, single-slave point-to-point bus. The point to point
nature of the specification greatly simplifies the emulation of the PWI master.

Digital communication over the PWI is managed with a 2-wire serial interface. The PWI data line, SPWI, is
bidirectional. From the master viewpoint the SPWI line is driven by the master for all command and data
write frames, and driven by the slave (the EMU) for data read frames. The PWI master always drives the
bus clock, SCLK. The PWI physical layer is implemented as a push-pull architecture. There are very weak
bus pull-down resistors, or bus holders, to maintain low signal levels on the bus during turn around cycles,
and at power-on.

3 PWI Emulation

Emulating the PWI master requires that the software driver controls the allocated GPIOs to create a direct-
drive, always output SCLK pin, and a bi-directional SPWI pin. The operating frequency range for the PWI
bus is 0Hz to 15 MHz, with the clock being present only during a data transaction. The fact that the bus is
specified down to DC means that any device, operating at any frequency, can handle the PWI master
task. This also allows a great deal of flexibility in implementing the driver because the EMU is not timing
dependent beyond the mandatory set-up and hold times and the minimum pulse width of the SCLK.

The emulation driver should include support for the following PWI commands:

• Core Voltage Adjust

• Reset

• Sleep

• Shutdown

• Wakeup

• Register Write

• Register Read

• Synchronize

2 AN-1460 Emulating the PowerWise Interface Using GPIOs and Software SNVA157A–April 2006–Revised April 2013
Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA157A

www.ti.com Software For PWI Emulation

It is important to pay attention to the I/O voltage levels on the PWI bus. The LP555x EMUs will signal at
the level of their I/O voltage regulator (i.e., the regulator associated with PWI register R7). This regulator is
programmable and should be set to the same voltage as used by the PWI master if it does not directly
drive the I/O ring of the master. If the I/O voltage regulator is used to power the I/O ring of the master,
then no special care needs to be taken.

4 Software For PWI Emulation

The first functions that need to be implemented are the initialization, frame write, and frame read
functions. It will be helpful to refer to the PWI specification, available at www.pwistandard.org, as you read
through the frame write and read functions.

The initialization code is device-dependent, so only pseudo-code is provided here.
pwi1_initialization(void)
{
GPIO1_value = LO; //Make sure the SCLK line comes on driven low
GPIO1_configuration = push-pull output;
GPIO2_value = LO; //Make sure that the SPWI line comes on driven low
GPIO2_configuration = push-pull output; //All transactions begin with SPWI as an output
#define SCLK GPIO1
#define SPWI GPIO2
#define SPWI_DIR GPIO2 Configuration
pwi1_synchronize(); //A PWI synchronize command should always be issued at POR
}
The following two functions implement the data link layer of the PWI.
byte pwi1_write_frame(byte data)
{
byte error = 0; //Return value
byte bit = 0; //Used as data counter to serialize "data"
SPWI_DIR = OUT; //Make sure we are driving the SPWI pin
// START Bit

SPWI = HI;
pwi1_clock_pulse(); //See the helper function later on in this code

// Send the two reserved bits, 00b
SPWI = LO;
pwi1_clock_pulse(); //Reserved 1
pwi1_clock_pulse(); //Reserved 2
// Now we will do the payload bits
for(bit = 0; bit < 8; bit++){

SPWI = ((data & 0x80) ? HI : LO); //Transfer data out the MSB of data
pwi1_clock_pulse(); //Clock each bit out

data <<= 1; //Slide the next MSB into place
}

// STOP Bit
SPWI = LO;
SCLK = HI; //Take the SCLK pin high
SPWI_DIR = IN; // If this is a read command, the EMU will begin to drive SPWI on falling edge
SCLK = LO; //Complete the clock cycle
return(error); //Currently no error checking, any needed can be added
}

byte pwi1_read_frame(byte* data)
{
byte error = 0; //Return value

byte bit = 0; //Used as data counter to handle serial-to-parallel conversion
SPWI_DIR = IN; //Ensure that SPWI is an input
// Look for START Bit from EMU
if(SPWI == LO){
error = 1; //No START Bit from slave, error code = 1
}
pwi1_clock_pulse(); //Acknowledge the START Bit

// Now ensure EMU drives 2 Reserved Bits, 00b
if(SPWI == HI){
error = 2; //Reserve Bit 1 not correct, error code = 2
}
pwi1_clock_pulse(); //Clock in first Reserved Bit

3SNVA157A–April 2006–Revised April 2013 AN-1460 Emulating the PowerWise Interface Using GPIOs and Software
Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.pwistandard.org
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA157A

Software For PWI Emulation www.ti.com

if(SPWI == HI){
error = 2; //Reserve Bit 2 not correct, error code = 2
}
pwi1_clock_pulse(); //Clock in second Reserved Bit
for(bit = 0; bit < 8; bit++){
(*data) = SPWI; //Grab the bit
pwi1_clock_pulse(); //Tell EMU we got it
(*data) <<= 1; //Make room for the next most significant bit

}
// Look for STOP Bit from EMU

if(SPWI == HI){
error = 3; //No STOP Bit from slave, error code = 3

}
pwi1_clock_pulse();

return(error); //Currently no error checking, any needed can be added
}

This is a supporting function that toggles the SCLK GPIO pin. This could also be done with a
macro, but is not here to aid clarity.
void pwi1_clock_pulse(void)

{
// SCLK assumed low upon entering

SCLK = HI;
/*** INSERT SOME DELAY HERE TO EVEN OUT THE DUTY CYCLE AND ENSURE THAT YOU
MEET THE MINIMUM PULSE WIDTH REQUIREMENTS OF THE SPEC. ***/
SCLK = LO;
return();
}

We now proceed to the register write and register read commands. A very bare-
bones implementation could get by with nothing more than these two commands, but it is
recommended that all PWI functionality be implemented.
void pwi1_reg_write(byte register_number, byte write_data)

{
byte error = 0; //Error message; how to process?
/* Note that this function does not ensure whether the register requested is valid,
but it does lop off the high nibble since there are only 15 registers available. */

register_number &= 0x0F;
error = pwi1_write_frame(CMD_REG_WRITE | register_number); //Tell the EMU what we want
error = pwi1_write_frame(write_data); //Push the data to the register
return();
}
byte pwi1_reg_read(byte register_number)
{
byte error = 0; //Error message, how to process?

byte register_contents = 0; //The data that was read
/* Note that this function does not ensure whether the register requested is valid,
but it does lop off the high nibble since there are only 15 registers available. */

register_number &= 0x0F;
error = pwi1_write_frame(CMD_REG_READ | register_number); //Tell the EMU what we want
// Here we must handle the turn-around clock pulse
pwi1_clock_pulse();

// Now read what the SPC is driving back
error = pwi1_read_frame(& register;_contents);
// Send back what we got

return(register_contents);
}

Below are the command functions for PWI. We start with the two most
important, Core Voltage Adjust, and the Synchronize command. The synchronize command should be
implemented and called at start-up to ensure that the EMU is synchronized with the master.
byte pwi1_core_v_adjust(byte voltage)
{
byte error = 0; //Error message
if(voltage & 0x80){
error = 1; //The MSB of R0 is reserved per PWI spec

}
else{
pwi1_write_frame(CORE_V_ADJ | voltage); //Command with MSB set indicates Core V Adjust

4 AN-1460 Emulating the PowerWise Interface Using GPIOs and Software SNVA157A–April 2006–Revised April 2013
Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA157A

www.ti.com Software For PWI Emulation

}
return(error);

}
void pwi1_synchronize(void)
{
/* The synchronize command is a series of 11 1’s followed by a STOP bit
byte bit = 0; //Used for the counter below

SPWI_DIR = OUT; //Make sure we are driving the SPWI pin
// START Bit
SPWI = HI;
CLK_PULSE;
// Send the two reserved bits, 11b, note that SPWI is already logic high
CLK_PULSE; //Reserved 1

CLK_PULSE; //Reserved 2
// Now we will do the payload bits, note that SPWI is already logic high
for(bit = 0; bit < 8; bit++){
CLK_PULSE; //Clock each bit out
}
// Stop Bit is a logic low
SPWI = LO;

CLK_PULSE;
return(void);

}
void pwi1_reset(void) {

pwi1_write_frame(CMD_RESET); //CMD_RESET = 0x10
return(void);
}
void pwi1_sleep(void) {
pwi1_write_frame(CMD_SLEEP); //CMD_SLEEP = 0x11
return(void);

}
void pwi1_shutdown(void) {
pwi1_write_frame(CMD_SHUTDOWN); //CMD_SHUTDOWN = 0x12

return(void);
}

void pwi1_wakeup(void) {
pwi1_write_frame(CMD_WAKEUP); //CMD_WAKEUP = 0x13
return(void);
}

5SNVA157A–April 2006–Revised April 2013 AN-1460 Emulating the PowerWise Interface Using GPIOs and Software
Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA157A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	AN-1460 Emulating the PowerWise Interface Using GPIOs and Software
	1 Introduction
	2 PWI Discussion
	3 PWI Emulation
	4 Software For PWI Emulation

