
Copyright © 2011-2013
Texas Instruments Incorporated

ROM-LM4F232H5BB-UG-730

USER’S GUIDE

LM4F232H5BB ROM

Copyright
Copyright © 2011-2013 Texas Instruments Incorporated. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments.
ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of
others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.ti.com/stellaris

Revision Information
This is version 730 of this document, last updated on January 4, 2013.

2 January 4, 2013

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 5

2 Boot Loader . 7
2.1 Introduction . 7
2.2 Serial Interfaces . 7
2.3 USB Interface . 12

3 AES Data Tables . 27
3.1 Introduction . 27
3.2 Data Structures . 27

4 Analog Comparator . 29
4.1 Introduction . 29
4.2 Functions . 29

5 Analog to Digital Converter (ADC) . 35
5.1 Introduction . 35
5.2 Functions . 35

6 Controller Area Network (CAN) . 53
6.1 Introduction . 53
6.2 Functions . 54

7 CRC . 69
7.1 Introduction . 69
7.2 Functions . 69

8 Flash . 73
8.1 Introduction . 73
8.2 Functions . 73

9 Floating-Point Unit (FPU) . 83
9.1 Introduction . 83
9.2 API Functions . 84

10 GPIO . 89
10.1 Introduction . 89
10.2 Functions . 89

11 Hibernation Module . 111
11.1 Introduction . 111
11.2 Functions . 112

12 Inter-Integrated Circuit (I2C) . 129
12.1 Introduction . 129
12.2 Functions . 130

13 Interrupt Controller (NVIC) . 151
13.1 Introduction . 151
13.2 Functions . 151

14 Memory Protection Unit (MPU) . 159
14.1 Introduction . 159
14.2 Functions . 160

15 Pulse Width Modulator (PWM) . 167

January 4, 2013 3

Table of Contents

15.1 Introduction . 167
15.2 Functions . 167

16 Quadrature Encoder (QEI) . 189
16.1 Introduction . 189
16.2 Functions . 189

17 Synchronous Serial Interface (SSI) . 199
17.1 Introduction . 199
17.2 Functions . 199

18 System Control . 211
18.1 Introduction . 211
18.2 Functions . 212

19 System Exception Module . 239
19.1 Introduction . 239
19.2 API Functions . 239

20 System Tick (SysTick) . 243
20.1 Introduction . 243
20.2 Functions . 243

21 Timer . 247
21.1 Introduction . 247
21.2 Functions . 247

22 UART . 265
22.1 Introduction . 265
22.2 Functions . 265

23 uDMA Controller . 287
23.1 Introduction . 287
23.2 Functions . 289

24 USB Controller . 313
24.1 Introduction . 313
24.2 Using USB with the uDMA Controller . 314
24.3 Functions . 318

25 Watchdog Timer . 359
25.1 Introduction . 359
25.2 Functions . 359

IMPORTANT NOTICE . 370

4 January 4, 2013

Introduction

1 Introduction
The LM4F232H5BB ROM contains the Stellaris® Peripheral Driver Library and the Stellaris Boot
Loader. The peripheral driver library can be utilized by applications to reduce their flash footprint,
allowing the flash to be used for other purposes (such as additional features in the application). The
boot loader is used as an initial program loader (when the flash is empty) as well as an application-
initiated firmware upgrade mechanism (by calling back to the boot loader).

There is a table at the beginning of the ROM that points to the entry points for the APIs that are
provided in the ROM. Accessing the API through these tables provides scalability; while the API
locations may change in future versions of the ROM, the API tables will not. The tables are split
into two levels; the main table contains one pointer per peripheral which points to a secondary table
that contains one pointer per API that is associated with that peripheral. The main table is located
at 0x0100.0010, right after the Cortex-M3 vector table in the ROM.

The following table shows a small portion of the API tables in a graphical form that helps to illustrate
the arrangement of the tables:

ROM_APITABLE (at 0x0100.0010)
[0] = ROM_VERSION
[1] = pointer to ROM_UARTTABLE
[2] = pointer to ROM_SSITABLE
[3] = pointer to ROM_I2CTABLE
[4] = pointer to ROM_GPIOTABLE =⇒ ROM_GPIOTABLE
[5] = pointer to ROM_ADCTABLE [0] = pointer to ROM_GPIOPinWrite
[6] = pointer to ROM_COMPARATORTABLE [1] = pointer to ROM_GPIODirModeSet
[7] = pointer to ROM_FLASHTABLE [2] = pointer to ROM_GPIODirModeGet
... ...

From this, the address of the ROM_GPIOTABLE table is located in the memory location at
0x0100.0020. The address of the ROM_GPIODirModeSet() function is contained at offset 0x4
from that table. In the function documentation, this is represented as:

ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODirModeSet is a function pointer located at ROM_GPIOTABLE[1].

The Stellaris Peripheral Driver Library contains a file called driverlib/rom.h that assists with
calling the peripheral driver library functions in the ROM. The naming conventions for the tables
and APIs that are used in this document match those used in that file.

The following is an example of calling the ROM_GPIODirModeSet() function:

#define TARGET_IS_BLIZZARD_RA1
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/rom.h"

int
main(void)
{

// ...

ROM_GPIODirModeSet(GPIO_PORTA_BASE, GPIO_PIN_0, GPIO_DIR_MODE_OUT);

January 4, 2013 5

Introduction

//
}

See the “Using the ROM” chapter of the Stellaris Peripheral Driver Library User’s Guide for more
details on calling the ROM functions and using driverlib/rom.h.

The API provided by the ROM can be utilized by any compiler so long as it complies with the
Embedded Applications Binary Interface (EABI), which includes all recent compilers for the Stellaris
microcontroller.

Documentation Overview

The ROM-based Stellaris Boot Loader is described in chapter 2, and the ROM-based Stellaris
Peripheral Driver Library is described in chapters 3 through 25.

6 January 4, 2013

Boot Loader

2 Boot Loader
Introduction . 7
Serial Interfaces . 7
USB . 12

2.1 Introduction

The ROM-based boot loader is executed each time the device is reset when the flash is empty.
The flash is assumed to be empty if the first two words are all ones (since the second word is the
reset vector address, it must be programmed for an application in flash to execute). When run, it
will allow the flash to be updated using one of the following interfaces:

UART0 using a custom serial protocol
SSI0 using a custom serial protocol
I2C0 using a custom serial protocol
USB using DFU protocol

The USB portion of the boot loader must run with the main PLL enabled which requires not only
that the boot loader detect if a crystal is present, but also determine the frequency of the attached
crystal to properly configure the main PLL. This crystal detection algorithm is only run when the
boot loader does not find a valid application and is not run when the boot loader is called from an
application. The device is configured to run from the PLL when there is a valid external crystal for
USB operation as specified in the data sheet.

The LM Flash Programmer GUI can be used to download an application via the boot loader over
the UART or USB interface on a PC. The LM Flash Programmer utility is available for download
from www.ti.com/stellaris.

2.2 Serial Interfaces

The serial interfaces used to communicate with the boot loader share a common protocol and differ
only in the physical connections and signaling used to transfer the bytes of the protocol.

2.2.1 UART Interface

The UART pins U0Tx and U0Rx are used to communicate with the boot loader. The device commu-
nicating with the boot loader is responsible for driving the U0Rx pin on the Stellaris microcontroller,
while the Stellaris microcontroller drives the U0Tx pin.

The serial data format is fixed at 8 data bits, no parity, and one stop bit. An auto-baud feature is
used to determine the baud rate at which data is transmitted. Because the system clock must be at
least 32 times the baud rate, the maximum baud rate that can be used is 500 Kbaud (which is 16
MHz divided by 32).

When an application calls back to the ROM-based boot loader to start an update over the UART
port, the auto-baud feature is bypassed, along with UART configuration and pin configuration.

January 4, 2013 7

http://www.ti.com/stellaris

Boot Loader

Therefore, the UART must be configured and the UART pins switched to their hardware function
before calling the boot loader.

2.2.2 SSI Interface

The SSI pins SSIFss, SSIClk, SSITx, and SSIRx are used to communicate with the boot loader.
The device communicating with the boot loader is responsible for driving the SSIRx, SSIClk, and
SSIFss pins, while the Stellaris microcontroller drives the SSITx pin.

The serial data format is fixed to the Motorola format with SPH set to 1 and SPO set to 1 (see the
applicable Stellaris family data sheet for more information on this format). Since the system clock
must be at least 12 times the serial clock rate, the maximum serial clock rate that can be used is
1.3 MHz (which is 16 MHz divided by 12).

When an application calls back to the ROM-based boot loader to start an update over the SSI port,
the SSI configuration and pin configuration is bypassed. Therefore, the SSI port must be configured
and the SSI pins switched to their hardware function before calling the boot loader.

2.2.3 I2C Interface

The I2C pins I2CSCL and I2CSDA are used to communicate with the boot loader. The device
communicating with the boot loader must operate as the I2C master and provide the I2CSCL signal.
The I2CSDA pin is open-drain and can be driven by either the master or the slave I2C device.

The I2C interface can run at up to 400 KHz, the maximum rate supported by the I2C protocol. The
boot loader uses an I2C slave address of 0x42.

When an application calls back to the ROM-based boot loader to start an update over the I2C port,
the I2C configuration and pin configuration is bypassed. Therefore, the I2C port must be configured,
the I2C slave address set, and the I2C pins switched to their hardware function before calling the
boot loader. Additionally, the I2C master must be enabled since it is used to detect start and stop
conditions on the I2C bus.

2.2.4 Serial Protocol

The boot loader uses well-defined packets on the serial interfaces to ensure reliable communica-
tions with the update program. The packets are always acknowledged or not acknowledged by the
communicating devices. The packets use the same format for receiving and sending packets. This
includes the method used to acknowledge successful or unsuccessful reception of a packet. While
the actual signaling on the serial ports is different, the packet format remains independent of the
method of transporting the data.

The following steps must be performed to successfully send a packet:

1. Send the size of the packet that will be sent to the device. The size is always the number of
bytes of data + 2 bytes.

2. Send the checksum of the data buffer to help ensure proper transmission of the command.
The checksum is simply a sum of the data bytes.

3. Send the actual data bytes.

8 January 4, 2013

Boot Loader

4. Wait for a single-byte acknowledgment from the device that it either properly received the data
or that it detected an error in the transmission.

The following steps must be performed to successfully receive a packet:

1. Wait for non-zero data to be returned from the device. This is important as the device may
send zero bytes between a sent and received data packet. The first non-zero byte received
will be the size of the packet that is being received.

2. Read the next byte which will be the checksum for the packet.

3. Read the data bytes from the device. There will be packet size - 2 bytes of data sent during
the data phase. For example, if the packet size was 3, then there is only 1 byte of data to be
received.

4. Calculate the checksum of the data bytes and ensure that it matches the checksum received
in the packet.

5. Send an acknowledge (ACK) or not-acknowledge (NAK) to the device to indicate the success-
ful or unsuccessful reception of the packet.

An acknowledge packet is sent whenever a packet is successfully received and verified by the boot
loader. A not-acknowledge packet is sent whenever a sent packet is detected to have an error,
usually as a result of a checksum error or just malformed data in the packet. This allows the sender
to re-transmit the previous packet.

The following commands are used by the custom protocol:

COMMAND_PING
= 0x20

This command is used to receive an acknowledge from the boot
loader indicating that communication has been established. This
command is a single byte.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_PING;

January 4, 2013 9

Boot Loader

COMMAND_DOWNLOAD
= 0x21

This command is sent to the boot loader to indicate where
to store data and how many bytes will be sent by the
COMMAND_SEND_DATA commands that follow. The command
consists of two 32-bit values that are both transferred MSB first.
The first 32-bit value is the address to start programming data
into, while the second is the 32-bit size of the data that will be
sent. This command also triggers a mass erase of the flash,
which causes the command to take longer to send the ACK/NAK
in response to the command. This command should be followed
by a COMMAND_GET_STATUS to ensure that the program ad-
dress and program size were valid for the microcontroller running
the boot loader.

The format of the command is as follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_DOWNLOAD;
ucCommand[1] = Program Address [31:24];
ucCommand[2] = Program Address [23:16];
ucCommand[3] = Program Address [15:8];
ucCommand[4] = Program Address [7:0];
ucCommand[5] = Program Size [31:24];
ucCommand[6] = Program Size [23:16];
ucCommand[7] = Program Size [15:8];
ucCommand[8] = Program Size [7:0];

COMMAND_RUN
= 0x22

This command is sent to the boot loader to transfer execution
control to the specified address. The command is followed by a
32-bit value, transferred MSB first, that is the address to which
execution control is transferred.

The format of the command is as follows:

unsigned char ucCommand[5];

ucCommand[0] = COMMAND_RUN;
ucCommand[1] = Run Address [31:24];
ucCommand[2] = Run Address [23:16];
ucCommand[3] = Run Address [15:8];
ucCommand[4] = Run Address [7:0];

10 January 4, 2013

Boot Loader

COMMAND_GET_STATUS
= 0x23

This command returns the status of the last command that was
issued. Typically, this command should be received after every
command is sent to ensure that the previous command was suc-
cessful or, if unsuccessful, to properly respond to a failure. The
command requires one byte in the data of the packet and the
boot loader should respond by sending a packet with one byte of
data that contains the current status code.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_GET_STATUS;

The following are the definitions for the possible status
values that can be returned from the boot loader when
COMMAND_GET_STATUS is sent to the the microcontroller.

COMMAND_RET_SUCCESS
COMMAND_RET_UNKNOWN_CMD
COMMAND_RET_INVALID_CMD
COMMAND_RET_INVALID_ADD
COMMAND_RET_FLASH_FAIL

COMMAND_SEND_DATA
= 0x24

This command should only follow a COMMAND_DOWNLOAD com-
mand or another COMMAND_SEND_DATA command, if more data
is needed. Consecutive send data commands automatically in-
crement the address and continue programming from the previ-
ous location. The transfer size is limited by the maximum size of
a packet, which allows up to 252 data bytes to be transferred at a
time. The command terminates programming once the number
of bytes indicated by the COMMAND_DOWNLOAD command has
been received. Each time this function is called, it should be
followed by a COMMAND_GET_STATUS command to ensure that
the data was successfully programmed into the flash. If the boot
loader sends a NAK to this command, the boot loader will not in-
crement the current address which allows for retransmission of
the previous data.

The format of the command is as follows:

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_SEND_DATA
ucCommand[1] = Data[0];
ucCommand[2] = Data[1];
ucCommand[3] = Data[2];
ucCommand[4] = Data[3];
ucCommand[5] = Data[4];
ucCommand[6] = Data[5];
ucCommand[7] = Data[6];
ucCommand[8] = Data[7];

January 4, 2013 11

Boot Loader

COMMAND_RESET
= 0x25

This command is used to tell the boot loader to reset. This is
used after downloading a new image to the microcontroller to
cause the new application to start from a reset. The normal boot
sequence occurs and the image runs as if from a hardware reset.
It can also be used to reset the boot loader if a critical error
occurs and the host device wants to restart communication with
the boot loader.

The boot loader responds with an ACK signal to the host device
before actually executing the software reset on the microcon-
troller running the boot loader. This informs the updater appli-
cation that the command was received successfully and the part
will be reset.

The format of the command is as follows:

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_RESET;

The definitions for these commands are provided as part of the Stellaris Peripheral Driver Library,
in boot_loader/bl_commands.h.

2.3 USB Interface

The USB boot loader allows programming the flash over USB using the standard USB DFU update
method. To use the USB boot loader, the system running the boot loader must be capable of acting
as a USB device and have the proper USB B or USB AB connector. The boot loader does not sup-
port firmware update of systems which operate solely as USB hosts. The USB update mechanism
allows the boot loader to either be called from a functioning application or from startup when no
firmware has been downloaded to the microcontroller. When the USB boot loader is called from an
application, the application can customize some of the descriptors that are used for enumeration.
This customization option is not available when the microcontroller is being programmed and there
is no application present on the microcontroller.

When the USB boot loader is invoked from a running application, the boot loader reconfigures the
USB controller to publish the required descriptor set for a Device Firmware Upgrade (DFU) class
device and merge in any custom values that the application provides. Before calling the boot loader
from an application, the main application is responsible for the following: enable the main PLL and
configure it as the system clock, enable the USB PLL, enable the USB controller, and enable the
USB D+ and D- pins on the microcontroller. If the main application is already acting as a USB
device, then the application must remove the device from the bus by calling the DriverLib function
ROM_USBDevDisconnect() prior to entering the boot loader.

2.3.1 USB Device Firmware Upgrade Overview

The USB boot loader enumerates as a Device Firmware Upgrade (DFU) class device.
This standard device class specifies a set of class-specific requests and a state ma-
chine that can be used to download and flash firmware images to a device and, op-

12 January 4, 2013

Boot Loader

tionally, upload the existing firmware image to the USB host. The full specification for
the device class can be downloaded from the USB Implementer’s Forum web site at
http://www.usb.org/developers/devclass_docs#approved.

All communication with the DFU device takes place using the USB control endpoint, endpoint 0. The
device publishes a standard device descriptor with vendor, product, device revisions and strings. It
also publishes a single configuration descriptor and a single interface descriptor where the interface
class of 0xFE indicates an application-specific class and the subclass of 0x01 indicates "Device
Firmware Upgrade". Attached to the interface descriptor is a DFU Functional Descriptor which
provides information to the host on DFU-specific device capabilities such as whether the device can
perform upload operations and what the maximum transfer size for upload and download operations
is.

DFU functions are initiated by means of a set of class-specific requests. Each request, which follows
the standard USB request format, performs some operation and moves the DFU device between
a series of well-defined states. Additional requests allow the host to query the current state of the
device to determine whether, for example, it is ready to receive the next block of download data.

A DFU device may operation in either “Run Time” mode or “DFU” mode. In “Run Time” mode, the
device publishes the DFU interface and functional descriptors along with any other descriptors that
the device requires for normal operation. However, it is not required to respond to any DFU class-
specific requests other than DFU_DETACH which indicates that it should switch to “DFU” mode.
The “Run Time” mode support is not part of the USB boot loader but can be added to a USB
device application to provide simple switching to “DFU” mode. If a main application wishes to
publish DFU descriptors and respond to the DFU_DETACH request, it can cause a switch to “DFU”
mode on receiving a DFU_DETACH request by removing itself from the USB bus using a call to
ROM_USBDevDisconnect() before transferring control to the USB boot loader by making a call
to ROM_UpdateUSB(). Once in “DFU” mode in the boot loader, the device supports all DFU
functionality and can perform upload and download operations as specified in its DFU functional
descriptor.

2.3.2 DFU Requests

Requests supported by the USB boot loader are as follow:

DFU_DNLOAD This OUT request is used to send a block of binary data to the
device. The DFU class specification does not define the con-
tent and format of the binary data but typically it is either binary
data to be written to some position in the device’s flash mem-
ory or a device-specific command. The request payload size is
constrained by the maximum packet size specified in the DFU
functional descriptor. In this implementation, that maximum is
set to 1024 bytes.
After sending a DFU_DNLOAD request, the host must poll the de-
vice status and wait until the state reverts to DNLOAD_IDLE be-
fore sending another request. If the host wishes to indicate that
it has finished sending download data, it sends a DFU_DNLOAD
request with a payload length of 0.

January 4, 2013 13

http://www.usb.org/developers/devclass_docs#approved.

Boot Loader

DFU_UPLOAD This IN request is used to request a block of binary data from
the device. The data returned is device-specific but is typi-
cally the contents of a region of the device’s flash memory or
a device-specific response to a command previously sent via
a DFU_DNLOAD request. As with DFU_DNLOAD, the maximum
amount of data that can be requested is governed by the maxi-
mum packet size specified in the DFU functional descriptor, here
1024 bytes.

DFU_GETSTATUS This IN request allows the host to query the current status of the
DFU device. It is typically used during download operations to
determine when it is safe to send the next block of data. De-
pending upon the state of the DFU device, this request may also
trigger a state change. During download, for example, the de-
vice enters DNLOAD_SYNC state after receiving a block of data
and remains there until the data has been processed and a
DFU_GETSTATUS request is received at which point the state
changes to DNLOAD_IDLE.

DFU_CLRSTATUS This request is used to reset any error condition reported by
the DFU device. If an error is reported via the response to a
DFU_GETSTATUS request, that error condition is cleared when
this request is received and the device returns to IDLE state.

DFU_GETSTATE This IN request is used to query the current state of the device
without triggering any state change. The single byte of data re-
turned indicates the current state of the DFU device.

DFU_ABORT This request cancels any partially complete upload or download
operation and returns the device to IDLE state in preparation for
some other request.

2.3.3 Typical Firmware Download Sequence

The following flow chart illustrates a typical firmware image download sequence from the perspec-
tive of the host application.

14 January 4, 2013

Boot Loader

DFU Device Enumerated

Exit

Send DFU_GETSTATUS

No

Send DFU_DNLOAD with
a block of firmware

image data.

State is
ERROR?

Yes

State is
DNLOAD_SYNC

or DNBUSY?
State is

DNLOAD_IDLE?

More data
to send?

No

No

YesYes

Send DFU_DNLOAD with
a zero-length payload.

Report the error condition

Send DFU_GETSTATUS

Yes

No

State is
ERROR?

Yes

No

January 4, 2013 15

Boot Loader

2.3.4 Stellaris-Specific USB Download Commands

The DFU class specification provides the framework necessary to download and upload firmware
files to the USB device but does not specify the actual format of the binary data that is transferred.
As a result, different device implementations have used different methods to perform operations
that are not defined in the standard such as:

Setting the address to flash a downloaded binary.
Setting the address and size of the area of flash with contents to be uploaded.
Erasing sections of the flash.
Querying the size of flash and writeable area addresses.

The USB boot loader implementation employs a small set of commands which can be sent to the
DFU device via a DFU_DNLOAD request when the device is in IDLE state. Each command takes
the form of an 8-byte structure that defines the operation to carry out and provides any required
additional parameters.

To ensure that a host application that does not have explicit support for Stellaris-specific commands
can still be used to download binary firmware images to the device, the protocol is defined such that
only a single 8-byte header structure must be placed at the start of the binary image being down-
loaded. This header and the DFU-defined suffix structure can both be added using the “dfuwrap”
command-line application supplied with StellarisWare, thus providing a single binary that can be
sent to a device running the Stellaris USB boot loader using a standard sequence of DFU_DNLOAD
requests with no other embedded commands or device-specific operations required. An application
which does understand the Stellaris-specific commands may make use of them to offer additional
functionality that would not otherwise be available.

Querying Command Support

Because the device-specific commands defined here are sent to the DFU device in DFU_DNLOAD
requests, the possibility exists that sending them to a device which does not understand the protocol
could result in corruption of that device’s firmware. To guard against this possibility, the Stellaris
USB boot loader supports an additional USB request which is used to query the device capabilities
and allow a host to determine whether or not the device supports the Stellaris commands. A device
which does not support the commands either stalls the request or returns unexpected data.

To determine whether a target DFU device supports the Stellaris-specific DFU commands, send
the following IN request to the DFU interface:

bmRequest-
Type

bRequest wValue wIndex wLength Data

10100001b 0x42 0x23 Interface 4 Protocol Info

where the protocol information returned is a 4-byte structure, the first two bytes of which are 0x4D,
0x4C and the second two bytes indicates the protocol version supported, currently 0x01 and 0x00
respectively.

Download Command Definitions

The following commands may be sent to the USB boot loader as the first 8 bytes of the payload to
a DFU_DNLOAD request. The boot loader expects any DFU_DNLOAD request received while in the

16 January 4, 2013

Boot Loader

IDLE state to contain a command header but does not look for a command unless the state is IDLE.
This protocol allows an application that is unaware of the command header to download a DFU-
wrapped binary image using a standard sequence of multiple DFU_DNLOAD and DFU_GETSTATUS
requests without the need to insert additional command headers during the download.

The commands defined here and their parameter block structures can be found in header file
usbdfu.h provided with StellarisWare. In all cases where multi-byte numbers are specified, the
numbers are stored in little-endian format with the least significant byte in the lowest addressed
location. The following definitions specify the command byte ordering unambiguously but care
must be taken to ensure correct byte swapping if using the command structure types defined in
usbdfu.h on big-endian systems.

DFU_CMD_PROG This command is used to provide the USB boot loader with the address at which
the next download should be written and the total length of the firmware image
that follows. This structure forms the header that is written to the DFU-wrapped
file generated by the dfuwrap tool.
The start address is provided in terms of 1024-byte flash blocks. To convert a
byte address to a block address, merely divide by 1024. The start address must
always be on a 1024-byte boundary.
This command may be followed by up to 1016 bytes of firmware image data,
this number being the maximum transfer size minus the 8 bytes of the command
structure.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_PROG (0x01)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

January 4, 2013 17

Boot Loader

DFU_CMD_READ This command is used to set the address range of the content to be returned
on subsequent DFU_UPLOAD requests from the host.
The start address is provided in terms of 1024-byte flash blocks. To convert a
byte address to a block address, divide by 1024. The start address must always
be on a 1024-byte boundary.
To read back a the contents of a region of flash, the host should send a
DFU_DNLOAD request with command DFU_CMD_READ, start address set to the
1KB block start address and length set to the number of bytes to read. The
host should then send one or more DFU_UPLOAD requests to receive the cur-
rent flash contents from the configured addresses. Data returned includes an
8-byte DFU_CMD_PROG prefix structure unless the prefix has been disabled by
sending a DFU_CMD_BIN command with the bBinary parameter set to 1. The
host should, therefore, be prepared to read 8 bytes more than the length spec-
ified in the READ command if the prefix is enabled.
By default, the 8-byte prefix is enabled for all upload operations. This prefix
is required by the DFU class specification which states that uploaded images
must be formatted to allow them to be directly downloaded back to the device
at a later time.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_READ (0x02)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

DFU_CMD_CHECK This command is used to check a region of flash to ensure that it is completely
erased.
The start address is provided in terms of 1024-byte flash blocks. To convert a
byte address to a block address, divide by 1024. The start address must always
be on a 1024-byte boundary. The length must also be a multiple of 4.
To check that a region of flash is erased, the DFU_CMD_CHECK command
should be sent with the required start address and region length set then the
host should issue a DFU_GETSTATUS request. If the erase check was success-
ful, the returned bStatus value is OK (0x00), otherwise it is errCheckErased
(0x05).

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_CHECK (0x03)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Region Size [7:0];
ucData[5] = Region Size [15:8];
ucData[6] = Region Size [23:16];
ucData[7] = Region Size [31:24];

18 January 4, 2013

Boot Loader

DFU_CMD_ERASE This command is used to erase a region of flash.
The start address is provided in terms of 1024-byte flash blocks. To convert a
byte address to a block address, divide by 1024. The start address must always
be on a 1024-byte boundary. The length must also be a multiple of 4.
The size of the region to erase is expressed in terms of flash blocks. The block
size can be determined using the DFU_CMD_INFO command.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_ERASE (0x04)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Number of Blocks [7:0];
ucData[5] = Number of Blocks [15:8];
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

January 4, 2013 19

Boot Loader

DFU_CMD_INFO This command is used to query information relating to the target de-
vice and programmable region of flash. The device information structure,
tDFUDeviceInfo, is returned on the next DFU_UPLOAD request following this
command.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_INFO (0x05)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

//***
//
// Payload returned in response to the DFU_CMD_INFO command.
//
// This is structure is returned in response to the first DFU_UPLOAD
// request following a DFU_CMD_INFO command. Note that byte ordering
// of multi-byte fields is little-endian.
//
//***
typedef struct
{

//
// The size of a flash block in bytes.
//
unsigned short usFlashBlockSize;

//
// The number of blocks of flash in the device. Total
// flash size is usNumFlashBlocks * usFlashBlockSize.
//
unsigned short usNumFlashBlocks;

//
// Information on the part number, family, version and
// package as read from SYSCTL register DID1.
//
unsigned long ulPartInfo;

//
// Information on the part class and revision as read
// from SYSCTL DID0.
//
unsigned long ulClassInfo;

//
// Address 1 byte above the highest location the boot
// loader can access.
//
unsigned long ulFlashTop;

//
// Lowest address the boot loader can write or erase.
//
unsigned long ulAppStartAddr;

}
PACKED tDFUDeviceInfo;

20 January 4, 2013

Boot Loader

DFU_CMD_BIN By default, data returned in response to a DFU_UPLOAD request includes an
8-byte DFU_CMD_PROG prefix structure. This ensures that an uploaded image
can be directly downloaded again without the need to further wrap it but, in
cases where pure binary data is required, can be awkward. The DFU_CMD_BIN
command allows the upload prefix to be disabled or enabled under host control.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_BIN (0x06)
ucData[1] = 0x01 to disable upload prefix, 0x00 to enable
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

DFU_CMD_RESET This command may be sent to the USB boot loader to cause it to perform a
soft reset of the board. This reboots the system and, assuming that the main
application image is present, runs the main application. Note that a reboot also
takes place if a firmware download operation completes and the host issues a
USB reset to the DFU device.

The format of the command is as follows:

unsigned char ucData[8];

ucData[0] = DFU_CMD_RESET (0x07)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

2.3.5 Customizing the USB Device Firmware Upgrade

The USB boot loader provides a method to pass a set of custom values to the boot loader when
called from a running application. When the USB boot loader is entered because the flash was
empty, the boot ROM offers no customization and provides generic Texas Instruments and Stellaris
strings to the host as identifiers. The USB boot loader is called by an application via a call to
ROM_UpdateUSB(), which takes a single pointer as an argument that is a pointer to an array
containing the values that the boot loader uses for customization. This pointer can also be 0 to
indicate that the application wishes to use the defaults provided by the ROM boot loader. The
application can place the customization structure anywhere in flash or SRAM.

The actual values that can be customized are the following:

January 4, 2013 21

Boot Loader

Vendor ID (default 0x1CBE)

Product ID (default 0x00FF)

Bus/Self Power (default Self Powered)

Max Power (default 0)

Device Version (default 0x110)

All strings in multiple languages

The defaults for the strings are a Manufacturer set to "Texas Instruments", Product set to "Device
Firmware Update", and serial number set to "1.0".

If the application is providing a structure to the boot loader with custom values, then the first 12
bytes must contain valid data. The values in the structure that is passed to the boot loader have the
following meaning and are merged directly to the device and configuration descriptor for the boot
loader:

Byte Value
0 VID bits 7:0
1 VID bits 15:8
2 PID bits 7:9
3 PID bits 15:8
4 Device Version(BCD) bits 7:9
5 Device Version(BCD) bits 15:8
6 Power in 2mA Increments(250 maximum)
7 USB Configuration Descriptor bmAttributes (Self powered 0xC0,

Bus powered 0x80).
8-11 Pointer to the string table

The values for the custom strings are contained in a pointer at the end of the structure passed to
the boot loader. If the application wants to use the default strings, this pointer should be set to 0.
The string table provided supports custom strings for Manufacturer, Product, and Serial Number in
multiple languages. The string table is optimized to not require that a string be provided for every
language in case there is not a unique string for every language. This is most likely the case for the
Serial Number string but it could be any string that is provided.

The string table has a header that describes the number of languages provided and the language
identifiers for each followed by a set of strings for each language. Each entry in the table has a size
header that specifies the size of the string in bytes plus a byte for the size itself and a one byte tag
of USB_DTYPE_STRING(0x03). This size and ID padding is included for ease of string handling in
the boot loader and is required. It is very important for the application to provide the correct size
values because the boot loader uses these to skip through the array and find the requested strings
requested by the USB host. If these sizes are incorrect, the boot loader may fail to enumerate, so
care should be taken when building the string table. The application must provide all three strings
in the first language because these strings are treated as the default if a string is left blank in
other languages. In other languages, a string can be left blank for strings that do not change per
language. A blank entry in the table consists of a two byte entry with a byte size value of 2 followed
by the USB_DTYPE_STRING value.

The string table has the following format:

Byte Description
0 Size of the header(Number of Languages * 2) + 2

22 January 4, 2013

Boot Loader

1 USB_DTYPE_STRING
2 Language ID 0 bits[7:0]
3 Language ID 0 bits[15:8]
... ...
. Language ID n bits[7:0]
. Language ID n bits[15:8]
. Language 0 Manufacturer string size in bytes + 2
. USB_DTYPE_STRING
. Language 0 Manufacturer Unicode String
. Language 0 Product string size in bytes + 2
. USB_DTYPE_STRING
. Language 0 Product Unicode String
. Language 0 Serial Number size in bytes + 2
. USB_DTYPE_STRING
. Language 0 Serial Number Unicode String
... ...
. Language n Manufacturer string size in bytes + 2
. USB_DTYPE_STRING
. Language n Manufacturer Unicode String
. Language n Product string size in bytes + 2
. USB_DTYPE_STRING
. Language n Product Unicode String
. Language n Serial Number size in bytes + 2
. USB_DTYPE_STRING
. Language n Serial Number Unicode String

The next three examples show an example customization structure for a no string case, a single
language case and a multiple language case.

Example: No strings but custom descriptor.

unsigned char pucUSBBootROMInfo[]=
{

0xbe, 0x1c, // Stellaris VID
0xff, 0x00, // Stellaris DFU PID
0x00, 0x02, // USB version 2.0
0x00, // 0mA of Bus power
0xC0, // Self powered using no bus power
0 // Address of the string table

}

//
// Call to ROM USB boot loader.
//
ROM_UpdateUSB(pucUSBBootROMInfo);

Example: Single US English string set.

unsigned char pucStrings[]=

January 4, 2013 23

Boot Loader

{
(1 * 2) + 2, // One Language (1 * 2) + 2
USB_DTYPE_STRING,
0x09, 0x04, // Language code for US English.

(17 * 2) + 2, // Size of Manufacturer String.
// "Texas Instruments"

USB_DTYPE_STRING,
’T’, 0, ’e’, 0, ’x’, 0, ’a’, 0, ’s’, 0, ’ ’, 0, ’I’, 0, ’n’, 0,
’s’, 0, ’t’, 0, ’r’, 0, ’u’, 0, ’m’, 0, ’e’, 0, ’n’, 0, ’t’, 0,
’s’, 0,

(23 * 2) + 2, // Size of Product String.
USB_DTYPE_STRING,

// "Device Firmware Upgrade"
’D’, 0, ’e’, 0, ’v’, 0, ’i’, 0, ’c’, 0, ’e’, 0, ’ ’, 0, ’F’, 0,
’i’, 0, ’r’, 0, ’m’, 0, ’w’, 0, ’a’, 0, ’r’, 0, ’e’, 0, ’ ’, 0,
’U’, 0, ’p’, 0, ’g’, 0, ’r’, 0, ’a’, 0, ’d’, 0, ’e’, 0,

(3 * 2) + 2, // Size of Serial Number.
USB_DTYPE_STRING,

// "1.0"
’1’, 0, ’.’, 0, ’0’, 0

};

unsigned char pucUSBBootROMInfo[]=
{

0xbe, 0x1c, // Stellaris VID
0xff, 0x00, // Stellaris DFU PID
0x00, 0x02, // USB version 2.0
0x00, // 0mA of Bus power
0xC0, // Self powered using no bus power
pucStrings // Address of the string table

}

//
// Call to ROM USB boot loader.
//
ROM_UpdateUSB(pucUSBBootROMInfo);

Example: Two Languages with English(United States) and Spanish(Mexico) strings.

unsigned char pucStrings[]=
{

(2 * 2) + 2, // Two languages
USB_DTYPE_STRING,
0x09, 0x04, // Language code for English(United States).
0x0a, 0x08, // Language code for Spanish(Mexico)

(10 * 2) + 2, // Size of Manufacturer String.
// "My Company"

USB_DTYPE_STRING,

24 January 4, 2013

Boot Loader

’M’, 0, ’y’, 0, ’ ’, 0, ’C’, 0, ’o’, 0, ’m’, 0, ’p’, 0, ’a’, 0,
’n’, 0, ’y’, 0

(23 * 2) + 2, // Size of Product String.
USB_DTYPE_STRING,

// "Device Firmware Upgrade"
’D’, 0, ’e’, 0, ’v’, 0, ’i’, 0, ’c’, 0, ’e’, 0, ’ ’, 0, ’F’, 0,
’i’, 0, ’r’, 0, ’m’, 0, ’w’, 0, ’a’, 0, ’r’, 0, ’e’, 0, ’ ’, 0,
’U’, 0, ’p’, 0, ’g’, 0, ’r’, 0, ’a’, 0, ’d’, 0, ’e’, 0,

(4 * 2) + 2, // Size of Serial Number.
USB_DTYPE_STRING,

// "1.01"
’1’, 0, ’.’, 0, ’0’, 0, ’1’, 0

(10 * 2) + 2, // Size of Manufacturer String.
USB_DTYPE_STRING,

// "My Company"
’M’, 0, ’y’, 0, ’ ’, 0, ’C’, 0, ’o’, 0, ’m’, 0, ’p’, 0, ’a’, 0,
’n’, 0, ’y’, 0
’s’, 0,

(25 * 2) + 2, // Size of Product String.
USB_DTYPE_STRING,

// "Actualizacion de Firmware"
’A’, 0, ’c’, 0, ’t’, 0, ’u’, 0, ’a’, 0, ’l’, 0, ’i’, 0, ’z’, 0,
’a’, 0, ’c’, 0, ’i’, 0, ’o’, 0, ’n’, 0, ’ ’, 0, ’d’, 0, ’e’, 0,
’ ’, 0, ’F’, 0, ’i’, 0, ’r’, 0, ’m’, 0, ’w’, 0, ’a’, 0, ’r’, 0,
’e’, 0,

2, // Size of Serial Number, this will use the last
// serial number found since this represents a null
// string.

USB_DTYPE_STRING,
};

unsigned char pucUSBBootROMInfo[]=
{

0xbe, 0x1c, // Stellaris VID
0xff, 0x00, // Stellaris DFU PID
250, // 500mA of Bus power
0x80, // Bus Powered
0x00, 0x02, // USB version 2.0
pucStrings // Address of the string table

};

//
// Call to ROM USB boot loader.
//
ROM_UpdateUSB(pucUSBBootROMInfo);

January 4, 2013 25

Boot Loader

26 January 4, 2013

AES Data Tables

3 AES Data Tables
Introduction . 27
Functions . 27

3.1 Introduction

The Advanced Encryption Standard (AES) is a publicly defined encryption standard used by the
U.S. Government. It is a strong encryption method with reasonable performance and size. AES
is fast in both hardware and software, is fairly easy to implement, and requires little memory. AES
is ideal for applications that can use pre-arranged keys, such as setup during manufacturing or
configuration.

Four data tables used by the XySSL AES implementation are provided in the ROM. The first is
the forward S-box substitution table, the second is the reverse S-box substitution table, the third is
the forward polynomial table, and the final is the reverse polynomial table. The meanings of these
tables and their use can be found in the AES code provided in StellarisWare.

3.2 Data Structures

Data Structures
ROM_pvAESTable

3.2.1 Data Structure Documentation

3.2.1.1 ROM_pvAESTable

This structure describes the AES tables that are available in the ROM.

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_pvAESTable is an array located at &ROM_SOFTWARETABLE[7].

Definition:
typedef struct
{

unsigned char ucForwardSBox[256];
unsigned long ulForwardTable[256];
unsigned char ucReverseSBox[256];
unsigned long ulReverseTable[256];

}
ROM_pvAESTable

Members:
ucForwardSBox This table contains the forward S-Box, as defined by the AES standard.

January 4, 2013 27

AES Data Tables

ulForwardTable This table contains the forward polynomial table, as used by the XySSL AES
implementation.

ucReverseSBox This table contains the reverse S-Box, as defined by the AES standard. This
is simply the reverse of ucForwardSBox.

ulReverseTable This table contains the reverse polynomial table, as used by the XySSL AES
implementation.

28 January 4, 2013

Analog Comparator

4 Analog Comparator
Introduction . 29
Functions . 29

4.1 Introduction

The comparator API provides a set of functions for dealing with the analog comparators. A com-
parator can compare a test voltage against individual external reference voltage, a shared single
external reference voltage, or a shared internal reference voltage. It can provide its output to a
device pin, acting as a replacement for an analog comparator on the board, or it can be used to
signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample
sequence. The interrupt generation and ADC triggering logic is separate, so that an interrupt can
be generated on a rising edge and the ADC triggered on a falling edge (for example).

4.2 Functions

Functions
void ROM_ComparatorConfigure (unsigned long ulBase, unsigned long ulComp, unsigned
long ulConfig)
void ROM_ComparatorIntClear (unsigned long ulBase, unsigned long ulComp)
void ROM_ComparatorIntDisable (unsigned long ulBase, unsigned long ulComp)
void ROM_ComparatorIntEnable (unsigned long ulBase, unsigned long ulComp)
tBoolean ROM_ComparatorIntStatus (unsigned long ulBase, unsigned long ulComp, tBoolean
bMasked)
void ROM_ComparatorRefSet (unsigned long ulBase, unsigned long ulRef)
tBoolean ROM_ComparatorValueGet (unsigned long ulBase, unsigned long ulComp)

4.2.1 Function Documentation

4.2.1.1 ROM_ComparatorConfigure

Configures a comparator.

Prototype:
void
ROM_ComparatorConfigure(unsigned long ulBase,

unsigned long ulComp,
unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorConfigure is a function pointer located at ROM_COMPARATORTABLE[1].

January 4, 2013 29

Analog Comparator

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator to configure.
ulConfig is the configuration of the comparator.

Description:
This function configures a comparator. The ulConfig parameter is the result of a logical
OR operation between the COMP_TRIG_xxx, COMP_INT_xxx, COMP_ASRCP_xxx, and
COMP_OUTPUT_xxx values.

The COMP_TRIG_xxx term can take on the following values:

COMP_TRIG_NONE to have no trigger to the ADC.
COMP_TRIG_HIGH to trigger the ADC when the comparator output is high.
COMP_TRIG_LOW to trigger the ADC when the comparator output is low.
COMP_TRIG_FALL to trigger the ADC when the comparator output goes low.
COMP_TRIG_RISE to trigger the ADC when the comparator output goes high.
COMP_TRIG_BOTH to trigger the ADC when the comparator output goes low or high.

The COMP_INT_xxx term can take on the following values:

COMP_INT_HIGH to generate an interrupt when the comparator output is high.
COMP_INT_LOW to generate an interrupt when the comparator output is low.
COMP_INT_FALL to generate an interrupt when the comparator output goes low.
COMP_INT_RISE to generate an interrupt when the comparator output goes high.
COMP_INT_BOTH to generate an interrupt when the comparator output goes low or high.

The COMP_ASRCP_xxx term can take on the following values:

COMP_ASRCP_PIN to use the dedicated Comp+ pin as the reference voltage.
COMP_ASRCP_PIN0 to use the Comp0+ pin as the reference voltage (this the same as
COMP_ASRCP_PIN for the comparator 0).
COMP_ASRCP_REF to use the internally generated voltage as the reference voltage.

The COMP_OUTPUT_xxx term can take on the following values:

COMP_OUTPUT_NORMAL to enable a non-inverted output from the comparator to a
device pin.
COMP_OUTPUT_INVERT to enable an inverted output from the comparator to a device
pin.

Returns:
None.

4.2.1.2 ROM_ComparatorIntClear

Clears a comparator interrupt.

Prototype:
void
ROM_ComparatorIntClear(unsigned long ulBase,

unsigned long ulComp)

30 January 4, 2013

Analog Comparator

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntClear is a function pointer located at ROM_COMPARATORTABLE[0].

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
The comparator interrupt is cleared, so that it no longer asserts. This function must be called in
the interrupt handler to keep the handler from being called again immediately upon exit. Note
that for a level-triggered interrupt, the interrupt cannot be cleared until it stops asserting.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

4.2.1.3 ROM_ComparatorIntDisable

Disables the comparator interrupt.

Prototype:
void
ROM_ComparatorIntDisable(unsigned long ulBase,

unsigned long ulComp)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntDisable is a function pointer located at ROM_COMPARATORTABLE[5].

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function disables generation of an interrupt from the specified comparator. Only compara-
tors whose interrupts are enabled can be reflected to the processor.

Returns:
None.

January 4, 2013 31

Analog Comparator

4.2.1.4 ROM_ComparatorIntEnable

Enables the comparator interrupt.

Prototype:
void
ROM_ComparatorIntEnable(unsigned long ulBase,

unsigned long ulComp)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntEnable is a function pointer located at ROM_COMPARATORTABLE[4].

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function enables generation of an interrupt from the specified comparator. Only compara-
tors whose interrupts are enabled can be reflected to the processor.

Returns:
None.

4.2.1.5 ROM_ComparatorIntStatus

Gets the current interrupt status.

Prototype:
tBoolean
ROM_ComparatorIntStatus(unsigned long ulBase,

unsigned long ulComp,
tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntStatus is a function pointer located at ROM_COMPARATORTABLE[6].

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the comparator. Either the raw or the masked interrupt
status can be returned.

Returns:
true if the interrupt is asserted and false if it is not asserted.

32 January 4, 2013

Analog Comparator

4.2.1.6 ROM_ComparatorRefSet

Sets the internal reference voltage.

Prototype:
void
ROM_ComparatorRefSet(unsigned long ulBase,

unsigned long ulRef)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorRefSet is a function pointer located at ROM_COMPARATORTABLE[2].

Parameters:
ulBase is the base address of the comparator module.
ulRef is the desired reference voltage.

Description:
This function sets the internal reference voltage value. The voltage is specified as one of the
following values:

COMP_REF_OFF to turn off the reference voltage
COMP_REF_0V to set the reference voltage to 0 V
COMP_REF_0_1375V to set the reference voltage to 0.1375 V
COMP_REF_0_275V to set the reference voltage to 0.275 V
COMP_REF_0_4125V to set the reference voltage to 0.4125 V
COMP_REF_0_55V to set the reference voltage to 0.55 V
COMP_REF_0_6875V to set the reference voltage to 0.6875 V
COMP_REF_0_825V to set the reference voltage to 0.825 V
COMP_REF_0_928125V to set the reference voltage to 0.928125 V
COMP_REF_0_9625V to set the reference voltage to 0.9625 V
COMP_REF_1_03125V to set the reference voltage to 1.03125 V
COMP_REF_1_134375V to set the reference voltage to 1.134375 V
COMP_REF_1_1V to set the reference voltage to 1.1 V
COMP_REF_1_2375V to set the reference voltage to 1.2375 V
COMP_REF_1_340625V to set the reference voltage to 1.340625 V
COMP_REF_1_375V to set the reference voltage to 1.375 V
COMP_REF_1_44375V to set the reference voltage to 1.44375 V
COMP_REF_1_5125V to set the reference voltage to 1.5125 V
COMP_REF_1_546875V to set the reference voltage to 1.546875 V
COMP_REF_1_65V to set the reference voltage to 1.65 V
COMP_REF_1_753125V to set the reference voltage to 1.753125 V
COMP_REF_1_7875V to set the reference voltage to 1.7875 V
COMP_REF_1_85625V to set the reference voltage to 1.85625 V
COMP_REF_1_925V to set the reference voltage to 1.925 V
COMP_REF_1_959375V to set the reference voltage to 1.959375 V
COMP_REF_2_0625V to set the reference voltage to 2.0625 V
COMP_REF_2_165625V to set the reference voltage to 2.165625 V

January 4, 2013 33

Analog Comparator

COMP_REF_2_26875V to set the reference voltage to 2.26875 V
COMP_REF_2_371875V to set the reference voltage to 2.371875 V

Returns:
None.

4.2.1.7 ROM_ComparatorValueGet

Gets the current comparator output value.

Prototype:
tBoolean
ROM_ComparatorValueGet(unsigned long ulBase,

unsigned long ulComp)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorValueGet is a function pointer located at ROM_COMPARATORTABLE[3].

Parameters:
ulBase is the base address of the comparator module.
ulComp is the index of the comparator.

Description:
This function retrieves the current value of the comparator output.

Returns:
Returns true if the comparator output is high and false if the comparator output is low.

34 January 4, 2013

Analog to Digital Converter (ADC)

5 Analog to Digital Converter (ADC)
Introduction . 35
Functions . 35

5.1 Introduction

The analog to digital converter (ADC) API provides a set of functions for dealing with the ADC.
Functions are provided to configure the sample sequencers, read the captured data, register a
sample sequence interrupt handler, and handle interrupt masking/clearing.

The ADC supports twenty-four input channels plus an internal temperature sensor. Four sampling
sequences, each with configurable trigger events, can be captured. The first sequence will capture
up to eight samples, the second and third sequences will capture up to four samples, and the fourth
sequence will capture a single sample. Each sample can be the same channel, different channels,
or any combination in any order.

The sample sequences have configurable priorities that determine the order in which they are cap-
tured when multiple triggers occur simultaneously. The highest priority sequence that is currently
triggered will be sampled. Care must be taken with triggers that occur frequently (such as the
“always” trigger); if their priority is too high it is possible to starve the lower priority sequences.

Hardware oversampling of the ADC data is available for improved accuracy. An oversampling fac-
tor of 2x, 4x, 8x, 16x, 32x, and 64x is supported, but reduces the throughput of the ADC by a
corresponding factor. Hardware oversampling is applied uniformly across all sample sequences.

5.2 Functions

Functions
void ROM_ADCComparatorConfigure (unsigned long ulBase, unsigned long ulComp, un-
signed long ulConfig)
void ROM_ADCComparatorIntClear (unsigned long ulBase, unsigned long ulStatus)
void ROM_ADCComparatorIntDisable (unsigned long ulBase, unsigned long ulSequen-
ceNum)
void ROM_ADCComparatorIntEnable (unsigned long ulBase, unsigned long ulSequenceNum)
unsigned long ROM_ADCComparatorIntStatus (unsigned long ulBase)
void ROM_ADCComparatorRegionSet (unsigned long ulBase, unsigned long ulComp, un-
signed long ulLowRef, unsigned long ulHighRef)
void ROM_ADCComparatorReset (unsigned long ulBase, unsigned long ulComp, tBoolean
bTrigger, tBoolean bInterrupt)
void ROM_ADCHardwareOversampleConfigure (unsigned long ulBase, unsigned long ulFac-
tor)
void ROM_ADCIntClear (unsigned long ulBase, unsigned long ulSequenceNum)
void ROM_ADCIntDisable (unsigned long ulBase, unsigned long ulSequenceNum)
void ROM_ADCIntEnable (unsigned long ulBase, unsigned long ulSequenceNum)

January 4, 2013 35

Analog to Digital Converter (ADC)

unsigned long ROM_ADCIntStatus (unsigned long ulBase, unsigned long ulSequenceNum,
tBoolean bMasked)
unsigned long ROM_ADCPhaseDelayGet (unsigned long ulBase)
void ROM_ADCPhaseDelaySet (unsigned long ulBase, unsigned long ulPhase)
void ROM_ADCProcessorTrigger (unsigned long ulBase, unsigned long ulSequenceNum)
unsigned long ROM_ADCReferenceGet (unsigned long ulBase)
void ROM_ADCReferenceSet (unsigned long ulBase, unsigned long ulRef)
void ROM_ADCSequenceConfigure (unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long ulTrigger, unsigned long ulPriority)
long ROM_ADCSequenceDataGet (unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long ∗pulBuffer)
void ROM_ADCSequenceDisable (unsigned long ulBase, unsigned long ulSequenceNum)
void ROM_ADCSequenceEnable (unsigned long ulBase, unsigned long ulSequenceNum)
long ROM_ADCSequenceOverflow (unsigned long ulBase, unsigned long ulSequenceNum)
void ROM_ADCSequenceOverflowClear (unsigned long ulBase, unsigned long ulSequen-
ceNum)
void ROM_ADCSequenceStepConfigure (unsigned long ulBase, unsigned long ulSequen-
ceNum, unsigned long ulStep, unsigned long ulConfig)
long ROM_ADCSequenceUnderflow (unsigned long ulBase, unsigned long ulSequenceNum)
void ROM_ADCSequenceUnderflowClear (unsigned long ulBase, unsigned long ulSequen-
ceNum)

5.2.1 Function Documentation

5.2.1.1 ROM_ADCComparatorConfigure

Configures an ADC digital comparator.

Prototype:
void
ROM_ADCComparatorConfigure(unsigned long ulBase,

unsigned long ulComp,
unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorConfigure is a function pointer located at ROM_ADCTABLE[15].

Parameters:
ulBase is the base address of the ADC module.
ulComp is the index of the comparator to configure.
ulConfig is the configuration of the comparator.

Description:
This function will configure a comparator. The ulConfig parameter is the result of a logical OR
operation between the ADC_COMP_TRIG_xxx, and ADC_COMP_INT_xxx values.

The ADC_COMP_TRIG_xxx term can take on the following values:

36 January 4, 2013

Analog to Digital Converter (ADC)

ADC_COMP_TRIG_NONE to never trigger PWM fault condition.
ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the low-band.
ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC output
transitions into the low-band.
ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when ADC
output is in the low-band only if ADC output has been in the high-band since the last
trigger output.
ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC output
transitions into low-band only if ADC output has been in the high-band since the last trigger
output.
ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the mid-band.
ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC output
transitions into the mid-band.
ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the high-band.
ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC output
transitions into the high-band.
ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when ADC
output is in the high-band only if ADC output has been in the low-band since the last
trigger output.
ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC output
transitions into high-band only if ADC output has been in the low-band since the last trigger
output.

The ADC_COMP_INT_xxx term can take on the following values:

ADC_COMP_INT_NONE to never generate ADC interrupt.
ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC output is
in the low-band.
ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output transi-
tions into the low-band.
ADC_COMP__INT_LOW_HALWAYS to always generate ADC interrupt when ADC output
is in the low-band only if ADC output has been in the high-band since the last trigger output.
ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output tran-
sitions into low-band only if ADC output has been in the high-band since the last trigger
output.
ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC output is
in the mid-band.
ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output transi-
tions into the mid-band.
ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC output is
in the high-band.
ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output transi-
tions into the high-band.
ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC output
is in the high-band only if ADC output has been in the low-band since the last trigger output.
ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output tran-
sitions into high-band only if ADC output has been in the low-band since the last trigger
output.

January 4, 2013 37

Analog to Digital Converter (ADC)

Returns:
None.

5.2.1.2 ROM_ADCComparatorIntClear

Clears sample sequence comparator interrupt source.

Prototype:
void
ROM_ADCComparatorIntClear(unsigned long ulBase,

unsigned long ulStatus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntClear is a function pointer located at ROM_ADCTABLE[21].

Parameters:
ulBase is the base address of the ADC module.
ulStatus is the bit-mapped interrupts status to clear.

Description:
The specified interrupt status is cleared.

Returns:
None.

5.2.1.3 ROM_ADCComparatorIntDisable

Disables a sample sequence comparator interrupt.

Prototype:
void
ROM_ADCComparatorIntDisable(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntDisable is a function pointer located at ROM_ADCTABLE[18].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence comparator interrupt.

Returns:
None.

38 January 4, 2013

Analog to Digital Converter (ADC)

5.2.1.4 ROM_ADCComparatorIntEnable

Enables a sample sequence comparator interrupt.

Prototype:
void
ROM_ADCComparatorIntEnable(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntEnable is a function pointer located at ROM_ADCTABLE[19].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence comparator interrupt.

Returns:
None.

5.2.1.5 ROM_ADCComparatorIntStatus

Gets the current comparator interrupt status.

Prototype:
unsigned long
ROM_ADCComparatorIntStatus(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntStatus is a function pointer located at ROM_ADCTABLE[20].

Parameters:
ulBase is the base address of the ADC module.

Description:
This returns the digitial comparator interrupt status bits. This status is sequence agnostic.

Returns:
The current comparator interrupt status.

5.2.1.6 ROM_ADCComparatorRegionSet

Defines the ADC digital comparator regions.

January 4, 2013 39

Analog to Digital Converter (ADC)

Prototype:
void
ROM_ADCComparatorRegionSet(unsigned long ulBase,

unsigned long ulComp,
unsigned long ulLowRef,
unsigned long ulHighRef)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorRegionSet is a function pointer located at ROM_ADCTABLE[16].

Parameters:
ulBase is the base address of the ADC module.
ulComp is the index of the comparator to configure.
ulLowRef is the reference point for the low/mid band threshold.
ulHighRef is the reference point for the mid/high band threshold.

Description:
The ADC digital comparator operation is based on three ADC value regions:

low-band is defined as any ADC value less than or equal to the ulLowRef value.
mid-band is defined as any ADC value greater than the ulLowRef value but less than or
equal to the ulHighRef value.
high-band is defined as any ADC value greater than the ulHighRef value.

Returns:
None.

5.2.1.7 ROM_ADCComparatorReset

Resets the current ADC digital comparator conditions.

Prototype:
void
ROM_ADCComparatorReset(unsigned long ulBase,

unsigned long ulComp,
tBoolean bTrigger,
tBoolean bInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorReset is a function pointer located at ROM_ADCTABLE[17].

Parameters:
ulBase is the base address of the ADC module.
ulComp is the index of the comparator.
bTrigger is the flag to indicate reset of Trigger conditions.
bInterrupt is the flag to indicate reset of Interrupt conditions.

40 January 4, 2013

Analog to Digital Converter (ADC)

Description:
Because the digital comparator uses current and previous ADC values, this function is provide
to allow the comparator to be reset to its initial value to prevent stale data from being used
when a sequence is enabled.

Returns:
None.

5.2.1.8 ROM_ADCHardwareOversampleConfigure

Configures the hardware oversampling factor of the ADC.

Prototype:
void
ROM_ADCHardwareOversampleConfigure(unsigned long ulBase,

unsigned long ulFactor)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCHardwareOversampleConfigure is a function pointer located at
ROM_ADCTABLE[14].

Parameters:
ulBase is the base address of the ADC module.
ulFactor is the number of samples to be averaged.

Description:
This function configures the hardware oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Six different oversampling rates are supported; 2x,
4x, 8x, 16x, 32x, and 64x. Specifying an oversampling factor of zero will disable hardware
oversampling.

Hardware oversampling applies uniformly to all sample sequencers. It does not reduce the
depth of the sample sequencers like the software oversampling APIs; each sample written into
the sample sequence FIFO is a fully oversampled analog input reading.

Enabling hardware averaging increases the precision of the ADC at the cost of throughput. For
example, enabling 4x oversampling reduces the throughput of a 250 Ksps ADC to 62.5 Ksps.

Note:
Hardware oversampling is available beginning with Rev C0 of the Stellaris microcontroller.

Returns:
None.

5.2.1.9 ROM_ADCIntClear

Clears sample sequence interrupt source.

January 4, 2013 41

Analog to Digital Converter (ADC)

Prototype:
void
ROM_ADCIntClear(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntClear is a function pointer located at ROM_ADCTABLE[4].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
The specified sample sequence interrupt is cleared, so that it no longer asserts. This must be
done in the interrupt handler to keep it from being called again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

5.2.1.10 ROM_ADCIntDisable

Disables a sample sequence interrupt.

Prototype:
void
ROM_ADCIntDisable(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntDisable is a function pointer located at ROM_ADCTABLE[1].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence interrupt.

Returns:
None.

42 January 4, 2013

Analog to Digital Converter (ADC)

5.2.1.11 ROM_ADCIntEnable

Enables a sample sequence interrupt.

Prototype:
void
ROM_ADCIntEnable(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntEnable is a function pointer located at ROM_ADCTABLE[2].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence interrupt. Any outstanding interrupts
are cleared before enabling the sample sequence interrupt.

Returns:
None.

5.2.1.12 ROM_ADCIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ROM_ADCIntStatus(unsigned long ulBase,

unsigned long ulSequenceNum,
tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntStatus is a function pointer located at ROM_ADCTABLE[3].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the specified sample sequence. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current raw or masked interrupt status.

January 4, 2013 43

Analog to Digital Converter (ADC)

5.2.1.13 ROM_ADCPhaseDelayGet

Gets the phase delay between a trigger and the start of a sequence.

Prototype:
unsigned long
ROM_ADCPhaseDelayGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCPhaseDelayGet is a function pointer located at ROM_ADCTABLE[25].

Parameters:
ulBase is the base address of the ADC module.

Description:
This function gets the current phase delay between the detection of an ADC trigger event and
the start of the sample sequence.

Returns:
Returns the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,
ADC_PHASE_45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC_PHASE_225, ADC_PHASE_247_5, ADC_PHASE_270, ADC_PHASE_292_5,
ADC_PHASE_315, or ADC_PHASE_337_5.

5.2.1.14 ROM_ADCPhaseDelaySet

Sets the phase delay between a trigger and the start of a sequence.

Prototype:
void
ROM_ADCPhaseDelaySet(unsigned long ulBase,

unsigned long ulPhase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCPhaseDelaySet is a function pointer located at ROM_ADCTABLE[24].

Parameters:
ulBase is the base address of the ADC module.
ulPhase is the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,

ADC_PHASE_45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC_PHASE_225, ADC_PHASE_247_5, ADC_PHASE_270, ADC_PHASE_292_5,
ADC_PHASE_315, or ADC_PHASE_337_5.

Description:
This function sets the phase delay between the detection of an ADC trigger event and the start
of the sample sequence. By selecting a different phase delay for a pair of ADC modules (such

44 January 4, 2013

Analog to Digital Converter (ADC)

as ADC_PHASE_0 and ADC_PHASE_180) and having each ADC module sample the same
analog input, it is possible to increase the sampling rate of the analog input (with samples N,
N+2, N+4, and so on, coming from the first ADC and samples N+1, N+3, N+5, and so on,
coming from the second ADC). The ADC module has a single phase delay that is applied to all
sample sequences within that module.

Returns:
None.

5.2.1.15 ROM_ADCProcessorTrigger

Causes a processor trigger for a sample sequence.

Prototype:
void
ROM_ADCProcessorTrigger(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCProcessorTrigger is a function pointer located at ROM_ADCTABLE[13].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number, with ADC_TRIGGER_WAIT or

ADC_TRIGGER_SIGNAL optionally ORed into it.

Description:
This function triggers a processor-initiated sample sequence if the sample sequence trigger
is configured to ADC_TRIGGER_PROCESSOR. If ADC_TRIGGER_WAIT is ORed into the
sequence number, the processor-initiated trigger is delayed until a later processor-initiated
trigger to a different ADC module that specifies ADC_TRIGGER_SIGNAL, allowing multiple
ADCs to start from a processor-initiated trigger in a synchronous manner.

Returns:
None.

5.2.1.16 ROM_ADCReferenceGet

Returns the current setting of the ADC reference.

Prototype:
unsigned long
ROM_ADCReferenceGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCReferenceGet is a function pointer located at ROM_ADCTABLE[23].

January 4, 2013 45

Analog to Digital Converter (ADC)

Parameters:
ulBase is the base address of the ADC module.

Description:
Returns the value of the ADC reference setting. The returned value is one of ADC_REF_INT
or ADC_REF_EXT_3V.

Returns:
The current setting of the ADC reference.

5.2.1.17 ROM_ADCReferenceSet

Selects the ADC reference.

Prototype:
void
ROM_ADCReferenceSet(unsigned long ulBase,

unsigned long ulRef)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCReferenceSet is a function pointer located at ROM_ADCTABLE[22].

Parameters:
ulBase is the base address of the ADC module.
ulRef is the reference to use.

Description:
The ADC reference is set as specified by ulRef . It must be one of ADC_REF_INT or
ADC_REF_EXT_3V, for internal or external reference. If ADC_REF_INT is chosen, then an
internal 3V reference is used and no external reference is needed. If ADC_REF_EXT_3V is
chosen, then a 3V reference must be supplied to the AVREF pin.

Returns:
None.

5.2.1.18 ROM_ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:
void
ROM_ADCSequenceConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long ulTrigger,
unsigned long ulPriority)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceConfigure is a function pointer located at ROM_ADCTABLE[7].

46 January 4, 2013

Analog to Digital Converter (ADC)

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
ulTrigger is the trigger source that initiates the sample sequence; must be one of the

ADC_TRIGGER_∗ values.
ulPriority is the relative priority of the sample sequence with respect to the other sample

sequences.

Description:
This function configures the initiation criteria for a sample sequence. Valid sample sequences
range from zero to three; sequence zero will capture up to eight samples, sequences one and
two will capture up to four samples, and sequence three will capture a single sample. The
trigger condition and priority (with respect to other sample sequence execution) is set.

The ulTrigger parameter can take on the following values:

ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the
ROM_ADCProcessorTrigger() function.

ADC_TRIGGER_COMP0 - A trigger generated by the first analog comparator; configured
with ROM_ComparatorConfigure().

ADC_TRIGGER_COMP1 - A trigger generated by the second analog comparator; config-
ured with ROM_ComparatorConfigure().

ADC_TRIGGER_COMP2 - A trigger generated by the third analog comparator; configured
with ROM_ComparatorConfigure().

ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port B4 pin.

ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with
ROM_TimerControlTrigger().

ADC_TRIGGER_PWM0 - A trigger generated by the first PWM generator; configured with
ROM_PWMGenIntTrigEnable().

ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; configured
with ROM_PWMGenIntTrigEnable().

ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; configured with
ROM_PWMGenIntTrigEnable().

ADC_TRIGGER_PWM3 - A trigger generated by the fourth PWM generator; configured
with ROM_PWMGenIntTrigEnable().

ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the sample se-
quence to capture repeatedly (so long as there is not a higher priority source active).

The ulPriority parameter is a value between 0 and 3, where 0 represents the highest priority
and 3 the lowest. Note that when programming the priority among a set of sample sequences,
each must have unique priority; it is up to the caller to guarantee the uniqueness of the priori-
ties.

Returns:
None.

January 4, 2013 47

Analog to Digital Converter (ADC)

5.2.1.19 ROM_ADCSequenceDataGet

Gets the captured data for a sample sequence.

Prototype:
long
ROM_ADCSequenceDataGet(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long *pulBuffer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceDataGet is a function pointer located at ROM_ADCTABLE[0].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
pulBuffer is the address where the data is stored.

Description:
This function copies data from the specified sample sequence output FIFO to a memory resi-
dent buffer. The number of samples available in the hardware FIFO are copied into the buffer,
which is assumed to be large enough to hold that many samples. This will only return the
samples that are presently available, which may not be the entire sample sequence if it is in
the process of being executed.

Returns:
Returns the number of samples copied to the buffer.

5.2.1.20 ROM_ADCSequenceDisable

Disables a sample sequence.

Prototype:
void
ROM_ADCSequenceDisable(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceDisable is a function pointer located at ROM_ADCTABLE[6].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
Prevents the specified sample sequence from being captured when its trigger is detected. A
sample sequence should be disabled before it is configured.

48 January 4, 2013

Analog to Digital Converter (ADC)

Returns:
None.

5.2.1.21 ROM_ADCSequenceEnable

Enables a sample sequence.

Prototype:
void
ROM_ADCSequenceEnable(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceEnable is a function pointer located at ROM_ADCTABLE[5].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
Allows the specified sample sequence to be captured when its trigger is detected. A sample
sequence must be configured before it is enabled.

Returns:
None.

5.2.1.22 ROM_ADCSequenceOverflow

Determines if a sample sequence overflow occurred.

Prototype:
long
ROM_ADCSequenceOverflow(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceOverflow is a function pointer located at ROM_ADCTABLE[9].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This determines if a sample sequence overflow has occurred. This will happen if the captured
samples are not read from the FIFO before the next trigger occurs.

Returns:
Returns zero if there was not an overflow, and non-zero if there was.

January 4, 2013 49

Analog to Digital Converter (ADC)

5.2.1.23 ROM_ADCSequenceOverflowClear

Clears the overflow condition on a sample sequence.

Prototype:
void
ROM_ADCSequenceOverflowClear(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceOverflowClear is a function pointer located at ROM_ADCTABLE[10].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This will clear an overflow condition on one of the sample sequences. The overflow condition
must be cleared in order to detect a subsequent overflow condition (it otherwise causes no
harm).

Returns:
None.

5.2.1.24 ROM_ADCSequenceStepConfigure

Configure a step of the sample sequencer.

Prototype:
void
ROM_ADCSequenceStepConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,
unsigned long ulStep,
unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceStepConfigure is a function pointer located at ROM_ADCTABLE[8].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.
ulStep is the step to be configured.
ulConfig is the configuration of this step; must be a logical OR of ADC_CTL_TS,

ADC_CTL_IE, ADC_CTL_END, ADC_CTL_D, one of the input channel selects
(ADC_CTL_CH0 through ADC_CTL_CH23), and one of the digital comparator selects
(ADC_CTL_CMP0 through ADC_CTL_CMP7).

50 January 4, 2013

Analog to Digital Converter (ADC)

Description:
This function will set the configuration of the ADC for one step of a sample sequence. The
ADC can be configured for single-ended or differential operation (the ADC_CTL_D bit selects
differential operation when set), the channel to be sampled can be chosen (the ADC_CTL_CH0
through ADC_CTL_CH23 values), and the internal temperature sensor can be selected (the
ADC_CTL_TS bit). Additionally, this step can be defined as the last in the sequence (the
ADC_CTL_END bit) and it can be configured to cause an interrupt when the step is complete
(the ADC_CTL_IE bit). If the digital comparators are present on the device, this step may also
be configured to send the ADC sample to the selected comparator using ADC_CTL_CMP0
through ADC_CTL_CMP7. The configuration is used by the ADC at the appropriate time when
the trigger for this sequence occurs.

Note:
If the Digitial Comparator is present and enabled using the ADC_CTL_CMP0 through
ADC_CTL_CMP7 selects, the ADC sample will NOT be written into the ADC sequence data
FIFO.

The ulStep parameter determines the order in which the samples are captured by the ADC when
the trigger occurs. It can range from zero to seven for the first sample sequence, from zero to three
for the second and third sample sequence, and can only be zero for the fourth sample sequence.

Differential mode only works with adjacent channel pairs (for example, 0 and 1). The channel select
must be the number of the channel pair to sample (for example, ADC_CTL_CH0 for 0 and 1, or
ADC_CTL_CH1 for 2 and 3) or undefined results are returned by the ADC. Additionally, if differential
mode is selected when the temperature sensor is being sampled, undefined results are returned
by the ADC.

It is the responsibility of the caller to ensure that a valid configuration is specified; this function does
not check the validity of the specified configuration.

Returns:
None.

5.2.1.25 ROM_ADCSequenceUnderflow

Determines if a sample sequence underflow occurred.

Prototype:
long
ROM_ADCSequenceUnderflow(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceUnderflow is a function pointer located at ROM_ADCTABLE[11].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This determines if a sample sequence underflow has occurred. This will happen if too many
samples are read from the FIFO.

January 4, 2013 51

Analog to Digital Converter (ADC)

Returns:
Returns zero if there was not an underflow, and non-zero if there was.

5.2.1.26 ROM_ADCSequenceUnderflowClear

Clears the underflow condition on a sample sequence.

Prototype:
void
ROM_ADCSequenceUnderflowClear(unsigned long ulBase,

unsigned long ulSequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceUnderflowClear is a function pointer located at ROM_ADCTABLE[12].

Parameters:
ulBase is the base address of the ADC module.
ulSequenceNum is the sample sequence number.

Description:
This will clear an underflow condition on one of the sample sequences. The underflow condition
must be cleared in order to detect a subsequent underflow condition (it otherwise causes no
harm).

Returns:
None.

52 January 4, 2013

Controller Area Network (CAN)

6 Controller Area Network (CAN)
Introduction . 53
Functions . 54

6.1 Introduction

The Controller Area Network (CAN) APIs provide a set of functions for accessing the Stellaris CAN
modules. Functions are provided to configure the CAN controllers, configure message objects, and
manage CAN interrupts.

The Stellaris CAN module provides hardware processing of the CAN data link layer. It can be
configured with message filters and preloaded message data so that it can autonomously send
and receive messages on the bus, and notify the application accordingly. It automatically handles
generation and checking of CRCs, error processing, and retransmission of CAN messages.

The message objects are stored in the CAN controller and provide the main interface for the CAN
module on the CAN bus. There are 32 message objects that can each be programmed to handle
a separate message ID, or can be chained together for a sequence of frames with the same ID.
The message identifier filters provide masking that can be programmed to match any or all of the
message ID bits, and frame types.

The CAN module is disabled by default, so the the ROM_CANInit() function must be called before
any other CAN functions are called. This call initializes the message objects to a safe state prior
to enabling the controller on the CAN bus. Also, the bit timing values must be programmed prior to
enabling the CAN controller. The ROM_CANBitTimingSet() function should be called with the ap-
propriate bit timing values for the CAN bus. Once these two functions have been called, a CAN con-
troller can be enabled using the ROM_CANEnable(), and later disabled using ROM_CANDisable()
if needed. Calling ROM_CANDisable() does not reinitialize a CAN controller, so it can be used to
temporarily remove a CAN controller from the bus.

The CAN controller is highly configurable and contains 32 message objects that can be pro-
grammed to automatically transmit and receive CAN messages under certain conditions. Message
objects allow the application to perform some actions automatically without interaction from the
microcontroller. Some examples of these actions are the following:

Send a data frame immediately

Send a data frame when a matching remote frame is seen on the CAN bus

Receive a specific data frame

Receive data frames that match a certain identifier pattern

To configure message objects to perform any of these actions, the application must first set up one
of the 32 message objects using ROM_CANMessageSet(). This function must be used to configure
a message object to send data, or to configure a message object to receive data. Each message
object can be configured to generate interrupts on transmission or reception of CAN messages.

When data is received from the CAN bus, the application can use the ROM_CANMessageGet()
function to read the received message. This function can also be used to read a message object
that is already configured in order to populate a message structure prior to making changes to the

January 4, 2013 53

Controller Area Network (CAN)

configuration of a message object. Reading the message object using this function will also clear
any pending interrupt on the message object.

Once a message object has been configured using ROM_CANMessageSet(), it has allocated the
message object and will continue to perform its programmed function unless it is released with a
call to ROM_CANMessageClear(). The application is not required to clear out a message object
before setting it with a new configuration, because each time ROM_CANMessageSet() is called, it
will overwrite any previously programmed configuration.

The 32 message objects are identical except for priority. The lowest numbered message objects
have the highest priority. Priority affects operation in two ways. First, if multiple actions are ready
at the same time, the one with the highest priority message object will occur first. And second,
when multiple message objects have interrupts pending, the highest priority will be presented first
when reading the interrupt status. It is up to the application to manage the 32 message objects as
a resource, and determine the best method for allocating and releasing them.

The CAN controller can generate interrupts on several conditions:

When any message object transmits a message
When any message object receives a message
On warning conditions such as an error counter reaching a limit or occurrence of various bus
errors
On controller error conditions such as entering the bus-off state

Once CAN interrupts are enabled, the handler will be invoked whenever a CAN interrupt is triggered.
The handler can determine which condition caused the interrupt by using the ROM_CANIntStatus()
function. Multiple conditions can be pending when an interrupt occurs, so the handler must be
designed to process all pending interrupt conditions before exiting. Each interrupt condition must be
cleared before exiting the handler. There are two ways to do this. The ROM_CANIntClear() function
will clear a specific interrupt condition without further action required by the handler. However,
the handler can also clear the condition by performing certain actions. If the interrupt is a status
interrupt, the interrupt can be cleared by reading the status register with ROM_CANStatusGet().
If the interrupt is caused by one of the message objects, then it can be cleared by reading the
message object using ROM_CANMessageGet().

There are several status registers that can be used to help the application manage the controller.
The status registers are read using the ROM_CANStatusGet() function. There is a controller status
register that provides general status information such as error or warning conditions. There are also
several status registers that provide information about all of the message objects at once using a
32-bit bit map of the status, with one bit representing each message object. These status registers
can be used to determine:

Which message objects have unprocessed received data
Which message objects have pending transmission requests
Which message objects are allocated for use

6.2 Functions

Functions
unsigned long ROM_CANBitRateSet (unsigned long ulBase, unsigned long ulSourceClock,
unsigned long ulBitRate)

54 January 4, 2013

Controller Area Network (CAN)

void ROM_CANBitTimingGet (unsigned long ulBase, tCANBitClkParms ∗pClkParms)
void ROM_CANBitTimingSet (unsigned long ulBase, tCANBitClkParms ∗pClkParms)
void ROM_CANDisable (unsigned long ulBase)
void ROM_CANEnable (unsigned long ulBase)
tBoolean ROM_CANErrCntrGet (unsigned long ulBase, unsigned long ∗pulRxCount, unsigned
long ∗pulTxCount)
void ROM_CANInit (unsigned long ulBase)
void ROM_CANIntClear (unsigned long ulBase, unsigned long ulIntClr)
void ROM_CANIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_CANIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
unsigned long ROM_CANIntStatus (unsigned long ulBase, tCANIntStsReg eIntStsReg)
void ROM_CANMessageClear (unsigned long ulBase, unsigned long ulObjID)
void ROM_CANMessageGet (unsigned long ulBase, unsigned long ulObjID, tCANMsgObject
∗pMsgObject, tBoolean bClrPendingInt)
void ROM_CANMessageSet (unsigned long ulBase, unsigned long ulObjID, tCANMsgObject
∗pMsgObject, tMsgObjType eMsgType)
tBoolean ROM_CANRetryGet (unsigned long ulBase)
void ROM_CANRetrySet (unsigned long ulBase, tBoolean bAutoRetry)
unsigned long ROM_CANStatusGet (unsigned long ulBase, tCANStsReg eStatusReg)

6.2.1 Function Documentation

6.2.1.1 ROM_CANBitRateSet

This function is used to set the CAN bit timing values to a nominal setting based on a desired bit
rate.

Prototype:
unsigned long
ROM_CANBitRateSet(unsigned long ulBase,

unsigned long ulSourceClock,
unsigned long ulBitRate)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANBitRateSet is a function pointer located at ROM_CANTABLE[16].

Parameters:
ulBase is the base address of the CAN controller.
ulSourceClock is the system clock for the device in Hz.
ulBitRate is the desired bit rate.

Description:
This function will set the CAN bit timing for the bit rate passed in the ulBitRate parameter
based on the ulSourceClock parameter. Since the CAN clock is based off of the system
clock the calling function should pass in the source clock rate either by retrieving it from
ROM_SysCtlClockGet() or using a specific value in Hz. The CAN bit timing is calculated as-
suming a minimal amount of propagation delay, which will work for most cases where the

January 4, 2013 55

Controller Area Network (CAN)

network length is short. If tighter timing requirements or longer network lengths are needed,
then the ROM_CANBitTimingSet() function is available for full customization of all of the CAN
bit timing values. Since not all bit rates can be matched exactly, the bit rate is set to the value
closest to the desired bit rate without being higher than the ulBitRate value.

Returns:
This function returns the bit rate that the CAN controller was configured to use or it returns 0
to indicate that the bit rate was not changed because the requested bit rate was not valid.

6.2.1.2 ROM_CANBitTimingGet

Reads the current settings for the CAN controller bit timing.

Prototype:
void
ROM_CANBitTimingGet(unsigned long ulBase,

tCANBitClkParms *pClkParms)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANBitTimingGet is a function pointer located at ROM_CANTABLE[5].

Parameters:
ulBase is the base address of the CAN controller.
pClkParms is a pointer to a structure to hold the timing parameters.

Description:
This function reads the current configuration of the CAN controller bit clock timing,
and stores the resulting information in the structure supplied by the caller. Refer to
ROM_CANBitTimingSet() for the meaning of the values that are returned in the structure
pointed to by pClkParms.

Returns:
None.

6.2.1.3 ROM_CANBitTimingSet

Configures the CAN controller bit timing.

Prototype:
void
ROM_CANBitTimingSet(unsigned long ulBase,

tCANBitClkParms *pClkParms)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANBitTimingSet is a function pointer located at ROM_CANTABLE[4].

56 January 4, 2013

Controller Area Network (CAN)

Parameters:
ulBase is the base address of the CAN controller.
pClkParms points to the structure with the clock parameters.

Description:
Configures the various timing parameters for the CAN bus bit timing: Propagation segment,
Phase Buffer 1 segment, Phase Buffer 2 segment, and the Synchronization Jump Width.
The values for Propagation and Phase Buffer 1 segments are derived from the combina-
tion pClkParms->uSyncPropPhase1Seg parameter. Phase Buffer 2 is determined from the
pClkParms->uPhase2Seg parameter. These two parameters, along with pClkParms->uSJW
are based in units of bit time quanta. The actual quantum time is determined by the pClkParms-
>uQuantumPrescaler value, which specifies the divisor for the CAN module clock.

The total bit time, in quanta, is the sum of the two Seg parameters, as follows:

bit_time_q = uSyncPropPhase1Seg + uPhase2Seg + 1

Note that the Sync_Seg is always one quantum in duration, and is added to derive the correct
duration of Prop_Seg and Phase1_Seg.

The equation to determine the actual bit rate is as follows:

CAN Clock / ((uSyncPropPhase1Seg + uPhase2Seg + 1) ∗ (uQuantumPrescaler))

This means that with uSyncPropPhase1Seg = 4, uPhase2Seg = 1, uQuantumPrescaler = 2
and an 8 MHz CAN clock, that the bit rate is (8 MHz) / ((5 + 2 + 1) ∗ 2) or 500 Kbit/sec.

Returns:
None.

6.2.1.4 ROM_CANDisable

Disables the CAN controller.

Prototype:
void
ROM_CANDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANDisable is a function pointer located at ROM_CANTABLE[3].

Parameters:
ulBase is the base address of the CAN controller to disable.

Description:
Disables the CAN controller for message processing. When disabled, the controller will no
longer automatically process data on the CAN bus. The controller can be restarted by calling
ROM_CANEnable(). The state of the CAN controller and the message objects in the controller
are left as they were before this call was made.

Returns:
None.

January 4, 2013 57

Controller Area Network (CAN)

6.2.1.5 ROM_CANEnable

Enables the CAN controller.

Prototype:
void
ROM_CANEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANEnable is a function pointer located at ROM_CANTABLE[2].

Parameters:
ulBase is the base address of the CAN controller to enable.

Description:
Enables the CAN controller for message processing. Once enabled, the controller will auto-
matically transmit any pending frames, and process any received frames. The controller can be
stopped by calling ROM_CANDisable(). Prior to calling ROM_CANEnable(), ROM_CANInit()
should have been called to initialize the controller and the CAN bus clock should be configured
by calling ROM_CANBitTimingSet().

Returns:
None.

6.2.1.6 ROM_CANErrCntrGet

Reads the CAN controller error counter register.

Prototype:
tBoolean
ROM_CANErrCntrGet(unsigned long ulBase,

unsigned long *pulRxCount,
unsigned long *pulTxCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANErrCntrGet is a function pointer located at ROM_CANTABLE[15].

Parameters:
ulBase is the base address of the CAN controller.
pulRxCount is a pointer to storage for the receive error counter.
pulTxCount is a pointer to storage for the transmit error counter.

Description:
Reads the error counter register and returns the transmit and receive error counts to the caller
along with a flag indicating if the controller receive counter has reached the error passive
limit. The values of the receive and transmit error counters are returned through the pointers
provided as parameters.

After this call, ∗pulRxCount will hold the current receive error count and ∗pulTxCount will hold
the current transmit error count.

58 January 4, 2013

Controller Area Network (CAN)

Returns:
Returns true if the receive error count has reached the error passive limit, and false if the error
count is below the error passive limit.

6.2.1.7 ROM_CANInit

Initializes the CAN controller after reset.

Prototype:
void
ROM_CANInit(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANInit is a function pointer located at ROM_CANTABLE[1].

Parameters:
ulBase is the base address of the CAN controller.

Description:
After reset, the CAN controller is left in the disabled state. However, the memory used for
message objects contains undefined values and must be cleared prior to enabling the CAN
controller the first time. This prevents unwanted transmission or reception of data before the
message objects are configured. This function must be called before enabling the controller
the first time.

Returns:
None.

6.2.1.8 ROM_CANIntClear

Clears a CAN interrupt source.

Prototype:
void
ROM_CANIntClear(unsigned long ulBase,

unsigned long ulIntClr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntClear is a function pointer located at ROM_CANTABLE[0].

Parameters:
ulBase is the base address of the CAN controller.
ulIntClr is a value indicating which interrupt source to clear.

Description:
This function can be used to clear a specific interrupt source. The ulIntClr parameter should
be one of the following values:

January 4, 2013 59

Controller Area Network (CAN)

CAN_INT_INTID_STATUS - Clears a status interrupt.
1-32 - Clears the specified message object interrupt

It is not necessary to use this function to clear an interrupt. This should only be used if the
application wants to clear an interrupt source without taking the normal interrupt action.

Normally, the status interrupt is cleared by reading the controller status using
ROM_CANStatusGet(). A specific message object interrupt is normally cleared by reading
the message object using ROM_CANMessageGet().

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

6.2.1.9 ROM_CANIntDisable

Disables individual CAN controller interrupt sources.

Prototype:
void
ROM_CANIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntDisable is a function pointer located at ROM_CANTABLE[11].

Parameters:
ulBase is the base address of the CAN controller.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the specified CAN controller interrupt sources. Only enabled interrupt sources can
cause a processor interrupt.

The ulIntFlags parameter has the same definition as in the ROM_CANIntEnable() function.

Returns:
None.

6.2.1.10 ROM_CANIntEnable

Enables individual CAN controller interrupt sources.

60 January 4, 2013

Controller Area Network (CAN)

Prototype:
void
ROM_CANIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntEnable is a function pointer located at ROM_CANTABLE[10].

Parameters:
ulBase is the base address of the CAN controller.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables specific interrupt sources of the CAN controller. Only enabled sources will cause a
processor interrupt.

The ulIntFlags parameter is the logical OR of any of the following:

CAN_INT_ERROR - a controller error condition has occurred
CAN_INT_STATUS - a message transfer has completed, or a bus error has been detected
CAN_INT_MASTER - allow CAN controller to generate interrupts

In order to generate any interrupts, CAN_INT_MASTER must be enabled. Further, for any
particular transaction from a message object to generate an interrupt, that message object
must have interrupts enabled (see ROM_CANMessageSet()). CAN_INT_ERROR will generate
an interrupt if the controller enters the “bus off” condition, or if the error counters reach a limit.
CAN_INT_STATUS will generate an interrupt under quite a few status conditions and may
provide more interrupts than the application needs to handle. When an interrupt occurs, use
ROM_CANIntStatus() to determine the cause.

Returns:
None.

6.2.1.11 ROM_CANIntStatus

Returns the current CAN controller interrupt status.

Prototype:
unsigned long
ROM_CANIntStatus(unsigned long ulBase,

tCANIntStsReg eIntStsReg)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntStatus is a function pointer located at ROM_CANTABLE[12].

Parameters:
ulBase is the base address of the CAN controller.
eIntStsReg indicates which interrupt status register to read

January 4, 2013 61

Controller Area Network (CAN)

Description:
Returns the value of one of two interrupt status registers. The interrupt status register read is
determined by the eIntStsReg parameter, which can have one of the following values:

CAN_INT_STS_CAUSE - indicates the cause of the interrupt
CAN_INT_STS_OBJECT - indicates pending interrupts of all message objects

CAN_INT_STS_CAUSE returns the value of the controller interrupt register and indicates the
cause of the interrupt. It is a value of CAN_INT_INTID_STATUS if the cause is a status inter-
rupt. In this case, the status register should be read with the ROM_CANStatusGet() function.
Calling this function to read the status will also clear the status interrupt. If the value of the inter-
rupt register is in the range 1-32, then this indicates the number of the highest priority message
object that has an interrupt pending. The message object interrupt can be cleared by using
the ROM_CANIntClear() function, or by reading the message using ROM_CANMessageGet()
in the case of a received message. The interrupt handler can read the interrupt status again to
make sure all pending interrupts are cleared before returning from the interrupt.

CAN_INT_STS_OBJECT returns a bit mask indicating which message objects have pending
interrupts. This can be used to discover all of the pending interrupts at once, as opposed to
repeatedly reading the interrupt register by using CAN_INT_STS_CAUSE.

Returns:
Returns the value of one of the interrupt status registers.

6.2.1.12 ROM_CANMessageClear

Clears a message object so that it is no longer used.

Prototype:
void
ROM_CANMessageClear(unsigned long ulBase,

unsigned long ulObjID)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANMessageClear is a function pointer located at ROM_CANTABLE[9].

Parameters:
ulBase is the base address of the CAN controller.
ulObjID is the message object number to disable (1-32).

Description:
This function frees the specified message object from use. Once a message object has been
“cleared,” it will no longer automatically send or receive messages, or generate interrupts.

Returns:
None.

6.2.1.13 ROM_CANMessageGet

Reads a CAN message from one of the message object buffers.

62 January 4, 2013

Controller Area Network (CAN)

Prototype:
void
ROM_CANMessageGet(unsigned long ulBase,

unsigned long ulObjID,
tCANMsgObject *pMsgObject,
tBoolean bClrPendingInt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANMessageGet is a function pointer located at ROM_CANTABLE[7].

Parameters:
ulBase is the base address of the CAN controller.
ulObjID is the object number to read (1-32).
pMsgObject points to a structure containing message object fields.
bClrPendingInt indicates whether an associated interrupt should be cleared.

Description:
This function is used to read the contents of one of the 32 message objects in the CAN con-
troller, and return it to the caller. The data returned is stored in the fields of the caller-supplied
structure pointed to by pMsgObject . The data consists of all of the parts of a CAN message,
plus some control and status information.

Normally this is used to read a message object that has received and stored a CAN message
with a certain identifier. However, this could also be used to read the contents of a message
object in order to load the fields of the structure in case only part of the structure needs to be
changed from a previous setting.

When using CANMessageGet, all of the same fields of the structure are populated in the same
way as when the ROM_CANMessageSet() function is used, with the following exceptions:

pMsgObject->ulFlags:

MSG_OBJ_NEW_DATA indicates if this is new data since the last time it was read
MSG_OBJ_DATA_LOST indicates that at least one message was received on this mes-
sage object, and not read by the host before being overwritten.

Returns:
None.

6.2.1.14 ROM_CANMessageSet

Configures a message object in the CAN controller.

Prototype:
void
ROM_CANMessageSet(unsigned long ulBase,

unsigned long ulObjID,
tCANMsgObject *pMsgObject,
tMsgObjType eMsgType)

January 4, 2013 63

Controller Area Network (CAN)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANMessageSet is a function pointer located at ROM_CANTABLE[6].

Parameters:
ulBase is the base address of the CAN controller.
ulObjID is the object number to configure (1-32).
pMsgObject is a pointer to a structure containing message object settings.
eMsgType indicates the type of message for this object.

Description:
This function is used to configure any one of the 32 message objects in the CAN controller.
A message object can be configured as any type of CAN message object as well as several
options for automatic transmission and reception. This call also allows the message object to
be configured to generate interrupts on completion of message receipt or transmission. The
message object can also be configured with a filter/mask so that actions are only taken when
a message that meets certain parameters is seen on the CAN bus.

The eMsgType parameter must be one of the following values:

MSG_OBJ_TYPE_TX - CAN transmit message object.
MSG_OBJ_TYPE_TX_REMOTE - CAN transmit remote request message object.
MSG_OBJ_TYPE_RX - CAN receive message object.
MSG_OBJ_TYPE_RX_REMOTE - CAN receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE - CAN remote frame receive remote, then transmit
message object.

The message object pointed to by pMsgObject must be populated by the caller, as follows:

ulMsgID - contains the message ID, either 11 or 29 bits.
ulMsgIDMask - mask of bits from ulMsgID that must match if identifier filtering is enabled.
ulFlags

• Set MSG_OBJ_TX_INT_ENABLE flag to enable interrupt on transmission.
• Set MSG_OBJ_RX_INT_ENABLE flag to enable interrupt on receipt.
• Set MSG_OBJ_USE_ID_FILTER flag to enable filtering based on the identifier mask

specified by ulMsgIDMask .
ulMsgLen - the number of bytes in the message data. This should be non-zero even for a
remote frame; it should match the expected bytes of the data responding data frame.
pucMsgData - points to a buffer containing up to 8 bytes of data for a data frame.

Example: To send a data frame or remote frame(in response to a remote request), take the
following steps:

1. Set eMsgType to MSG_OBJ_TYPE_TX.
2. Set pMsgObject->ulMsgID to the message ID.
3. Set pMsgObject->ulFlags. Make sure to set MSG_OBJ_TX_INT_ENABLE to allow an

interrupt to be generated when the message is sent.
4. Set pMsgObject->ulMsgLen to the number of bytes in the data frame.
5. Set pMsgObject->pucMsgData to point to an array containing the bytes to send in the

message.
6. Call this function with ulObjID set to one of the 32 object buffers.

64 January 4, 2013

Controller Area Network (CAN)

Example: To receive a specific data frame, take the following steps:

1. Set eMsgObjType to MSG_OBJ_TYPE_RX.
2. Set pMsgObject->ulMsgID to the full message ID, or a partial mask to use partial ID match-

ing.
3. Set pMsgObject->ulMsgIDMask bits that should be used for masking during comparison.
4. Set pMsgObject->ulFlags as follows:

Set MSG_OBJ_RX_INT_ENABLE flag to be interrupted when the data frame is re-
ceived.
Set MSG_OBJ_USE_ID_FILTER flag to enable identifier based filtering.

5. Set pMsgObject->ulMsgLen to the number of bytes in the expected data frame.
6. The buffer pointed to by pMsgObject->pucMsgData is not used by this call as no data is

present at the time of the call.
7. Call this function with ulObjID set to one of the 32 object buffers.

If you specify a message object buffer that already contains a message definition, it is overwrit-
ten.

Returns:
None.

6.2.1.15 ROM_CANRetryGet

Returns the current setting for automatic retransmission.

Prototype:
tBoolean
ROM_CANRetryGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANRetryGet is a function pointer located at ROM_CANTABLE[13].

Parameters:
ulBase is the base address of the CAN controller.

Description:
Reads the current setting for the automatic retransmission in the CAN controller and returns it
to the caller.

Returns:
Returns true if automatic retransmission is enabled, false otherwise.

6.2.1.16 ROM_CANRetrySet

Sets the CAN controller automatic retransmission behavior.

Prototype:
void
ROM_CANRetrySet(unsigned long ulBase,

tBoolean bAutoRetry)

January 4, 2013 65

Controller Area Network (CAN)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANRetrySet is a function pointer located at ROM_CANTABLE[14].

Parameters:
ulBase is the base address of the CAN controller.
bAutoRetry enables automatic retransmission.

Description:
Enables or disables automatic retransmission of messages with detected errors. If bAutoRetry
is true, then automatic retransmission is enabled, otherwise it is disabled.

Returns:
None.

6.2.1.17 ROM_CANStatusGet

Reads one of the controller status registers.

Prototype:
unsigned long
ROM_CANStatusGet(unsigned long ulBase,

tCANStsReg eStatusReg)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANStatusGet is a function pointer located at ROM_CANTABLE[8].

Parameters:
ulBase is the base address of the CAN controller.
eStatusReg is the status register to read.

Description:
Reads a status register of the CAN controller and returns it to the caller. The different status
registers are:

CAN_STS_CONTROL - the main controller status
CAN_STS_TXREQUEST - bit mask of objects pending transmission
CAN_STS_NEWDAT - bit mask of objects with new data
CAN_STS_MSGVAL - bit mask of objects with valid configuration

When reading the main controller status register, a pending status interrupt is cleared. This
should be used in the interrupt handler for the CAN controller if the cause is a status interrupt.
The controller status register fields are as follows:

CAN_STATUS_BUS_OFF - controller is in bus-off condition
CAN_STATUS_EWARN - an error counter has reached a limit of at least 96
CAN_STATUS_EPASS - CAN controller is in the error passive state
CAN_STATUS_RXOK - a message was received successfully (independent of any mes-
sage filtering).

66 January 4, 2013

Controller Area Network (CAN)

CAN_STATUS_TXOK - a message was successfully transmitted
CAN_STATUS_LEC_MSK - mask of last error code bits (3 bits)
CAN_STATUS_LEC_NONE - no error
CAN_STATUS_LEC_STUFF - stuffing error detected
CAN_STATUS_LEC_FORM - a format error occurred in the fixed format part of a message
CAN_STATUS_LEC_ACK - a transmitted message was not acknowledged
CAN_STATUS_LEC_BIT1 - dominant level detected when trying to send in recessive
mode
CAN_STATUS_LEC_BIT0 - recessive level detected when trying to send in dominant
mode
CAN_STATUS_LEC_CRC - CRC error in received message

The remaining status registers are 32-bit bit maps to the message objects. They can be used
to quickly obtain information about the status of all the message objects without needing to
query each one. They contain the following information:

CAN_STS_TXREQUEST - if a message object’s TxRequest bit is set, that means that a
transmission is pending on that object. The application can use this to determine which
objects are still waiting to send a message.
CAN_STS_NEWDAT - if a message object’s NewDat bit is set, that means that a new
message has been received in that object, and has not yet been picked up by the host
application
CAN_STS_MSGVAL - if a message object’s MsgVal bit is set, that means it has a valid
configuration programmed. The host application can use this to determine which message
objects are empty/unused.

Returns:
Returns the value of the status register.

January 4, 2013 67

Controller Area Network (CAN)

68 January 4, 2013

CRC

7 CRC
Introduction . 69
Functions . 69

7.1 Introduction

CRC (Cyclic Redundancy Check) is a technique to validate a span of data has the same contents
as when previously checked. This technique can be used to validate correct receipt of messages
(nothing lost or modified in transit), to validate data after decompression, to validate that Flash
memory contents have not been changed, and for other cases where the data must be validated. A
CRC is preferred over a simple checksum (for example, XOR all bits) because it catches changes
more readily.

The CRC API provides functions to compute the CRC-8-CCITT and CRC-16 of a buffer of data.
Support is provided for computing a running CRC, where a partial CRC is computed on one portion
of the data, and then continued at a later time on another portion of the data. This is useful when
computing the CRC on a stream of data that is coming in via a serial link (for example).

The CRC-16 APIs implement the standard CRC-16 polynomial (also known as CRC-16-IBM):

x16 + x15 + x2 + 1

The CRC-8-CCITT API implements the standard CRC-8-CCITT polynomial:

x8 + x2 + x+ 1

The ROM_Crc16Array3() function fperforms three separate CRC-16 calculations; one across all
bytes in the input data array, one across the even bytes, and one across the odd bytes. The ability
of a CRC to detect errors decreases as the size of the data array increases. The triple CRC-16
function tries to slow this decrease in error detection rate as it is more difficult for a data error (or
errors) to result in all three CRC-16 calculations being correct.

7.2 Functions

Functions
unsigned short ROM_Crc16 (unsigned short usCrc, const unsigned char ∗pucData, unsigned
long ulCount)
unsigned short ROM_Crc16Array (unsigned long ulWordLen, unsigned long ∗pulData)
void ROM_Crc16Array3 (unsigned long ulWordLen, unsigned long ∗pulData, unsigned short
∗pusCrc3)
unsigned char ROM_Crc8CCITT (unsigned char ucCrc, const unsigned char ∗pucData, un-
signed long ulCount)

January 4, 2013 69

CRC

7.2.1 Function Documentation

7.2.1.1 ROM_Crc16

Calculates the CRC-16 of an array of bytes.

Prototype:
unsigned short
ROM_Crc16(unsigned short usCrc,

const unsigned char *pucData,
unsigned long ulCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc16 is a function pointer located at ROM_SOFTWARETABLE[3].

Parameters:
usCrc is the starting CRC-16 value.
pucData is a pointer to the data buffer.
ulCount is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-16 of the input buffer. The CRC-16 is computed
in a running fashion, meaning that the entire data block that is to have its CRC-16 computed
does not need to be supplied all at once. If the input buffer contains the entire block of data,
then usCrc should be set to 0. If, however, the entire block of data is not available, then usCrc
should be set to 0 for the first portion of the data, and then the returned value should be passed
back in as usCrc for the next portion of the data.

For example, to compute the CRC-16 of a block that has been split into three pieces, use the
following:

usCrc = ROM_Crc16(0, pucData1, ulLen1);
usCrc = ROM_Crc16(usCrc, pucData2, ulLen2);
usCrc = ROM_Crc16(usCrc, pucData3, ulLen3);

Computing a CRC-16 in a running fashion is useful in cases where the data is arriving via a
serial link (for example) and is therefore not all available at one time.

Returns:
The CRC-16 of the input data.

7.2.1.2 ROM_Crc16Array

Calculates the CRC-16 of an array of words.

Prototype:
unsigned short
ROM_Crc16Array(unsigned long ulWordLen,

unsigned long *pulData)

70 January 4, 2013

CRC

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc16Array is a function pointer located at ROM_SOFTWARETABLE[1].

Parameters:
ulWordLen is the length of the array in words.
pulData is a pointer to the array of words.

Description:
This function is used to calculate a standard CRC-16 cyclical redundancy check on the data
passed to it. The length of the data only matters in terms of the “strength” of the CRC (likelihood
of catching errors). The longer the data, the more likely it will not catch some errors.

Returns:
Returns the calculated CRC-16.

7.2.1.3 ROM_Crc16Array3

Calculates three CRC-16s of an array of words.

Prototype:
void
ROM_Crc16Array3(unsigned long ulWordLen,

unsigned long *pulData,
unsigned short *pusCrc3)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc16Array3 is a function pointer located at ROM_SOFTWARETABLE[2].

Parameters:
ulWordLen is the length of the array in words.
pulData is a pointer to the array of words.
pusCrc3 is a pointer to an array into which the three CRC values are to be placed.

Description:
This function is used to calculate three CRC-16s from the same array. This computes the
CRC-16 on all of the bytes (same as ROM_Crc16Array()), on the even bytes, and on the odd
bytes. This calculation of three CRC-16s increases the chance of detecting errors because it
is much harder for a set of errors to end up being correct for all three CRC-16s.

Returns:
None

7.2.1.4 ROM_Crc8CCITT

Calculates the CRC-8-CCITT of an array of bytes.

January 4, 2013 71

CRC

Prototype:
unsigned char
ROM_Crc8CCITT(unsigned char ucCrc,

const unsigned char *pucData,
unsigned long ulCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc8CCITT is a function pointer located at ROM_SOFTWARETABLE[4].

Parameters:
ucCrc is the starting CRC-8-CCITT value.
pucData is a pointer to the data buffer.
ulCount is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-8-CCITT of the input buffer. The CRC-8-CCITT is
computed in a running fashion, meaning that the entire data block that is to have its CRC-8-
CCITT computed does not need to be supplied all at once. If the input buffer contains the
entire block of data, then ucCrc should be set to 0. If, however, the entire block of data is not
available, then ucCrc should be set to 0 for the first portion of the data, and then the returned
value should be passed back in as ucCrc for the next portion of the data.

For example, to compute the CRC-8-CCITT of a block that has been split into three pieces, use
the following:

ucCrc = ROM_Crc8CCITT(0, pucData1, ulLen1);
ucCrc = ROM_Crc8CCITT(ucCrc, pucData2, ulLen2);
ucCrc = ROM_Crc8CCITT(ucCrc, pucData3, ulLen3);

Computing a CRC-8-CCITT in a running fashion is useful in cases where the data is arriving
via a serial link (for example) and is therefore not all available at one time.

Returns:
The CRC-8-CCITT of the input data.

72 January 4, 2013

Flash

8 Flash
Introduction . 73
Functions . 73

8.1 Introduction

The flash API provides a set of functions for dealing with the on-chip flash. Functions are provided
to program and erase the flash, configure the flash protection, and handle the flash interrupt.

The flash is organized as a set of 1 kB blocks that can be individually erased. Erasing a block
causes the entire contents of the block to be reset to all ones. These blocks are paired into a
set of 2 kB blocks that can be individually protected. The blocks can be marked as read-only or
execute-only, providing differing levels of code protection. Read-only blocks cannot be erased or
programmed, protecting the contents of those blocks from being modified. Execute-only blocks can-
not be erased or programmed, and can only be read by the processor instruction fetch mechanism,
protecting the contents of those blocks from being read by either the processor or by debuggers.

The flash can be programmed on a word-by-word basis. Programming causes 1 bits to become 0
bits (where appropriate); because of this, a word can be repeatedly programmed so long as each
programming operation only requires changing 1 bits to 0 bits.

The timing for the flash is automatically handled by the flash controller. In order to do this, the
flash controller must know the clock rate of the system in order to be able to time the number of
micro-seconds certain signals are asserted. The number of clock cycles per micro-second must be
provided to the flash controller for it to accomplish this timing.

The flash controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from execute-only flash). This can be used to validate the operation of a program;
the interrupt will keep invalid accesses from being silently ignored, hiding potential bugs. The flash
protection can be applied without being permanently enabled; this, along with the interrupt, allows
the program to be debugged before the flash protection is permanently applied to the device (which
is a non-reversible operation). An interrupt can also be generated when an erase or programming
operation has completed.

8.2 Functions

Functions
long ROM_FlashErase (unsigned long ulAddress)
void ROM_FlashIntClear (unsigned long ulIntFlags)
void ROM_FlashIntDisable (unsigned long ulIntFlags)
void ROM_FlashIntEnable (unsigned long ulIntFlags)
unsigned long ROM_FlashIntStatus (tBoolean bMasked)
long ROM_FlashProgram (unsigned long ∗pulData, unsigned long ulAddress, unsigned long
ulCount)
tFlashProtection ROM_FlashProtectGet (unsigned long ulAddress)
long ROM_FlashProtectSave (void)

January 4, 2013 73

Flash

long ROM_FlashProtectSet (unsigned long ulAddress, tFlashProtection eProtect)
unsigned long ROM_FlashUsecGet (void)
void ROM_FlashUsecSet (unsigned long ulClocks)
long ROM_FlashUserGet (unsigned long ∗pulUser0, unsigned long ∗pulUser1)
long ROM_FlashUserSave (void)
long ROM_FlashUserSet (unsigned long ulUser0, unsigned long ulUser1)

8.2.1 Function Documentation

8.2.1.1 ROM_FlashErase

Erases a block of flash.

Prototype:
long
ROM_FlashErase(unsigned long ulAddress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashErase is a function pointer located at ROM_FLASHTABLE[3].

Parameters:
ulAddress is the start address of the flash block to be erased.

Description:
This function will erase a 1 kB block of the on-chip flash. After erasing, the block is filled with
0xFF bytes. Read-only and execute-only blocks cannot be erased.

This function will not return until the block has been erased.

Returns:
Returns 0 on success, or -1 if an invalid block address was specified or the block is write-
protected.

8.2.1.2 ROM_FlashIntClear

Clears flash controller interrupt sources.

Prototype:
void
ROM_FlashIntClear(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntClear is a function pointer located at ROM_FLASHTABLE[13].

Parameters:
ulIntFlags is the bit mask of the interrupt sources to be cleared. Can be any of the

FLASH_INT_PROGRAM or FLASH_INT_AMISC values.

74 January 4, 2013

Flash

Description:
The specified flash controller interrupt sources are cleared, so that they no longer assert. This
must be done in the interrupt handler to keep it from being called again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

8.2.1.3 ROM_FlashIntDisable

Disables individual flash controller interrupt sources.

Prototype:
void
ROM_FlashIntDisable(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntDisable is a function pointer located at ROM_FLASHTABLE[11].

Parameters:
ulIntFlags is a bit mask of the interrupt sources to be disabled. Can be any of the

FLASH_INT_PROGRAM or FLASH_INT_ACCESS values.

Description:
Disables the indicated flash controller interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

8.2.1.4 ROM_FlashIntEnable

Enables individual flash controller interrupt sources.

Prototype:
void
ROM_FlashIntEnable(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntEnable is a function pointer located at ROM_FLASHTABLE[10].

January 4, 2013 75

Flash

Parameters:
ulIntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

FLASH_INT_PROGRAM or FLASH_INT_ACCESS values.

Description:
Enables the indicated flash controller interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

8.2.1.5 ROM_FlashIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ROM_FlashIntStatus(tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntStatus is a function pointer located at ROM_FLASHTABLE[12].

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the flash controller. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of FLASH_INT_PROGRAM and
FLASH_INT_ACCESS.

8.2.1.6 ROM_FlashProgram

Programs flash.

Prototype:
long
ROM_FlashProgram(unsigned long *pulData,

unsigned long ulAddress,
unsigned long ulCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProgram is a function pointer located at ROM_FLASHTABLE[0].

76 January 4, 2013

Flash

Parameters:
pulData is a pointer to the data to be programmed.
ulAddress is the starting address in flash to be programmed. Must be a multiple of four.
ulCount is the number of bytes to be programmed. Must be a multiple of four.

Description:
This function will program a sequence of words into the on-chip flash. Each word in a page of
flash can only be programmed one time between an erase of that page; programming a word
multiple times will result in an unpredictable value in that word of flash.

Since the flash is programmed one word at a time, the starting address and byte count must
both be multiples of four. It is up to the caller to verify the programmed contents, if such
verification is required.

This function will not return until the data has been programmed.

Returns:
Returns 0 on success, or -1 if a programming error is encountered.

8.2.1.7 ROM_FlashProtectGet

Gets the protection setting for a block of flash.

Prototype:
tFlashProtection
ROM_FlashProtectGet(unsigned long ulAddress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProtectGet is a function pointer located at ROM_FLASHTABLE[4].

Parameters:
ulAddress is the start address of the flash block to be queried.

Description:
This function will get the current protection for the specified 2 kB block of flash. Each block can
be read/write, read-only, or execute-only. Read/write blocks can be read, executed, erased,
and programmed. Read-only blocks can be read and executed. Execute-only blocks can only
be executed; processor and debugger data reads are not allowed.

Returns:
Returns the protection setting for this block. See ROM_FlashProtectSet() for possible values.

8.2.1.8 ROM_FlashProtectSave

Saves the flash protection settings.

Prototype:
long
ROM_FlashProtectSave(void)

January 4, 2013 77

Flash

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProtectSave is a function pointer located at ROM_FLASHTABLE[6].

Description:
This function will make the currently programmed flash protection settings permanent. This is
a non-reversible operation; a chip reset or power cycle will not change the flash protection.

This function will not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

8.2.1.9 ROM_FlashProtectSet

Sets the protection setting for a block of flash.

Prototype:
long
ROM_FlashProtectSet(unsigned long ulAddress,

tFlashProtection eProtect)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProtectSet is a function pointer located at ROM_FLASHTABLE[5].

Parameters:
ulAddress is the start address of the flash block to be protected.
eProtect is the protection to be applied to the block. Can be one of FlashReadWrite,

FlashReadOnly, or FlashExecuteOnly.

Description:
This function will set the protection for the specified 2 kB block of flash. Blocks which are
read/write can be made read-only or execute-only. Blocks which are read-only can be made
execute-only. Blocks which are execute-only cannot have their protection modified. Attempts
to make the block protection less stringent (that is, read-only to read/write) will result in a failure
(and be prevented by the hardware).

Changes to the flash protection are maintained only until the next reset. This allows the ap-
plication to be executed in the desired flash protection environment to check for inappropri-
ate flash access (via the flash interrupt). To make the flash protection permanent, use the
ROM_FlashProtectSave() function.

Returns:
Returns 0 on success, or -1 if an invalid address or an invalid protection was specified.

8.2.1.10 ROM_FlashUsecGet

Gets the number of processor clocks per micro-second.

78 January 4, 2013

Flash

Prototype:
unsigned long
ROM_FlashUsecGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUsecGet is a function pointer located at ROM_FLASHTABLE[1].

Description:
This function returns the number of clocks per micro-second, as presently known by the flash
controller.

Returns:
Returns the number of processor clocks per micro-second.

8.2.1.11 ROM_FlashUsecSet

Sets the number of processor clocks per micro-second.

Prototype:
void
ROM_FlashUsecSet(unsigned long ulClocks)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUsecSet is a function pointer located at ROM_FLASHTABLE[2].

Parameters:
ulClocks is the number of processor clocks per micro-second.

Description:
This function is used to tell the flash controller the number of processor clocks per micro-
second. This value must be programmed correctly or the flash most likely will not program
correctly; it has no affect on reading flash.

Returns:
None.

8.2.1.12 ROM_FlashUserGet

Gets the user registers.

Prototype:
long
ROM_FlashUserGet(unsigned long *pulUser0,

unsigned long *pulUser1)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUserGet is a function pointer located at ROM_FLASHTABLE[7].

January 4, 2013 79

Flash

Parameters:
pulUser0 is a pointer to the location to store USER Register 0.
pulUser1 is a pointer to the location to store USER Register 1.

Description:
This function will read the contents of user registers (0 and 1), and store them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

8.2.1.13 ROM_FlashUserSave

Saves the user registers.

Prototype:
long
ROM_FlashUserSave(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUserSave is a function pointer located at ROM_FLASHTABLE[9].

Description:
This function will make the currently programmed user register settings permanent. This is a
non-reversible operation; a chip reset or power cycle will not change this setting.

This function will not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

8.2.1.14 ROM_FlashUserSet

Sets the user registers.

Prototype:
long
ROM_FlashUserSet(unsigned long ulUser0,

unsigned long ulUser1)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUserSet is a function pointer located at ROM_FLASHTABLE[8].

Parameters:
ulUser0 is the value to store in USER Register 0.
ulUser1 is the value to store in USER Register 1.

80 January 4, 2013

Flash

Description:
This function will set the contents of the user registers (0 and 1) to the specified values.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

January 4, 2013 81

Flash

82 January 4, 2013

Floating-Point Unit (FPU)

9 Floating-Point Unit (FPU)
Introduction . 83
API Functions .84

9.1 Introduction

The floating-point unit (FPU) driver provides methods for manipulating the behavior of the floating-
point unit in the Cortex-M processor. By default, the floating-point is disabled and must be enabled
prior to the execution of any floating-point instructions. If a floating-point instruction is executed
when the floating-point unit is disabled, a NOCP usage fault is generated. This feature can be
used by an RTOS, for example, to keep track of which tasks actually use the floating-point unit, and
therefore only perform floating-point context save/restore on task switches that involve those tasks.

There are three methods of handling the floating-point context when the processor executes an in-
terrupt handler: it can do nothing with the floating-point context, it can always save the floating-point
context, or it can perform a lazy save/restore of the floating-point context. If nothing is done with
the floating-point context, the interrupt stack frame is identical to a Cortex-M processor that does
not have a floating-point unit, containing only the volatile registers of the integer unit. This method
is useful for applications where the floating-point unit is used by the main thread of execution, but
not in any of the interrupt handlers. By not saving the floating-point context, stack usage is reduced
and interrupt latency is kept to a minimum.

Alternatively, the floating-point context can always be saved onto the stack. This method allows
floating-point operations to be performed inside interrupt handlers without any special precautions,
at the expense of increased stack usage (for the floating-point context) and increased interrupt
latency (due to the additional writes to the stack). The advantage to this method is that the stack
frame always contains the floating-point context when inside an interrupt handler.

The default handling of the floating-point context is to perform a lazy save/restore. When an in-
terrupt is taken, space is reserved on the stack for the floating-point context but the context is not
written. This method keeps the interrupt latency to a minimum because only the integer state is
written to the stack. Then, if a floating-point instruction is executed from within the interrupt handler,
the floating-point context is written to the stack prior to the execution of the floating-point instruction.
Finally, upon return from the interrupt, the floating-point context is restored from the stack only if
it was written. Using lazy save/restore provides a blend between fast interrupt response and the
ability to use floating-point instructions in the interrupt handler.

The floating-point unit can generate an interrupt when one of several exceptions occur. The ex-
ceptions are underflow, overflow, divide by zero, invalid operation, input denormal, and inexact
exception. The application can optionally choose to enable one or more of these interrupts and use
the interrupt handler to decide upon a course of action to be taken in each case.

The behavior of the floating-point unit can also be adjusted, specifying the format of half-precision
floating-point values, the handle of NaN values, the flush-to-zero mode (which sacrifices full IEEE
compliance for execution speed), and the rounding mode for results.

January 4, 2013 83

Floating-Point Unit (FPU)

9.2 API Functions

Functions
void ROM_FPUDisable (void)
void ROM_FPUEnable (void)
void ROM_FPUFlushToZeroModeSet (unsigned long ulMode)
void ROM_FPUHalfPrecisionModeSet (unsigned long ulMode)
void ROM_FPULazyStackingEnable (void)
void ROM_FPUNaNModeSet (unsigned long ulMode)
void ROM_FPURoundingModeSet (unsigned long ulMode)
void ROM_FPUStackingDisable (void)
void ROM_FPUStackingEnable (void)

9.2.1 Function Documentation

9.2.1.1 ROM_FPUDisable

Disables the floating-point unit.

Prototype:
void
ROM_FPUDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUDisable is a function pointer located at ROM_FPUTABLE[1].

Description:
This function disables the floating-point unit, preventing floating-point instructions from execut-
ing (generating a NOCP usage fault instead).

Returns:
None.

9.2.1.2 ROM_FPUEnable

Enables the floating-point unit.

Prototype:
void
ROM_FPUEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUEnable is a function pointer located at ROM_FPUTABLE[0].

84 January 4, 2013

Floating-Point Unit (FPU)

Description:
This function enables the floating-point unit, allowing the floating-point instructions to be exe-
cuted. This function must be called prior to performing any hardware floating-point operations;
failure to do so results in a NOCP usage fault.

Returns:
None.

9.2.1.3 ROM_FPUFlushToZeroModeSet

Selects the flush-to-zero mode.

Prototype:
void
ROM_FPUFlushToZeroModeSet(unsigned long ulMode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUFlushToZeroModeSet is a function pointer located at ROM_FPUTABLE[2].

Parameters:
ulMode is the flush-to-zero mode; which is either FPU_FLUSH_TO_ZERO_DIS or

FPU_FLUSH_TO_ZERO_EN.

Description:
This function enables or disables the flush-to-zero mode of the floating-point unit. When dis-
abled (the default), the floating-point unit is fully IEEE compliant. When enabled, values close
to zero are treated as zero, greatly improving the execution speed at the expense of some
accuracy (as well as IEEE compliance).

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

9.2.1.4 ROM_FPUHalfPrecisionModeSet

Selects the format of half-precision floating-point values.

Prototype:
void
ROM_FPUHalfPrecisionModeSet(unsigned long ulMode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUHalfPrecisionModeSet is a function pointer located at ROM_FPUTABLE[3].

January 4, 2013 85

Floating-Point Unit (FPU)

Parameters:
ulMode is the format for half-precision floating-point values; which is either FPU_HALF_IEEE

or FPU_HALF_ALTERNATE.

Description:
This function selects between the IEEE half-precision floating-point representation and the
Cortex-M processor alternative representation. The alternative representation has a larger
range but does not have a way to encode infinity (positive or negative) or NaN (quiet or signal-
ing). The default setting is the IEEE format.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

9.2.1.5 ROM_FPULazyStackingEnable

Enables the lazy stacking of floating-point registers.

Prototype:
void
ROM_FPULazyStackingEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPULazyStackingEnable is a function pointer located at ROM_FPUTABLE[4].

Description:
This function enables the lazy stacking of floating-point registers s0-s15 when an interrupt is
handled. When lazy stacking is enabled, space is reserved on the stack for the floating-point
context, but the floating-point state is not saved. If a floating-point instruction is executed from
within the interrupt context, the floating-point context is first saved into the space reserved on
the stack. On completion of the interrupt handler, the floating-point context is only restored if it
was saved (as the result of executing a floating-point instruction).

This provides a compromise between fast interrupt response (because the floating-point state
is not saved on interrupt entry) and the ability to use floating-point in interrupt handlers (be-
cause the floating-point state is saved if floating-point instructions are used).

Returns:
None.

9.2.1.6 ROM_FPUNaNModeSet

Selects the NaN mode.

Prototype:
void
ROM_FPUNaNModeSet(unsigned long ulMode)

86 January 4, 2013

Floating-Point Unit (FPU)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUNaNModeSet is a function pointer located at ROM_FPUTABLE[5].

Parameters:
ulMode is the mode for NaN results; which is either FPU_NAN_PROPAGATE or

FPU_NAN_DEFAULT.

Description:
This function selects the handling of NaN results during floating-point computations. NaNs can
either propagate (the default), or they can return the default NaN.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

9.2.1.7 ROM_FPURoundingModeSet

Selects the rounding mode for floating-point results.

Prototype:
void
ROM_FPURoundingModeSet(unsigned long ulMode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPURoundingModeSet is a function pointer located at ROM_FPUTABLE[6].

Parameters:
ulMode is the rounding mode.

Description:
This function selects the rounding mode for floating-point results. After a floating-
point operation, the result is rounded toward the specified value. The default mode is
FPU_ROUND_NEAREST.

The following rounding modes are available (as specified by ulMode):

FPU_ROUND_NEAREST - round toward the nearest value
FPU_ROUND_POS_INF - round toward positive infinity
FPU_ROUND_NEG_INF - round toward negative infinity
FPU_ROUND_ZERO - round toward zero

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

January 4, 2013 87

Floating-Point Unit (FPU)

9.2.1.8 ROM_FPUStackingDisable

Disables the stacking of floating-point registers.

Prototype:
void
ROM_FPUStackingDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUStackingDisable is a function pointer located at ROM_FPUTABLE[7].

Description:
This function disables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When floating-point context stacking is disabled, floating-point operations performed in
an interrupt handler destroy the floating-point context of the main thread of execution.

Returns:
None.

9.2.1.9 ROM_FPUStackingEnable

Enables the stacking of floating-point registers.

Prototype:
void
ROM_FPUStackingEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUStackingEnable is a function pointer located at ROM_FPUTABLE[8].

Description:
This function enables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When enabled, space is reserved on the stack for the floating-point context and the
floating-point state is saved into this stack space. Upon return from the interrupt, the floating-
point context is restored.

If the floating-point registers are not stacked, floating-point instructions cannot be safely exe-
cuted in an interrupt handler because the values of s0-s15 are not likely to be preserved for
the interrupted code. On the other hand, stacking the floating-point registers increases the
stacking operation from 8 words to 26 words, also increasing the interrupt response latency.

Returns:
None.

88 January 4, 2013

GPIO

10 GPIO
Introduction . 89
Functions . 89

10.1 Introduction

The GPIO module provides control for up to eight independent GPIO pins (the actual number
present depend upon the GPIO port and part number). Each pin has the following capabilities:

Can be configured as an input or an output. On reset, they default to being an input.

In input mode, can generate interrupts on high level, low level, rising edge, falling edge, or
both edges.

In output mode, can be configured for 2 mA, 4 mA, or 8 mA drive strength. The 8 mA drive
strength configuration has optional slew rate control to limit the rise and fall times of the signal.
On reset, they default to 2 mA drive strength.

Optional weak pull-up or pull-down resistors. On reset, they default to no pull-up or pull-down
resistors.

Optional open-drain operation. On reset, they default to standard push/pull operation.

Can be configured to be a GPIO or a peripheral pin. On reset, they default to being GPIOs.
Note that not all pins on all parts have peripheral functions, in which case the pin is only useful
as a GPIO (that is, when configured for peripheral function the pin will not do anything useful).

Most of the GPIO functions can operate on more than one GPIO pin (within a single module) at
a time. The ucPins parameter to these functions is used to specify the pins that are affected; the
GPIO pins whose corresponding bits in this parameter that are set will be affected (where pin 0 is
in bit 0, pin 1 in bit 1, and so on). For example, if ucPins is 0x09, then pins 0 and 3 will be affected
by the function.

This is most useful for the ROM_GPIOPinRead() and ROM_GPIOPinWrite() functions; a read will
return only the value of the requested pins (with the other pin values masked out) and a write will
affect the requested pins simultaneously (that is, the state of multiple GPIO pins can be changed
at the same time). This data masking for the GPIO pin state occurs in the hardware; a single read
or write is issued to the hardware, which interprets some of the address bits as an indication of the
GPIO pins to operate upon (and therefore the ones to not affect). See the part data sheet for details
of the GPIO data register address-based bit masking.

For functions that have a ucPin (singular) parameter, only a single pin is affected by the function. In
this case, this value specifies the pin number (that is, 0 through 7).

10.2 Functions

Functions
void GPIOADCTriggerDisable (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOADCTriggerEnable (unsigned long ulPort, unsigned char ucPins)

January 4, 2013 89

GPIO

unsigned long ROM_GPIODirModeGet (unsigned long ulPort, unsigned char ucPin)
void ROM_GPIODirModeSet (unsigned long ulPort, unsigned char ucPins, unsigned long
ulPinIO)
void ROM_GPIODMATriggerDisable (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIODMATriggerEnable (unsigned long ulPort, unsigned char ucPins)
unsigned long ROM_GPIOIntTypeGet (unsigned long ulPort, unsigned char ucPin)
void ROM_GPIOIntTypeSet (unsigned long ulPort, unsigned char ucPins, unsigned long ulInt-
Type)
void ROM_GPIOPadConfigGet (unsigned long ulPort, unsigned char ucPin, unsigned long
∗pulStrength, unsigned long ∗pulPinType)
void ROM_GPIOPadConfigSet (unsigned long ulPort, unsigned char ucPins, unsigned long
ulStrength, unsigned long ulPinType)
void ROM_GPIOPinConfigure (unsigned long ulPinConfig)
void ROM_GPIOPinIntClear (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinIntDisable (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinIntEnable (unsigned long ulPort, unsigned char ucPins)
long ROM_GPIOPinIntStatus (unsigned long ulPort, tBoolean bMasked)
long ROM_GPIOPinRead (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeADC (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeCAN (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeComparator (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeGPIOInput (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeGPIOOutput (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeGPIOOutputOD (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeI2C (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeI2CSCL (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypePWM (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeQEI (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeSSI (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeTimer (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeUART (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeUSBAnalog (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinTypeUSBDigital (unsigned long ulPort, unsigned char ucPins)
void ROM_GPIOPinWrite (unsigned long ulPort, unsigned char ucPins, unsigned char ucVal)

10.2.1 Function Documentation

10.2.1.1 GPIOADCTriggerDisable

Disable a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
GPIOADCTriggerDisable(unsigned long ulPort,

unsigned char ucPins)

90 January 4, 2013

GPIO

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOADCTriggerDisable is a function pointer located at ROM_GPIOTABLE[34].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin to be used as a trigger to start an ADC sequence. This func-
tion can be used to disable this feature if it was enabled via a call to GPIOADCTriggerEnable().

Returns:
None.

10.2.1.2 ROM_GPIOADCTriggerEnable

Enables a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
ROM_GPIOADCTriggerEnable(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOADCTriggerEnable is a function pointer located at ROM_GPIOTABLE[33].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
This function enables a GPIO pin to be used as a trigger to start an ADC sequence. Any GPIO
pin can be configured to be an external trigger for an ADC sequence. The GPIO pin will still
generate interrupts if the interrupt is enabled for the selected pin.

Returns:
None.

10.2.1.3 ROM_GPIODirModeGet

Gets the direction and mode of a pin.

Prototype:
unsigned long
ROM_GPIODirModeGet(unsigned long ulPort,

unsigned char ucPin)

January 4, 2013 91

GPIO

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODirModeGet is a function pointer located at ROM_GPIOTABLE[2].

Parameters:
ulPort is the base address of the GPIO port.
ucPin is the pin number.

Description:
This function gets the direction and control mode for a specified pin on the selected GPIO port.
The pin can be configured as either an input or output under software control, or it can be under
hardware control. The type of control and direction are returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for ROM_GPIODirModeSet().

10.2.1.4 ROM_GPIODirModeSet

Sets the direction and mode of the specified pin(s).

Prototype:
void
ROM_GPIODirModeSet(unsigned long ulPort,

unsigned char ucPins,
unsigned long ulPinIO)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODirModeSet is a function pointer located at ROM_GPIOTABLE[1].

Parameters:
ulPort is the base address of the GPIO port
ucPins is the bit-packed representation of the pin(s).
ulPinIO is the pin direction and/or mode.

Description:
This function will set the specified pin(s) on the selected GPIO port as either an input or output
under software control, or it will set the pin to be under hardware control.

The parameter ulPinIO is an enumerated data type that can be one of the following values:

GPIO_DIR_MODE_IN
GPIO_DIR_MODE_OUT
GPIO_DIR_MODE_HW

where GPIO_DIR_MODE_IN specifies that the pin is programmed as a software controlled
input, GPIO_DIR_MODE_OUT specifies that the pin is programmed as a software controlled
output, and GPIO_DIR_MODE_HW specifies that the pin is placed under hardware control.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

92 January 4, 2013

GPIO

Note:
ROM_GPIOPadConfigSet() must also be used to configure the corresponding pad(s) in order
for them to propagate the signal to/from the GPIO.

Returns:
None.

10.2.1.5 ROM_GPIODMATriggerDisable

Disables a GPIO pin as a trigger to start a DMA transaction.

Prototype:
void
ROM_GPIODMATriggerDisable(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODMATriggerDisable is a function pointer located at ROM_GPIOTABLE[32].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin to be used as a trigger to start a uDMA transaction. This
function can be used to disable this feature if it was enabled via a call to GPIODMATriggerEn-
able().

Returns:
None.

10.2.1.6 ROM_GPIODMATriggerEnable

Enables a GPIO pin as a trigger to start a DMA transaction.

Prototype:
void
ROM_GPIODMATriggerEnable(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODMATriggerEnable is a function pointer located at ROM_GPIOTABLE[31].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

January 4, 2013 93

GPIO

Description:
This function enables a GPIO pin to be used as a trigger to start a uDMA transaction. Any
GPIO pin can be configured to be an external trigger for the uDMA. The GPIO pin will still
generate interrupts if the interrupt is enabled for the selected pin.

Returns:
None.

10.2.1.7 ROM_GPIOIntTypeGet

Gets the interrupt type for a pin.

Prototype:
unsigned long
ROM_GPIOIntTypeGet(unsigned long ulPort,

unsigned char ucPin)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntTypeGet is a function pointer located at ROM_GPIOTABLE[4].

Parameters:
ulPort is the base address of the GPIO port.
ucPin is the pin number.

Description:
This function gets the interrupt type for a specified pin on the selected GPIO port. The pin
can be configured as a falling edge, rising edge, or both edge detected interrupt, or it can
be configured as a low level or high level detected interrupt. The type of interrupt detection
mechanism is returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for ROM_GPIOIntTypeSet().

10.2.1.8 ROM_GPIOIntTypeSet

Sets the interrupt type for the specified pin(s).

Prototype:
void
ROM_GPIOIntTypeSet(unsigned long ulPort,

unsigned char ucPins,
unsigned long ulIntType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntTypeSet is a function pointer located at ROM_GPIOTABLE[3].

94 January 4, 2013

GPIO

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).
ulIntType specifies the type of interrupt trigger mechanism.

Description:
This function sets up the various interrupt trigger mechanisms for the specified pin(s) on the
selected GPIO port.

The parameter ulIntType is an enumerated data type that can be one of the following values:

GPIO_FALLING_EDGE
GPIO_RISING_EDGE
GPIO_BOTH_EDGES
GPIO_LOW_LEVEL
GPIO_HIGH_LEVEL

where the different values describe the interrupt detection mechanism (edge or level) and the
particular triggering event (falling, rising, or both edges for edge detect, low or high for level
detect).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
In order to avoid any spurious interrupts, the user must ensure that the GPIO inputs remain
stable for the duration of this function.

Returns:
None.

10.2.1.9 ROM_GPIOPadConfigGet

Gets the pad configuration for a pin.

Prototype:
void
ROM_GPIOPadConfigGet(unsigned long ulPort,

unsigned char ucPin,
unsigned long *pulStrength,
unsigned long *pulPinType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPadConfigGet is a function pointer located at ROM_GPIOTABLE[6].

Parameters:
ulPort is the base address of the GPIO port.
ucPin is the pin number.
pulStrength is a pointer to storage for the output drive strength.
pulPinType is a pointer to storage for the output drive type.

January 4, 2013 95

GPIO

Description:
This function gets the pad configuration for a specified pin on the selected GPIO port.
The values returned in pulStrength and pulPinType correspond to the values used in
ROM_GPIOPadConfigSet(). This function also works for pin(s) configured as input pin(s);
however, the only meaningful data returned is whether the pin is terminated with a pull-up or
down resistor.

Returns:
None

10.2.1.10 ROM_GPIOPadConfigSet

Sets the pad configuration for the specified pin(s).

Prototype:
void
ROM_GPIOPadConfigSet(unsigned long ulPort,

unsigned char ucPins,
unsigned long ulStrength,
unsigned long ulPinType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPadConfigSet is a function pointer located at ROM_GPIOTABLE[5].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).
ulStrength specifies the output drive strength.
ulPinType specifies the pin type.

Description:
This function sets the drive strength and type for the specified pin(s) on the selected GPIO
port. For pin(s) configured as input ports, the pad is configured as requested, but the only real
effect on the input is the configuration of the pull-up or pull-down termination.

The parameter ulStrength can be one of the following values:

GPIO_STRENGTH_2MA
GPIO_STRENGTH_4MA
GPIO_STRENGTH_8MA
GPIO_STRENGTH_8MA_SC

where GPIO_STRENGTH_xMA specifies either 2, 4, or 8 mA output drive strength, and
GPIO_OUT_STRENGTH_8MA_SC specifies 8 mA output drive with slew control.

The parameter ulPinType can be one of the following values:

GPIO_PIN_TYPE_STD
GPIO_PIN_TYPE_STD_WPU
GPIO_PIN_TYPE_STD_WPD
GPIO_PIN_TYPE_OD

96 January 4, 2013

GPIO

GPIO_PIN_TYPE_OD_WPU
GPIO_PIN_TYPE_OD_WPD
GPIO_PIN_TYPE_ANALOG

where GPIO_PIN_TYPE_STD∗ specifies a push-pull pin, GPIO_PIN_TYPE_OD∗ specifies an
open-drain pin, ∗_WPU specifies a weak pull-up, ∗_WPD specifies a weak pull-down, and
GPIO_PIN_TYPE_ANALOG specifies an analog input.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.1.11 ROM_GPIOPinConfigure

Configures the alternate function of a GPIO pin.

Prototype:
void
ROM_GPIOPinConfigure(unsigned long ulPinConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinConfigure is a function pointer located at ROM_GPIOTABLE[26].

Parameters:
ulPinConfig is the pin configuration value, specified as only one of the GPIO_P??_??? val-

ues.

Description:
This function configures the pin mux that selects the peripheral function associated with a
particular GPIO pin. Only one peripheral function at a time can be associated with a GPIO
pin, and each peripheral function should only be associated with a single GPIO pin at a time
(despite the fact that many of them can be associated with more than one GPIO pin).

Returns:
None.

10.2.1.12 ROM_GPIOPinIntClear

Clears the interrupt for the specified pin(s).

Prototype:
void
ROM_GPIOPinIntClear(unsigned long ulPort,

unsigned char ucPins)

January 4, 2013 97

GPIO

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinIntClear is a function pointer located at ROM_GPIOTABLE[10].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Clears the interrupt for the specified pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

10.2.1.13 ROM_GPIOPinIntDisable

Disables interrupts for the specified pin(s).

Prototype:
void
ROM_GPIOPinIntDisable(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinIntDisable is a function pointer located at ROM_GPIOTABLE[8].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Masks the interrupt for the specified pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

98 January 4, 2013

GPIO

10.2.1.14 ROM_GPIOPinIntEnable

Enables interrupts for the specified pin(s).

Prototype:
void
ROM_GPIOPinIntEnable(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinIntEnable is a function pointer located at ROM_GPIOTABLE[7].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Unmasks the interrupt for the specified pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.1.15 ROM_GPIOPinIntStatus

Gets interrupt status for the specified GPIO port.

Prototype:
long
ROM_GPIOPinIntStatus(unsigned long ulPort,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinIntStatus is a function pointer located at ROM_GPIOTABLE[9].

Parameters:
ulPort is the base address of the GPIO port.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns a bit-packed byte, where each bit that is set identifies an active masked or raw inter-
rupt, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port pin 1,
and so on. Bits 31:8 should be ignored.

January 4, 2013 99

GPIO

10.2.1.16 ROM_GPIOPinRead

Reads the values present of the specified pin(s).

Prototype:
long
ROM_GPIOPinRead(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinRead is a function pointer located at ROM_GPIOTABLE[11].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The values at the specified pin(s) are read, as specified by ucPins. Values are returned for
both input and output pin(s), and the value for pin(s) that are not specified by ucPins are set to
0.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
Returns a bit-packed byte providing the state of the specified pin, where bit 0 of the byte
represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on. Any bit that is not
specified by ucPins is returned as a 0. Bits 31:8 should be ignored.

10.2.1.17 ROM_GPIOPinTypeADC

Configures pin(s) for use as analog-to-digital converter inputs.

Prototype:
void
ROM_GPIOPinTypeADC(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeADC is a function pointer located at ROM_GPIOTABLE[23].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The analog-to-digital converter input pins must be properly configured to function correctly.
This function provides the proper configuration for those pin(s).

100 January 4, 2013

GPIO

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an ADC input; it only configures an ADC input pin for
proper operation.

Returns:
None.

10.2.1.18 ROM_GPIOPinTypeCAN

Configures pin(s) for use as a CAN device.

Prototype:
void
ROM_GPIOPinTypeCAN(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeCAN is a function pointer located at ROM_GPIOTABLE[12].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The CAN pins must be properly configured for the CAN peripherals to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a CAN pin; it only configures a CAN pin for proper
operation.

Returns:
None.

10.2.1.19 ROM_GPIOPinTypeComparator

Configures pin(s) for use as an analog comparator input.

January 4, 2013 101

GPIO

Prototype:
void
ROM_GPIOPinTypeComparator(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeComparator is a function pointer located at ROM_GPIOTABLE[13].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The analog comparator input pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an analog comparator input; it only configures an
analog comparator pin for proper operation.

Returns:
None.

10.2.1.20 ROM_GPIOPinTypeGPIOInput

Configures pin(s) for use as GPIO inputs.

Prototype:
void
ROM_GPIOPinTypeGPIOInput(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeGPIOInput is a function pointer located at ROM_GPIOTABLE[14].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO inputs. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

102 January 4, 2013

GPIO

Returns:
None.

10.2.1.21 ROM_GPIOPinTypeGPIOOutput

Configures pin(s) for use as GPIO outputs.

Prototype:
void
ROM_GPIOPinTypeGPIOOutput(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeGPIOOutput is a function pointer located at ROM_GPIOTABLE[15].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.1.22 ROM_GPIOPinTypeGPIOOutputOD

Configures pin(s) for use as GPIO open drain outputs.

Prototype:
void
ROM_GPIOPinTypeGPIOOutputOD(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeGPIOOutputOD is a function pointer located at ROM_GPIOTABLE[22].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

January 4, 2013 103

GPIO

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

10.2.1.23 ROM_GPIOPinTypeI2C

Configures pin(s) for use by the I2C peripheral.

Prototype:
void
ROM_GPIOPinTypeI2C(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeI2C is a function pointer located at ROM_GPIOTABLE[16].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an I2C pin; it only configures an I2C pin for proper
operation.

Returns:
None.

10.2.1.24 ROM_GPIOPinTypeI2CSCL

Configures pin(s) for use as SCL by the I2C peripheral.

Prototype:
void
ROM_GPIOPinTypeI2CSCL(unsigned long ulPort,

unsigned char ucPins)

104 January 4, 2013

GPIO

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeI2CSCL is a function pointer located at ROM_GPIOTABLE[39].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for the SCL pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into an I2C SCL pin; it only configures an I2C SCL pin for
proper operation.

Returns:
None.

10.2.1.25 ROM_GPIOPinTypePWM

Configures pin(s) for use by the PWM peripheral.

Prototype:
void
ROM_GPIOPinTypePWM(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypePWM is a function pointer located at ROM_GPIOTABLE[17].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The PWM pins must be properly configured for the PWM peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a PWM pin; it only configures a PWM pin for proper
operation.

January 4, 2013 105

GPIO

Returns:
None.

10.2.1.26 ROM_GPIOPinTypeQEI

Configures pin(s) for use by the QEI peripheral.

Prototype:
void
ROM_GPIOPinTypeQEI(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeQEI is a function pointer located at ROM_GPIOTABLE[18].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The QEI pins must be properly configured for the QEI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, not using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a QEI pin; it only configures a QEI pin for proper
operation.

Returns:
None.

10.2.1.27 ROM_GPIOPinTypeSSI

Configures pin(s) for use by the SSI peripheral.

Prototype:
void
ROM_GPIOPinTypeSSI(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeSSI is a function pointer located at ROM_GPIOTABLE[19].

106 January 4, 2013

GPIO

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The SSI pins must be properly configured for the SSI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a SSI pin; it only configures a SSI pin for proper
operation.

Returns:
None.

10.2.1.28 ROM_GPIOPinTypeTimer

Configures pin(s) for use by the Timer peripheral.

Prototype:
void
ROM_GPIOPinTypeTimer(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeTimer is a function pointer located at ROM_GPIOTABLE[20].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The CCP pins must be properly configured for the timer peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a timer pin; it only configures a timer pin for proper
operation.

Returns:
None.

January 4, 2013 107

GPIO

10.2.1.29 ROM_GPIOPinTypeUART

Configures pin(s) for use by the UART peripheral.

Prototype:
void
ROM_GPIOPinTypeUART(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeUART is a function pointer located at ROM_GPIOTABLE[21].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
The UART pins must be properly configured for the UART peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a UART pin; it only configures a UART pin for proper
operation.

Returns:
None.

10.2.1.30 ROM_GPIOPinTypeUSBAnalog

Configures pin(s) for use by the USB peripheral.

Prototype:
void
ROM_GPIOPinTypeUSBAnalog(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeUSBAnalog is a function pointer located at ROM_GPIOTABLE[28].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

108 January 4, 2013

GPIO

Description:
Some USB analog pins must be properly configured for the USB peripheral to function correctly.
This function provides the proper configuration for any USB pin(s). This can also be used to
configure the EPEN and PFAULT pins so that they are no longer used by the USB controller.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a USB pin; it only configures a USB pin for proper
operation.

Returns:
None.

10.2.1.31 ROM_GPIOPinTypeUSBDigital

Configures pin(s) for use by the USB peripheral.

Prototype:
void
ROM_GPIOPinTypeUSBDigital(unsigned long ulPort,

unsigned char ucPins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeUSBDigital is a function pointer located at ROM_GPIOTABLE[24].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).

Description:
Some USB digital pins must be properly configured for the USB peripheral to function correctly.
This function provides a typical configuration for the digital USB pin(s); other configurations may
work as well depending upon the board setup (for example, using the on-chip pull-ups).

This function should only be used with EPEN and PFAULT pins as all other USB pins are
analog in nature or are not used in devices without OTG functionality.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This cannot be used to turn any pin into a USB pin; it only configures a USB pin for proper
operation.

Returns:
None.

January 4, 2013 109

GPIO

10.2.1.32 ROM_GPIOPinWrite

Writes a value to the specified pin(s).

Prototype:
void
ROM_GPIOPinWrite(unsigned long ulPort,

unsigned char ucPins,
unsigned char ucVal)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinWrite is a function pointer located at ROM_GPIOTABLE[0].

Parameters:
ulPort is the base address of the GPIO port.
ucPins is the bit-packed representation of the pin(s).
ucVal is the value to write to the pin(s).

Description:
Writes the corresponding bit values to the output pin(s) specified by ucPins. Writing to a pin
configured as an input pin has no effect.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

110 January 4, 2013

Hibernation Module

11 Hibernation Module
Introduction .111
Functions . 112

11.1 Introduction

The Hibernate API provides a set of functions for using the Hibernation module on the Stellaris
microcontroller. The Hibernation module allows the software application to cause power to be
removed from the microcontroller, and then be powered on later based on specific time or a signal
on the external WAKE pin. The API provides functions to configure wake conditions, manage
interrupts, read status, save and restore program state information, and request hibernation mode.

Some of the features of the Hibernation module are:

32-bit real time clock

Trim register for fine tuning the RTC rate

Two RTC match registers for generating RTC events

External WAKE pin to initiate a wake-up

Low-battery detection

64 32-bit words of non-volatile memory

Programmable interrupts for hibernation events

The Hibernation module must be enabled before it can be used. Use the
ROM_HibernateEnableExpClk() function to enable it. If a crystal is used for the clock
source, then the initializing code must allow time for the crystal to stabilize after calling the
ROM_HibernateEnableExpClk() function. Refer to the device data sheet for information about
crystal stabilization time. If an oscillator is used, then no delay is necessary. After the module is
enabled, the clock source must be configured by calling ROM_HibernateClockSelect().

In order to use the RTC feature of the Hibernation module, the RTC must be en-
abled by calling ROM_HibernateRTCEnable(). It can be later disabled by calling
ROM_HibernateRTCDisable(). These functions can be called at any time to start and
stop the RTC. The RTC value can be read or set by using the ROM_HibernateRTCGet()
and ROM_HibernateRTCSet() functions. The two match registers can be read and
set by using the ROM_HibernateRTCMatch0Get(), ROM_HibernateRTCMatch0Set(),
ROM_HibernateRTCMatch1Get(), and ROM_HibernateRTCMatch1Set() functions. The real-
time clock rate can be adjusted by using the trim register. Use the ROM_HibernateRTCTrimGet()
and ROM_HibernateRTCTrimSet() functions for this purpose.

Application state information can be stored in the non-volatile memory of the Hiberna-
tion module when the processor is powered off. Use the ROM_HibernateDataSet() and
ROM_HibernateDataGet() functions to access the non-volatile memory area.

The module can be configured to wake when the external WAKE pin is asserted, or when an
RTC match occurs, or both. Use the ROM_HibernateWakeSet() function to configure the wake
conditions. The present configuration can be read by calling ROM_HibernateWakeGet().

January 4, 2013 111

Hibernation Module

The Hibernation module can detect a low battery and signal the processor. It can also be configured
to abort a hibernation request if the battery voltage is too low. Use the ROM_HibernateLowBatSet()
and ROM_HibernateLowBatGet() functions to configure this feature.

Several functions are provided for managing interrupts. Use the ROM_HibernateIntEnable() and
ROM_HibernateIntDisable() functions to enable and disable specific interrupt sources. The present
interrupt status can be found by calling ROM_HibernateIntStatus(). In the interrupt handler, all
pending interrupts must be cleared. Use the ROM_HibernateIntClear() function to clear pending
interrupts.

Finally, once the module is appropriately configured, the state saved, and the software applica-
tion is ready to hibernate, call the ROM_HibernateRequest() function. This will initiate the se-
quence to remove power from the processor. At a power-on reset, the software application can
use the ROM_HibernateIsActive() function to determine if the Hibernation module is already ac-
tive and therefore does not need to be enabled. This can provide a hint to the software that
the processor is waking from hibernation instead of a cold start. The software can then use the
ROM_HibernateIntStatus() and ROM_HibernateDataGet() functions to discover the cause of the
wake and to get the saved system state.

11.2 Functions

Functions
unsigned long ROM_HibernateBatCheckDone (void)
void ROM_HibernateBatCheckStart (void)
void ROM_HibernateClockConfig (unsigned long ulConfig)
void ROM_HibernateClockSelect (unsigned long ulClockInput)
void ROM_HibernateDataGet (unsigned long ∗pulData, unsigned long ulCount)
void ROM_HibernateDataSet (unsigned long ∗pulData, unsigned long ulCount)
void ROM_HibernateDisable (void)
void ROM_HibernateEnableExpClk (unsigned long ulHibClk)
void ROM_HibernateIntClear (unsigned long ulIntFlags)
void ROM_HibernateIntDisable (unsigned long ulIntFlags)
void ROM_HibernateIntEnable (unsigned long ulIntFlags)
unsigned long ROM_HibernateIntStatus (tBoolean bMasked)
unsigned int ROM_HibernateIsActive (void)
unsigned long ROM_HibernateLowBatGet (void)
void ROM_HibernateLowBatSet (unsigned long ulLowBatFlags)
void ROM_HibernateRequest (void)
void ROM_HibernateRTCDisable (void)
void ROM_HibernateRTCEnable (void)
unsigned long ROM_HibernateRTCGet (void)
unsigned long ROM_HibernateRTCMatch0Get (void)
void ROM_HibernateRTCMatch0Set (unsigned long ulMatch)
void ROM_HibernateRTCSet (unsigned long ulRTCValue)
unsigned long ROM_HibernateRTCSSGet (void)
unsigned long ROM_HibernateRTCSSMatch0Get (void)

112 January 4, 2013

Hibernation Module

void ROM_HibernateRTCSSMatch0Set (unsigned long ulMatch)
unsigned long ROM_HibernateRTCTrimGet (void)
void ROM_HibernateRTCTrimSet (unsigned long ulTrim)
unsigned long ROM_HibernateWakeGet (void)
void ROM_HibernateWakeSet (unsigned long ulWakeFlags)

11.2.1 Function Documentation

11.2.1.1 ROM_HibernateBatCheckDone

Returns if a forced battery check has completed.

Prototype:
unsigned long
ROM_HibernateBatCheckDone(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateBatCheckDone is a function pointer located at
ROM_HIBERNATETABLE[30].

Description:
This function returns if the forced battery check initiated by a call to the HibernateBatCheck-
Start() function has completed. This function will return a non-zero value until the battery level
check has completed. Once this function returns a value of zero, the hibernation module has
completed the battery check and the HibernateIntStatus() function can be used to check if the
battery was low by checking if the value returned has the HIBERNATE_INT_LOW_BAT set.

Returns:
The value is zero when the battery level check has completed or non-zero if the check is still in
process.

11.2.1.2 ROM_HibernateBatCheckStart

Forces the Hibernation module to initiate a check of the battery voltage.

Prototype:
void
ROM_HibernateBatCheckStart(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateBatCheckStart is a function pointer located at
ROM_HIBERNATETABLE[29].

Description:
This function forces the Hibernation module to initiate a check of the battery voltage imme-
diately rather than waiting for the next check interval to pass. After calling this function, the

January 4, 2013 113

Hibernation Module

application should call the () function and wait for the function to return a zero value before call-
ing the HibernateIntStatus() to check if the return code has the HIBERNATE_INT_LOW_BAT
set. If HIBERNATE_INT_LOW_BAT is set this indicates that battery level is low. The appli-
cation can also enable the HIBERNATE_INT_LOW_BAT interrupt and wait for an interrupt to
indicate that the battery level is low.

Note:
A hibernation request is held off if a battery check is in progress.

Returns:
None.

11.2.1.3 ROM_HibernateClockConfig

Configures the clock input for the Hibernation module.

Prototype:
void
ROM_HibernateClockConfig(unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateClockConfig is a function pointer located at ROM_HIBERNATETABLE[28].

Parameters:
ulConfig is one of the possible configuration options for the clock input listed below.

Description:
This function is used to configure the clock input for the Hibernation module. The ulConfig
parameter can be one of the following values:

HIBERNATE_OSC_DISABLE specifies that the internal oscillator is powered off and either
an externally supplied clock source or no clock source is being used.
HIBERNATE_OSC_HIGHDRIVE specifies a higher drive strength when a 24pF filter ca-
pacitor is used with a crystal.
HIBERNATE_OSC_LOWDRIVE specifies a lower drive strength when a 12pF filter capac-
itor is used with a crystal.

The HIBERNATE_OSC_DISABLE option is used to disable and power down the internal os-
cillator if an external clock source or no clock source is used instead of a 32.768 kHz crystal.
In the case where an external crystal is used, either the HIBERNATE_OSC_HIGHDRIVE or
HIBERNATE_OSC_LOWDRIVE is used. This optimizes the oscillator drive strength to match
the size of the filter capacitor that is used with the external crystal circuit.

Returns:
None.

11.2.1.4 ROM_HibernateClockSelect

Selects the clock input for the Hibernation module.

114 January 4, 2013

Hibernation Module

Prototype:
void
ROM_HibernateClockSelect(unsigned long ulClockInput)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateClockSelect is a function pointer located at ROM_HIBERNATETABLE[3].

Parameters:
ulClockInput specifies the clock input.

Description:
Configures the clock input for the Hibernation module. The configuration option chosen de-
pends entirely on hardware design. The clock input for the module will either be a 32.768 kHz
oscillator or a 4.194304 MHz crystal. The ulClockFlags parameter must be one of the following:

HIBERNATE_CLOCK_SEL_RAW - use the raw signal from a 32.768 kHz oscillator.
HIBERNATE_CLOCK_SEL_DIV128 - use the crystal input, divided by 128.

Returns:
None.

11.2.1.5 ROM_HibernateDataGet

Reads a set of data from the non-volatile memory of the Hibernation module.

Prototype:
void
ROM_HibernateDataGet(unsigned long *pulData,

unsigned long ulCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateDataGet is a function pointer located at ROM_HIBERNATETABLE[19].

Parameters:
pulData points to a location where the data that is read from the Hibernation module will be

stored.
ulCount is the count of 32-bit words to read.

Description:
Retrieves a set of data from the Hibernation module non-volatile memory that was previously
stored with the ROM_HibernateDataSet() function. The caller must ensure that pulData points
to a large enough memory block to hold all the data that is read from the non-volatile memory.

Returns:
None.

January 4, 2013 115

Hibernation Module

11.2.1.6 ROM_HibernateDataSet

Stores data in the non-volatile memory of the Hibernation module.

Prototype:
void
ROM_HibernateDataSet(unsigned long *pulData,

unsigned long ulCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateDataSet is a function pointer located at ROM_HIBERNATETABLE[18].

Parameters:
pulData points to the data that the caller wants to store in the memory of the Hibernation

module.
ulCount is the count of 32-bit words to store.

Description:
Stores a set of data in the Hibernation module non-volatile memory. This memory is preserved
when the power to the processor is turned off, and can be used to store application state infor-
mation which will be available when the processor wakes. Up to 64 32-bit words can be stored
in the non-volatile memory. The data can be restored by calling the ROM_HibernateDataGet()
function.

Returns:
None.

11.2.1.7 ROM_HibernateDisable

Disables the Hibernation module for operation.

Prototype:
void
ROM_HibernateDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateDisable is a function pointer located at ROM_HIBERNATETABLE[2].

Description:
Disables the Hibernation module for operation. After this function is called, none of the Hiber-
nation module features are available.

Returns:
None.

116 January 4, 2013

Hibernation Module

11.2.1.8 ROM_HibernateEnableExpClk

Enables the Hibernation module for operation.

Prototype:
void
ROM_HibernateEnableExpClk(unsigned long ulHibClk)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateEnableExpClk is a function pointer located at ROM_HIBERNATETABLE[1].

Parameters:
ulHibClk is the rate of the clock supplied to the Hibernation module.

Description:
Enables the Hibernation module for operation. This function should be called before any of the
Hibernation module features are used.

The peripheral clock is the same as the processor clock. This is the value returned by
ROM_SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save
the code/execution overhead of a call to ROM_SysCtlClockGet()).

Returns:
None.

11.2.1.9 ROM_HibernateIntClear

Clears pending interrupts from the Hibernation module.

Prototype:
void
ROM_HibernateIntClear(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntClear is a function pointer located at ROM_HIBERNATETABLE[0].

Parameters:
ulIntFlags is the bit mask of the interrupts to be cleared.

Description:
Clears the specified interrupt sources. This must be done from within the interrupt handler or
else the handler is called again upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to the
ROM_HibernateIntEnable() function.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt

January 4, 2013 117

Hibernation Module

source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

11.2.1.10 ROM_HibernateIntDisable

Disables interrupts for the Hibernation module.

Prototype:
void
ROM_HibernateIntDisable(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntDisable is a function pointer located at ROM_HIBERNATETABLE[22].

Parameters:
ulIntFlags is the bit mask of the interrupts to be disabled.

Description:
Disables the specified interrupt sources from the Hibernation module.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to the
ROM_HibernateIntEnable() function.

Returns:
None.

11.2.1.11 ROM_HibernateIntEnable

Enables interrupts for the Hibernation module.

Prototype:
void
ROM_HibernateIntEnable(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntEnable is a function pointer located at ROM_HIBERNATETABLE[21].

Parameters:
ulIntFlags is the bit mask of the interrupts to be enabled.

Description:
Enables the specified interrupt sources from the Hibernation module.

The ulIntFlags parameter must be the logical OR of any combination of the following:

118 January 4, 2013

Hibernation Module

HIBERNATE_INT_PIN_WAKE - wake from pin interrupt
HIBERNATE_INT_LOW_BAT - low battery interrupt
HIBERNATE_INT_RTC_MATCH_0 - RTC match 0 interrupt
HIBERNATE_INT_RTC_MATCH_1 - RTC match 1 interrupt

Returns:
None.

11.2.1.12 ROM_HibernateIntStatus

Gets the current interrupt status of the Hibernation module.

Prototype:
unsigned long
ROM_HibernateIntStatus(tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntStatus is a function pointer located at ROM_HIBERNATETABLE[23].

Parameters:
bMasked is false to retrieve the raw interrupt status, and true to retrieve the masked interrupt

status.

Description:
Returns the interrupt status of the Hibernation module. The caller can use this to determine
the cause of a hibernation interrupt. Either the masked or raw interrupt status can be returned.

Returns:
Returns the interrupt status as a bit field with the values as described in the
ROM_HibernateIntEnable() function.

11.2.1.13 ROM_HibernateIsActive

Checks to see if the Hibernation module is already powered up.

Prototype:
unsigned int
ROM_HibernateIsActive(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIsActive is a function pointer located at ROM_HIBERNATETABLE[24].

Description:
This function queries the control register to determine if the module is already active. This
function can be called at a power-on reset to help determine if the reset is due to a wake from
hibernation or a cold start. If the Hibernation module is already active, then it does not need to
be re-enabled and its status can be queried immediately.

January 4, 2013 119

Hibernation Module

The software application should also use the ROM_HibernateIntStatus() function to read the
raw interrupt status to determine the cause of the wake. The ROM_HibernateDataGet() func-
tion can be used to restore state. These combinations of functions can be used by the software
to determine if the processor is waking from hibernation and the appropriate action to take as
a result.

Returns:
Returns true if the module is already active, and false if not.

11.2.1.14 ROM_HibernateLowBatGet

Gets the currently configured low battery detection behavior.

Prototype:
unsigned long
ROM_HibernateLowBatGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateLowBatGet is a function pointer located at ROM_HIBERNATETABLE[9].

Description:
Returns a value representing the currently configured low battery detection behavior. The
return value is one of the following:

HIBERNATE_LOW_BAT_DETECT - detect a low battery condition.
HIBERNATE_LOW_BAT_ABORT - detect a low battery condition, and abort hibernation
if low battery is detected.

Returns:
Returns a value indicating the configured low battery detection.

11.2.1.15 ROM_HibernateLowBatSet

Configures the low battery detection.

Prototype:
void
ROM_HibernateLowBatSet(unsigned long ulLowBatFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateLowBatSet is a function pointer located at ROM_HIBERNATETABLE[8].

Parameters:
ulLowBatFlags specifies behavior of low battery detection.

120 January 4, 2013

Hibernation Module

Description:
Enables the low battery detection and whether hibernation is allowed if a low battery is de-
tected. If low battery detection is enabled, then a low battery condition is indicated in the
raw interrupt status register, and can also trigger an interrupt. Optionally, hibernation can be
aborted if a low battery is detected.

The ulLowBatFlags parameter is one of the following values:

HIBERNATE_LOW_BAT_DETECT - detect a low battery condition.
HIBERNATE_LOW_BAT_ABORT - detect a low battery condition, and abort hibernation
if low battery is detected.

Returns:
None.

11.2.1.16 ROM_HibernateRequest

Requests hibernation mode.

Prototype:
void
ROM_HibernateRequest(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRequest is a function pointer located at ROM_HIBERNATETABLE[20].

Description:
This function requests the Hibernation module to disable the external regulator, thus removing
power from the processor and all peripherals. The Hibernation module will remain powered
from the battery or auxiliary power supply.

The Hibernation module will re-enable the external regulator when one of the configured wake
conditions occurs (such as RTC match or external WAKE pin). When the power is restored
the processor will go through a normal power-on reset. The processor can retrieve saved
state information with the ROM_HibernateDataGet() function. Prior to calling the function to
request hibernation mode, the conditions for waking must have already been set by using the
ROM_HibernateWakeSet() function.

Note that this function may return because some time may elapse before the power is actu-
ally removed, or it may not be removed at all. For this reason, the processor will continue
to execute instructions for some time and the caller should be prepared for this function to
return. There are various reasons why the power may not be removed. For example, if the
ROM_HibernateLowBatSet() function was used to configure an abort if low battery is detected,
then the power will not be removed if the battery voltage is too low. There may be other
reasons, related to the external circuit design, that a request for hibernation may not actually
occur.

For all these reasons, the caller must be prepared for this function to return. The simplest way
to handle it is to just enter an infinite loop and wait for the power to be removed.

Returns:
None.

January 4, 2013 121

Hibernation Module

11.2.1.17 ROM_HibernateRTCDisable

Disables the RTC feature of the Hibernation module.

Prototype:
void
ROM_HibernateRTCDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCDisable is a function pointer located at ROM_HIBERNATETABLE[5].

Description:
Disables the RTC in the Hibernation module. After calling this function the RTC features of the
Hibernation module will not be available.

Returns:
None.

11.2.1.18 ROM_HibernateRTCEnable

Enables the RTC feature of the Hibernation module.

Prototype:
void
ROM_HibernateRTCEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCEnable is a function pointer located at ROM_HIBERNATETABLE[4].

Description:
Enables the RTC in the Hibernation module. The RTC can be used to wake the processor from
hibernation at a certain time, or to generate interrupts at certain times. This function must be
called before using any of the RTC features of the Hibernation module.

Returns:
None.

11.2.1.19 ROM_HibernateRTCGet

Gets the value of the real time clock (RTC) counter.

Prototype:
unsigned long
ROM_HibernateRTCGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCGet is a function pointer located at ROM_HIBERNATETABLE[11].

122 January 4, 2013

Hibernation Module

Description:
Gets the value of the RTC and returns it to the caller.

Returns:
Returns the value of the RTC.

11.2.1.20 ROM_HibernateRTCMatch0Get

Gets the value of the RTC match 0 register.

Prototype:
unsigned long
ROM_HibernateRTCMatch0Get(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCMatch0Get is a function pointer located at
ROM_HIBERNATETABLE[13].

Description:
Gets the value of the match 0 register for the RTC.

Returns:
Returns the value of the match register.

11.2.1.21 ROM_HibernateRTCMatch0Set

Sets the value of the RTC match 0 register.

Prototype:
void
ROM_HibernateRTCMatch0Set(unsigned long ulMatch)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCMatch0Set is a function pointer located at
ROM_HIBERNATETABLE[12].

Parameters:
ulMatch is the value for the match register.

Description:
Sets the match 0 register for the RTC. The Hibernation module can be configured to wake from
hibernation, and/or generate an interrupt when the value of the RTC counter is the same as
the match register.

Returns:
None.

January 4, 2013 123

Hibernation Module

11.2.1.22 ROM_HibernateRTCSet

Sets the value of the real time clock (RTC) counter.

Prototype:
void
ROM_HibernateRTCSet(unsigned long ulRTCValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSet is a function pointer located at ROM_HIBERNATETABLE[10].

Parameters:
ulRTCValue is the new value for the RTC.

Description:
Sets the value of the RTC. The RTC will count seconds if the hardware is configured correctly.
The RTC must be enabled by calling ROM_HibernateRTCEnable() before calling this function.

Returns:
None.

11.2.1.23 ROM_HibernateRTCSSGet

Returns the current value of the RTC sub second count.

Prototype:
unsigned long
ROM_HibernateRTCSSGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSSGet is a function pointer located at ROM_HIBERNATETABLE[27].

Description:
This function will return the current value of the sub second count for the for the RTC in 1/32768
of a second increments.

Returns:
The current RTC sub second count in 1/32768 seconds.

11.2.1.24 ROM_HibernateRTCSSMatch0Get

Returns the value of the RTC sub second match 0 register.

Prototype:
unsigned long
ROM_HibernateRTCSSMatch0Get(void)

124 January 4, 2013

Hibernation Module

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSSMatch0Get is a function pointer located at
ROM_HIBERNATETABLE[26].

Description:
This function returns the current value of the sub second match 0 register for the RTC. The
value returned is in 1/32768 second increments.

Returns:
Returns the value of the sub section match register.

11.2.1.25 ROM_HibernateRTCSSMatch0Set

Sets the value of the RTC sub second match 0 register.

Prototype:
void
ROM_HibernateRTCSSMatch0Set(unsigned long ulMatch)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSSMatch0Set is a function pointer located at
ROM_HIBERNATETABLE[25].

Parameters:
ulMatch is the value for the sub second match register.

Description:
Sets the sub second match 0 register for the RTC in 1/32768 of a second increments. The
Hibernation module can be configured to wake from hibernation, and/or generate an interrupt
when the value of the RTC counter is the same as the match combined with the sub second
match register.

Returns:
None.

11.2.1.26 ROM_HibernateRTCTrimGet

Gets the value of the RTC predivider trim register.

Prototype:
unsigned long
ROM_HibernateRTCTrimGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCTrimGet is a function pointer located at ROM_HIBERNATETABLE[17].

January 4, 2013 125

Hibernation Module

Description:
Gets the value of the pre-divider trim register. This function can be used to get the current value
of the trim register prior to making an adjustment by using the ROM_HibernateRTCTrimSet()
function.

Returns:
None.

11.2.1.27 ROM_HibernateRTCTrimSet

Sets the value of the RTC predivider trim register.

Prototype:
void
ROM_HibernateRTCTrimSet(unsigned long ulTrim)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCTrimSet is a function pointer located at ROM_HIBERNATETABLE[16].

Parameters:
ulTrim is the new value for the pre-divider trim register.

Description:
Sets the value of the pre-divider trim register. The input time source is divided by the pre-
divider to achieve a one-second clock rate. Once every 64 seconds, the value of the pre-divider
trim register is applied to the predivider to allow fine-tuning of the RTC rate, in order to make
corrections to the rate. The software application can make adjustments to the predivider trim
register to account for variations in the accuracy of the input time source. The nominal value is
0x7FFF, and it can be adjusted up or down in order to fine-tune the RTC rate.

Returns:
None.

11.2.1.28 ROM_HibernateWakeGet

Gets the currently configured wake conditions for the Hibernation module.

Prototype:
unsigned long
ROM_HibernateWakeGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateWakeGet is a function pointer located at ROM_HIBERNATETABLE[7].

Description:
Returns the flags representing the wake configuration for the Hibernation module. The return
value is a combination of the following flags:

126 January 4, 2013

Hibernation Module

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted.
HIBERNATE_WAKE_RTC - wake when one of the RTC matches occurs.

Returns:
Returns flags indicating the configured wake conditions.

11.2.1.29 ROM_HibernateWakeSet

Configures the wake conditions for the Hibernation module.

Prototype:
void
ROM_HibernateWakeSet(unsigned long ulWakeFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateWakeSet is a function pointer located at ROM_HIBERNATETABLE[6].

Parameters:
ulWakeFlags specifies which conditions should be used for waking.

Description:
Enables the conditions under which the Hibernation module will wake. The ulWakeFlags pa-
rameter is the logical OR of any combination of the following:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted.
HIBERNATE_WAKE_RTC - wake when one of the RTC matches occurs.

Returns:
None.

January 4, 2013 127

Hibernation Module

128 January 4, 2013

Inter-Integrated Circuit (I2C)

12 Inter-Integrated Circuit (I2C)
Introduction .129
Functions . 130

12.1 Introduction

The Inter-Integrated Circuit (I2C) API provides a set of functions for using the Stellaris I2C master
and slave modules. Functions are provided to initialize the I2C modules, to send and receive data,
obtain status, and to manage interrupts for the I2C modules.

The I2C master and slave modules provide the ability to communicate to other IC devices over an
I2C bus. The I2C bus is specified to support devices that can both transmit and receive (write and
read) data. Also, devices on the I2C bus can be designated as either a master or a slave. The
Stellaris I2C modules support both sending and receiving data as either a master or a slave, and
also support the simultaneous operation as both a master and a slave. Finally, the Stellaris I2C
modules can operate at two speeds: Standard (100 kb/s) and Fast (400 kb/s).

Both the master and slave I2C modules can generate interrupts. The I2C master module will
generate interrupts when a transmit or receive operation is completed (or aborted due to an error).
The I2C slave module will generate interrupts when data has been sent or requested by a master.

12.1.1 Master Operations

When using this API to drive the I2C master module, the user must first initialize the I2C master
module with a call to ROM_I2CMasterInitExpClk(). That function will set the bus speed and enable
the master module.

The user may transmit or receive data after the successful initialization of the I2C master module.
Data is transferred by first setting the slave address using ROM_I2CMasterSlaveAddrSet(). That
function is also used to define whether the transfer is a send (a write to the slave from the master) or
a receive (a read from the slave by the master). Then, if connected to an I2C bus that has multiple
masters, the Stellaris I2C master must first call ROM_I2CMasterBusBusy() before attempting to
initiate the desired transaction. After determining that the bus is not busy, if trying to send data, the
user must call the ROM_I2CMasterDataPut() function. The transaction can then be initiated on the
bus by calling the ROM_I2CMasterControl() function with any of the following commands:

I2C_MASTER_CMD_SINGLE_SEND

I2C_MASTER_CMD_SINGLE_RECEIVE

I2C_MASTER_CMD_BURST_SEND_START

I2C_MASTER_CMD_BURST_RECEIVE_START

Any of those commands will result in the master arbitrating for the bus, driving the start sequence
onto the bus, and sending the slave address and direction bit across the bus. The remainder of the
transaction can then be driven using either a polling or interrupt-driven method.

For the single send and receive cases, the polling method will involve looping on the re-
turn from ROM_I2CMasterBusy(). Once that function indicates that the I2C master is
no longer busy, the bus transaction has been completed and can be checked for errors

January 4, 2013 129

Inter-Integrated Circuit (I2C)

using ROM_I2CMasterErr(). If there are no errors, then the data has been sent or is
ready to be read using ROM_I2CMasterDataGet(). For the burst send and receive cases,
the polling method also involves calling the ROM_I2CMasterControl() function for each
byte transmitted or received (using either the I2C_MASTER_CMD_BURST_SEND_CONT
or I2C_MASTER_CMD_BURST_RECEIVE_CONT commands), and for the last byte
sent or received (using either the I2C_MASTER_CMD_BURST_SEND_FINISH or
I2C_MASTER_CMD_BURST_RECEIVE_FINISH commands). If any error is detected
during the burst transfer, the ROM_I2CMasterControl() function should be called using
the appropriate stop command (I2C_MASTER_CMD_BURST_SEND_ERROR_STOP or
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP).

For the interrupt-driven transaction, the user must register an interrupt handler for the I2C devices
and enable the I2C master interrupt; the interrupt will occur when the master is no longer busy.

12.1.2 Slave Operations

When using this API to drive the I2C slave module, the user must first initialize the I2C slave
module with a call to ROM_I2CSlaveInit(). This will enable the I2C slave module and initialize
the slave’s own address. After the initialization is complete, the user may poll the slave sta-
tus using ROM_I2CSlaveStatus() to determine if a master requested a send or receive opera-
tion. Depending on the type of operation requested, the user can call ROM_I2CSlaveDataPut()
or ROM_I2CSlaveDataGet() to complete the transaction. Alternatively, the I2C slave can handle
transactions using an interrupt handler.

12.2 Functions

Functions
tBoolean ROM_I2CMasterBusBusy (unsigned long ulBase)
tBoolean ROM_I2CMasterBusy (unsigned long ulBase)
void ROM_I2CMasterControl (unsigned long ulBase, unsigned long ulCmd)
unsigned long ROM_I2CMasterDataGet (unsigned long ulBase)
void ROM_I2CMasterDataPut (unsigned long ulBase, unsigned char ucData)
void ROM_I2CMasterDisable (unsigned long ulBase)
void ROM_I2CMasterEnable (unsigned long ulBase)
unsigned long ROM_I2CMasterErr (unsigned long ulBase)
void ROM_I2CMasterInitExpClk (unsigned long ulBase, unsigned long ulI2CClk, tBoolean
bFast)
void ROM_I2CMasterIntClear (unsigned long ulBase)
void ROM_I2CMasterIntClearEx (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_I2CMasterIntDisable (unsigned long ulBase)
void ROM_I2CMasterIntDisableEx (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_I2CMasterIntEnable (unsigned long ulBase)
void ROM_I2CMasterIntEnableEx (unsigned long ulBase, unsigned long ulIntFlags)
tBoolean ROM_I2CMasterIntStatus (unsigned long ulBase, tBoolean bMasked)
unsigned long ROM_I2CMasterIntStatusEx (unsigned long ulBase, tBoolean bMasked)

130 January 4, 2013

Inter-Integrated Circuit (I2C)

unsigned long ROM_I2CMasterLineStateGet (unsigned long ulBase)
void ROM_I2CMasterSlaveAddrSet (unsigned long ulBase, unsigned char ucSlaveAddr,
tBoolean bReceive)
void ROM_I2CMasterTimeoutSet (unsigned long ulBase, unsigned long ulValue)
void ROM_I2CSlaveACKOverride (unsigned long ulBase, tBoolean bEnable)
void ROM_I2CSlaveACKValueSet (unsigned long ulBase, tBoolean bACK)
void ROM_I2CSlaveAddressSet (unsigned long ulBase, unsigned char ucAddrNum, unsigned
char ucSlaveAddr)
unsigned long ROM_I2CSlaveDataGet (unsigned long ulBase)
void ROM_I2CSlaveDataPut (unsigned long ulBase, unsigned char ucData)
void ROM_I2CSlaveDisable (unsigned long ulBase)
void ROM_I2CSlaveEnable (unsigned long ulBase)
void ROM_I2CSlaveInit (unsigned long ulBase, unsigned char ucSlaveAddr)
void ROM_I2CSlaveIntClear (unsigned long ulBase)
void ROM_I2CSlaveIntClearEx (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_I2CSlaveIntDisable (unsigned long ulBase)
void ROM_I2CSlaveIntDisableEx (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_I2CSlaveIntEnable (unsigned long ulBase)
void ROM_I2CSlaveIntEnableEx (unsigned long ulBase, unsigned long ulIntFlags)
tBoolean ROM_I2CSlaveIntStatus (unsigned long ulBase, tBoolean bMasked)
unsigned long ROM_I2CSlaveIntStatusEx (unsigned long ulBase, tBoolean bMasked)
unsigned long ROM_I2CSlaveStatus (unsigned long ulBase)
void ROM_UpdateI2C (void)

12.2.1 Function Documentation

12.2.1.1 ROM_I2CMasterBusBusy

Indicates whether or not the I2C bus is busy.

Prototype:
tBoolean
ROM_I2CMasterBusBusy(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterBusBusy is a function pointer located at ROM_I2CTABLE[17].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function returns an indication of whether or not the I2C bus is busy. This function can be
used in a multi-master environment to determine if another master is currently using the bus.

Returns:
Returns true if the I2C bus is busy; otherwise, returns false.

January 4, 2013 131

Inter-Integrated Circuit (I2C)

12.2.1.2 ROM_I2CMasterBusy

Indicates whether or not the I2C Master is busy.

Prototype:
tBoolean
ROM_I2CMasterBusy(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterBusy is a function pointer located at ROM_I2CTABLE[16].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function returns an indication of whether or not the I2C Master is busy transmitting or
receiving data.

Returns:
Returns true if the I2C Master is busy; otherwise, returns false.

12.2.1.3 ROM_I2CMasterControl

Controls the state of the I2C Master module.

Prototype:
void
ROM_I2CMasterControl(unsigned long ulBase,

unsigned long ulCmd)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterControl is a function pointer located at ROM_I2CTABLE[18].

Parameters:
ulBase is the base address of the I2C Master module.
ulCmd command to be issued to the I2C Master module

Description:
This function is used to control the state of the Master module send and receive operations.
The ucCmd parameter can be one of the following values:

I2C_MASTER_CMD_SINGLE_SEND
I2C_MASTER_CMD_SINGLE_RECEIVE
I2C_MASTER_CMD_BURST_SEND_START
I2C_MASTER_CMD_BURST_SEND_CONT
I2C_MASTER_CMD_BURST_SEND_FINISH
I2C_MASTER_CMD_BURST_SEND_ERROR_STOP
I2C_MASTER_CMD_BURST_RECEIVE_START

132 January 4, 2013

Inter-Integrated Circuit (I2C)

I2C_MASTER_CMD_BURST_RECEIVE_CONT
I2C_MASTER_CMD_BURST_RECEIVE_FINISH
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP

Returns:
None.

12.2.1.4 ROM_I2CMasterDataGet

Receives a byte that has been sent to the I2C Master.

Prototype:
unsigned long
ROM_I2CMasterDataGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterDataGet is a function pointer located at ROM_I2CTABLE[20].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function reads a byte of data from the I2C Master Data Register.

Returns:
Returns the byte received from by the I2C Master, cast as an unsigned long.

12.2.1.5 ROM_I2CMasterDataPut

Transmits a byte from the I2C Master.

Prototype:
void
ROM_I2CMasterDataPut(unsigned long ulBase,

unsigned char ucData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterDataPut is a function pointer located at ROM_I2CTABLE[0].

Parameters:
ulBase is the base address of the I2C Master module.
ucData data to be transmitted from the I2C Master

Description:
This function will place the supplied data into I2C Master Data Register.

Returns:
None.

January 4, 2013 133

Inter-Integrated Circuit (I2C)

12.2.1.6 ROM_I2CMasterDisable

Disables the I2C master block.

Prototype:
void
ROM_I2CMasterDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterDisable is a function pointer located at ROM_I2CTABLE[5].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This will disable operation of the I2C master block.

Returns:
None.

12.2.1.7 ROM_I2CMasterEnable

Enables the I2C Master block.

Prototype:
void
ROM_I2CMasterEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterEnable is a function pointer located at ROM_I2CTABLE[3].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This will enable operation of the I2C Master block.

Returns:
None.

12.2.1.8 ROM_I2CMasterErr

Gets the error status of the I2C Master module.

Prototype:
unsigned long
ROM_I2CMasterErr(unsigned long ulBase)

134 January 4, 2013

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterErr is a function pointer located at ROM_I2CTABLE[19].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function is used to obtain the error status of the Master module send and receive opera-
tions.

Returns:
Returns the error status, as one of I2C_MASTER_ERR_NONE,
I2C_MASTER_ERR_ADDR_ACK, I2C_MASTER_ERR_DATA_ACK, or
I2C_MASTER_ERR_ARB_LOST.

12.2.1.9 ROM_I2CMasterInitExpClk

Initializes the I2C Master block.

Prototype:
void
ROM_I2CMasterInitExpClk(unsigned long ulBase,

unsigned long ulI2CClk,
tBoolean bFast)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterInitExpClk is a function pointer located at ROM_I2CTABLE[1].

Parameters:
ulBase is the base address of the I2C Master module.
ulI2CClk is the rate of the clock supplied to the I2C module.
bFast set up for fast data transfers

Description:
This function initializes operation of the I2C Master block. Upon successful initialization of the
I2C block, this function will have set the bus speed for the master, and will have enabled the
I2C Master block.

If the parameter bFast is true, then the master block is set up to transfer data at 400 kbps;
otherwise, it is set up to transfer data at 100 kbps.

The peripheral clock is the same as the processor clock. This is the value returned by
ROM_SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save
the code/execution overhead of a call to ROM_SysCtlClockGet()).

Returns:
None.

January 4, 2013 135

Inter-Integrated Circuit (I2C)

12.2.1.10 ROM_I2CMasterIntClear

Clears I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntClear(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntClear is a function pointer located at ROM_I2CTABLE[13].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
The I2C Master interrupt source is cleared, so that it no longer asserts. This must be done in
the interrupt handler to keep it from being called again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

12.2.1.11 ROM_I2CMasterIntClearEx

Clears I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntClearEx(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntClearEx is a function pointer located at ROM_I2CTABLE[32].

Parameters:
ulBase is the base address of the I2C Master module.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified I2C Master interrupt sources are cleared, so that they no longer assert. This
must be done in the interrupt handler to keep it from being called again immediately upon exit.

136 January 4, 2013

Inter-Integrated Circuit (I2C)

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
I2CMasterIntEnableEx().

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

12.2.1.12 ROM_I2CMasterIntDisable

Disables the I2C Master interrupt.

Prototype:
void
ROM_I2CMasterIntDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntDisable is a function pointer located at ROM_I2CTABLE[9].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
Disables the I2C Master interrupt source.

Returns:
None.

12.2.1.13 ROM_I2CMasterIntDisableEx

Disables individual I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntDisableEx(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntDisableEx is a function pointer located at ROM_I2CTABLE[30].

Parameters:
ulBase is the base address of the I2C Master module.

January 4, 2013 137

Inter-Integrated Circuit (I2C)

ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated I2C Master interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
I2CMasterIntEnableEx().

Returns:
None.

12.2.1.14 ROM_I2CMasterIntEnable

Enables the I2C Master interrupt.

Prototype:
void
ROM_I2CMasterIntEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntEnable is a function pointer located at ROM_I2CTABLE[7].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
Enables the I2C Master interrupt source.

Returns:
None.

12.2.1.15 ROM_I2CMasterIntEnableEx

Enables individual I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntEnableEx(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntEnableEx is a function pointer located at ROM_I2CTABLE[29].

Parameters:
ulBase is the base address of the I2C Master module.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

138 January 4, 2013

Inter-Integrated Circuit (I2C)

Description:
Enables the indicated I2C Master interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter is the logical OR of any of the following:

I2C_MASTER_INT_TIMEOUT - Clock Timeout interrupt
I2C_MASTER_INT_DATA - Data interrupt

Returns:
None.

12.2.1.16 ROM_I2CMasterIntStatus

Gets the current I2C Master interrupt status.

Prototype:
tBoolean
ROM_I2CMasterIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntStatus is a function pointer located at ROM_I2CTABLE[11].

Parameters:
ulBase is the base address of the I2C Master module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Master module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

12.2.1.17 ROM_I2CMasterIntStatusEx

Gets the current I2C Master interrupt status.

Prototype:
unsigned long
ROM_I2CMasterIntStatusEx(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntStatusEx is a function pointer located at ROM_I2CTABLE[31].

January 4, 2013 139

Inter-Integrated Circuit (I2C)

Parameters:
ulBase is the base address of the I2C Master module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Master module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
I2CMasterIntEnableEx().

12.2.1.18 ROM_I2CMasterLineStateGet

Reads the state of the SDA and SCL pins.

Prototype:
unsigned long
ROM_I2CMasterLineStateGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterLineStateGet is a function pointer located at ROM_I2CTABLE[38].

Parameters:
ulBase is the base address of the I2C Master module.

Description:
This function returns the state of the I2C bus by providing the real time values of the SDA and
SCL pins.

Returns:
Returns the state of the bus with SDA in bit position 1 and SCL in bit position 0.

12.2.1.19 ROM_I2CMasterSlaveAddrSet

Sets the address that the I2C Master will place on the bus.

Prototype:
void
ROM_I2CMasterSlaveAddrSet(unsigned long ulBase,

unsigned char ucSlaveAddr,
tBoolean bReceive)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterSlaveAddrSet is a function pointer located at ROM_I2CTABLE[15].

140 January 4, 2013

Inter-Integrated Circuit (I2C)

Parameters:
ulBase is the base address of the I2C Master module.
ucSlaveAddr 7-bit slave address
bReceive flag indicating the type of communication with the slave

Description:
This function will set the address that the I2C Master will place on the bus when initiating a
transaction. When the bReceive parameter is set to true, the address will indicate that the
I2C Master is initiating a read from the slave; otherwise the address will indicate that the I2C
Master is initiating a write to the slave.

Returns:
None.

12.2.1.20 ROM_I2CMasterTimeoutSet

Sets the Master clock timeout value.

Prototype:
void
ROM_I2CMasterTimeoutSet(unsigned long ulBase,

unsigned long ulValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterTimeoutSet is a function pointer located at ROM_I2CTABLE[33].

Parameters:
ulBase is the base address of the I2C Master module.
ulValue is the number of I2C clocks before the timeout is asserted.

Description:
This function enables and configures the clock low timeout feature in the I2C peripheral. This
feature is implemented as a 12-bit counter, with the upper 8-bits being programmable. For
example, to program a timeout of 20ms with a 100kHz SCL frequency, ulValue would be 0x7d.

Returns:
None.

12.2.1.21 ROM_I2CSlaveACKOverride

Configures ACK override behavior of the I2C Slave.

Prototype:
void
ROM_I2CSlaveACKOverride(unsigned long ulBase,

tBoolean bEnable)

January 4, 2013 141

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveACKOverride is a function pointer located at ROM_I2CTABLE[34].

Parameters:
ulBase is the base address of the I2C Slave module.
bEnable enables or disables ACK override.

Description:
This function enables or disables ACK override, allowing the user application to drive the value
on SDA during the ACK cycle.

Returns:
None.

12.2.1.22 ROM_I2CSlaveACKValueSet

Writes the ACK value.

Prototype:
void
ROM_I2CSlaveACKValueSet(unsigned long ulBase,

tBoolean bACK)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveACKValueSet is a function pointer located at ROM_I2CTABLE[35].

Parameters:
ulBase is the base address of the I2C Slave module.
bACK chooses whether to ACK (true) or NACK (false) the transfer.

Description:
This function puts the desired ACK value on SDA during the ACK cycle. The value written is
only valid when ACK override is enabled using ROM_I2CSlaveACKOverride().

Returns:
None.

12.2.1.23 ROM_I2CSlaveAddressSet

Sets the I2C slave address.

Prototype:
void
ROM_I2CSlaveAddressSet(unsigned long ulBase,

unsigned char ucAddrNum,
unsigned char ucSlaveAddr)

142 January 4, 2013

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveAddressSet is a function pointer located at ROM_I2CTABLE[37].

Parameters:
ulBase is the base address of the I2C Slave module.
ucAddrNum determines which slave address is set.
ucSlaveAddr 7-bit slave address

Description:
This function writes the specified slave address. The ulAddrNum field dictates which slave
address is configured. For example, a value of 0 configures the primary address and a value
of 1 the secondary.

Returns:
None.

12.2.1.24 ROM_I2CSlaveDataGet

Receives a byte that has been sent to the I2C Slave.

Prototype:
unsigned long
ROM_I2CSlaveDataGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveDataGet is a function pointer located at ROM_I2CTABLE[23].

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This function reads a byte of data from the I2C Slave Data Register.

Returns:
Returns the byte received from by the I2C Slave, cast as an unsigned long.

12.2.1.25 ROM_I2CSlaveDataPut

Transmits a byte from the I2C Slave.

Prototype:
void
ROM_I2CSlaveDataPut(unsigned long ulBase,

unsigned char ucData)

January 4, 2013 143

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveDataPut is a function pointer located at ROM_I2CTABLE[22].

Parameters:
ulBase is the base address of the I2C Slave module.
ucData data to be transmitted from the I2C Slave

Description:
This function will place the supplied data into I2C Slave Data Register.

Returns:
None.

12.2.1.26 ROM_I2CSlaveDisable

Disables the I2C slave block.

Prototype:
void
ROM_I2CSlaveDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveDisable is a function pointer located at ROM_I2CTABLE[6].

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This will disable operation of the I2C slave block.

Returns:
None.

12.2.1.27 ROM_I2CSlaveEnable

Enables the I2C Slave block.

Prototype:
void
ROM_I2CSlaveEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveEnable is a function pointer located at ROM_I2CTABLE[4].

Parameters:
ulBase is the base address of the I2C Slave module.

144 January 4, 2013

Inter-Integrated Circuit (I2C)

Description:
This will enable operation of the I2C Slave block.

Returns:
None.

12.2.1.28 ROM_I2CSlaveInit

Initializes the I2C Slave block.

Prototype:
void
ROM_I2CSlaveInit(unsigned long ulBase,

unsigned char ucSlaveAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveInit is a function pointer located at ROM_I2CTABLE[2].

Parameters:
ulBase is the base address of the I2C Slave module.
ucSlaveAddr 7-bit slave address

Description:
This function initializes operation of the I2C Slave block. Upon successful initialization of the
I2C blocks, this function will have set the slave address and have enabled the I2C Slave block.

The parameter ucSlaveAddr is the value that is compared against the slave address sent by
an I2C master.

Returns:
None.

12.2.1.29 ROM_I2CSlaveIntClear

Clears I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntClear(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntClear is a function pointer located at ROM_I2CTABLE[14].

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
The I2C Slave interrupt source is cleared, so that it no longer asserts. This must be done in
the interrupt handler to keep it from being called again immediately upon exit.

January 4, 2013 145

Inter-Integrated Circuit (I2C)

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

12.2.1.30 ROM_I2CSlaveIntClearEx

Clears I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntClearEx(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntClearEx is a function pointer located at ROM_I2CTABLE[28].

Parameters:
ulBase is the base address of the I2C Slave module.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified I2C Slave interrupt sources are cleared, so that they no longer assert. This must
be done in the interrupt handler to keep it from being called again immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
ROM_I2CSlaveIntEnableEx().

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

12.2.1.31 ROM_I2CSlaveIntDisable

Disables the I2C Slave interrupt.

146 January 4, 2013

Inter-Integrated Circuit (I2C)

Prototype:
void
ROM_I2CSlaveIntDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntDisable is a function pointer located at ROM_I2CTABLE[10].

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
Disables the I2C Slave interrupt source.

Returns:
None.

12.2.1.32 ROM_I2CSlaveIntDisableEx

Disables individual I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntDisableEx(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntDisableEx is a function pointer located at ROM_I2CTABLE[26].

Parameters:
ulBase is the base address of the I2C Slave module.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated I2C Slave interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
ROM_I2CSlaveIntEnableEx().

Returns:
None.

12.2.1.33 ROM_I2CSlaveIntEnable

Enables the I2C Slave interrupt.

Prototype:
void
ROM_I2CSlaveIntEnable(unsigned long ulBase)

January 4, 2013 147

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntEnable is a function pointer located at ROM_I2CTABLE[8].

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
Enables the I2C Slave interrupt source.

Returns:
None.

12.2.1.34 ROM_I2CSlaveIntEnableEx

Enables individual I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntEnableEx(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntEnableEx is a function pointer located at ROM_I2CTABLE[25].

Parameters:
ulBase is the base address of the I2C Slave module.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated I2C Slave interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter is the logical OR of any of the following:

I2C_SLAVE_INT_STOP - Stop condition detected interrupt
I2C_SLAVE_INT_START - Start condition detected interrupt
I2C_SLAVE_INT_DATA - Data interrupt

Returns:
None.

12.2.1.35 ROM_I2CSlaveIntStatus

Gets the current I2C Slave interrupt status.

Prototype:
tBoolean
ROM_I2CSlaveIntStatus(unsigned long ulBase,

tBoolean bMasked)

148 January 4, 2013

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntStatus is a function pointer located at ROM_I2CTABLE[12].

Parameters:
ulBase is the base address of the I2C Slave module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Slave module. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

12.2.1.36 ROM_I2CSlaveIntStatusEx

Gets the current I2C Slave interrupt status.

Prototype:
unsigned long
ROM_I2CSlaveIntStatusEx(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntStatusEx is a function pointer located at ROM_I2CTABLE[27].

Parameters:
ulBase is the base address of the I2C Slave module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This returns the interrupt status for the I2C Slave module. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
ROM_I2CSlaveIntEnableEx().

12.2.1.37 ROM_I2CSlaveStatus

Gets the I2C Slave module status

Prototype:
unsigned long
ROM_I2CSlaveStatus(unsigned long ulBase)

January 4, 2013 149

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveStatus is a function pointer located at ROM_I2CTABLE[21].

Parameters:
ulBase is the base address of the I2C Slave module.

Description:
This function will return the action requested from a master, if any. Possible values are:

I2C_SLAVE_ACT_NONE
I2C_SLAVE_ACT_RREQ
I2C_SLAVE_ACT_TREQ
I2C_SLAVE_ACT_RREQ_FBR
I2C_SLAVE_ACT_OWN2SEL

Returns:
Returns I2C_SLAVE_ACT_NONE to indicate that no action has been requested of the I2C
Slave module, I2C_SLAVE_ACT_RREQ to indicate that an I2C master has sent data to the
I2C Slave module, I2C_SLAVE_ACT_TREQ to indicate that an I2C master has requested that
the I2C Slave module send data, and I2C_SLAVE_ACT_RREQ_FBR to indicate that an I2C
master has sent data to the I2C slave and the first byte following the slave’s own address has
been received.

12.2.1.38 ROM_UpdateI2C

Starts an update over the I2C0 interface.

Prototype:
void
ROM_UpdateI2C(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_UpdateI2C is a function pointer located at ROM_I2CTABLE[24].

Description:
Calling this function commences an update of the firmware via the I2C0 interface. This function
assumes that the I2C0 interface has already been configured and is currently operational. The
I2C0 slave is used for data transfer, and the I2C0 master is used to monitor bus busy conditions
(therefore, both must be enabled).

Returns:
Never returns.

150 January 4, 2013

Interrupt Controller (NVIC)

13 Interrupt Controller (NVIC)
Introduction .151
Functions . 151

13.1 Introduction

The interrupt controller API provides a set of functions for dealing with the Nested Vectored Inter-
rupt Controller (NVIC). Functions are provided to enable and disable interrupts, register interrupt
handlers, and set the priority of interrupts.

The NVIC provides global interrupt masking, prioritization, and handler dispatching. This version
of the Stellaris family supports thirty-two interrupt sources and eight priority levels. Individual inter-
rupt sources can be masked, and the processor interrupt can be globally masked as well (without
affecting the individual source masks).

The NVIC is tightly coupled with the Cortex-M3 microprocessor. When the processor responds
to an interrupt, NVIC will supply the address of the function to handle the interrupt directly to the
processor. This eliminates the need for a global interrupt handler that queries the interrupt controller
to determine the cause of the interrupt and branch to the appropriate handler, reducing interrupt
response time.

The interrupt prioritization in the NVIC allows higher priority interrupts to be handled before lower
priority interrupts, as well as allowing preemption of lower priority interrupt handlers by higher prior-
ity interrupts. Again, this helps reduce interrupt response time (for example, a 1 ms system control
interrupt is not held off by the execution of a lower priority 1 second housekeeping interrupt handler).

Sub-prioritization is also possible; instead of having N bits of preemptable prioritization, NVIC can
be configured (via software) for N - M bits of preemptable prioritization and M bits of subpriority. In
this scheme, two interrupts with the same preemptable prioritization but different subpriorities will
not cause a preemption; tail chaining will instead be used to process the two interrupts back-to-
back.

If two interrupts with the same priority (and subpriority if so configured) are asserted at the same
time, the one with the lower interrupt number will be processed first. NVIC keeps track of the nesting
of interrupt handlers, allowing the processor to return from interrupt context only once all nested
and pending interrupts have been handled.

13.2 Functions

Functions
void ROM_IntDisable (unsigned long ulInterrupt)
void ROM_IntEnable (unsigned long ulInterrupt)
tBoolean ROM_IntMasterDisable (void)
tBoolean ROM_IntMasterEnable (void)
void ROM_IntPendClear (unsigned long ulInterrupt)
void ROM_IntPendSet (unsigned long ulInterrupt)

January 4, 2013 151

Interrupt Controller (NVIC)

long ROM_IntPriorityGet (unsigned long ulInterrupt)
unsigned long ROM_IntPriorityGroupingGet (void)
void ROM_IntPriorityGroupingSet (unsigned long ulBits)
unsigned long ROM_IntPriorityMaskGet (void)
void ROM_IntPriorityMaskSet (unsigned long ulPriorityMask)
void ROM_IntPrioritySet (unsigned long ulInterrupt, unsigned char ucPriority)

13.2.1 Function Documentation

13.2.1.1 ROM_IntDisable

Disables an interrupt.

Prototype:
void
ROM_IntDisable(unsigned long ulInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntDisable is a function pointer located at ROM_INTERRUPTTABLE[3].

Parameters:
ulInterrupt specifies the interrupt to be disabled.

Description:
The specified interrupt is disabled in the interrupt controller. Other enables for the interrupt
(such as at the peripheral level) are unaffected by this function.

Returns:
None.

13.2.1.2 ROM_IntEnable

Enables an interrupt.

Prototype:
void
ROM_IntEnable(unsigned long ulInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntEnable is a function pointer located at ROM_INTERRUPTTABLE[0].

Parameters:
ulInterrupt specifies the interrupt to be enabled.

Description:
The specified interrupt is enabled in the interrupt controller. Other enables for the interrupt
(such as at the peripheral level) are unaffected by this function.

152 January 4, 2013

Interrupt Controller (NVIC)

Returns:
None.

13.2.1.3 ROM_IntMasterDisable

Disables the processor interrupt.

Prototype:
tBoolean
ROM_IntMasterDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntMasterDisable is a function pointer located at ROM_INTERRUPTTABLE[2].

Description:
Prevents the processor from receiving interrupts. This does not affect the set of interrupts
enabled in the interrupt controller; it just gates the single interrupt from the controller to the
processor.

Returns:
Returns true if interrupts were already disabled when the function was called or false if they
were initially enabled.

13.2.1.4 ROM_IntMasterEnable

Enables the processor interrupt.

Prototype:
tBoolean
ROM_IntMasterEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntMasterEnable is a function pointer located at ROM_INTERRUPTTABLE[1].

Description:
Allows the processor to respond to interrupts. This does not affect the set of interrupts enabled
in the interrupt controller; it just gates the single interrupt from the controller to the processor.

Returns:
Returns true if interrupts were disabled when the function was called or false if they were
initially enabled.

13.2.1.5 ROM_IntPendClear

Unpends an interrupt.

January 4, 2013 153

Interrupt Controller (NVIC)

Prototype:
void
ROM_IntPendClear(unsigned long ulInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPendClear is a function pointer located at ROM_INTERRUPTTABLE[9].

Parameters:
ulInterrupt specifies the interrupt to be unpended.

Description:
The specified interrupt is unpended in the interrupt controller. This will cause any previously
generated interrupts that have not been handled yet (due to higher priority interrupts or the
interrupt no having been enabled yet) to be discarded.

Returns:
None.

13.2.1.6 ROM_IntPendSet

Pends an interrupt.

Prototype:
void
ROM_IntPendSet(unsigned long ulInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPendSet is a function pointer located at ROM_INTERRUPTTABLE[8].

Parameters:
ulInterrupt specifies the interrupt to be pended.

Description:
The specified interrupt is pended in the interrupt controller. This will cause the interrupt con-
troller to execute the corresponding interrupt handler at the next available time, based on the
current interrupt state priorities. For example, if called by a higher priority interrupt handler,
the specified interrupt handler will not be called until after the current interrupt handler has
completed execution. The interrupt must have been enabled for it to be called.

Returns:
None.

13.2.1.7 ROM_IntPriorityGet

Gets the priority of an interrupt.

154 January 4, 2013

Interrupt Controller (NVIC)

Prototype:
long
ROM_IntPriorityGet(unsigned long ulInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityGet is a function pointer located at ROM_INTERRUPTTABLE[7].

Parameters:
ulInterrupt specifies the interrupt in question.

Description:
This function gets the priority of an interrupt. See ROM_IntPrioritySet() for a definition of the
priority value.

Returns:
Returns the interrupt priority, or -1 if an invalid interrupt was specified.

13.2.1.8 ROM_IntPriorityGroupingGet

Gets the priority grouping of the interrupt controller.

Prototype:
unsigned long
ROM_IntPriorityGroupingGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityGroupingGet is a function pointer located at
ROM_INTERRUPTTABLE[5].

Description:
This function returns the split between preemptable priority levels and subpriority levels in the
interrupt priority specification.

Returns:
The number of bits of preemptable priority.

13.2.1.9 ROM_IntPriorityGroupingSet

Sets the priority grouping of the interrupt controller.

Prototype:
void
ROM_IntPriorityGroupingSet(unsigned long ulBits)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].

January 4, 2013 155

Interrupt Controller (NVIC)

ROM_IntPriorityGroupingSet is a function pointer located at
ROM_INTERRUPTTABLE[4].

Parameters:
ulBits specifies the number of bits of preemptable priority.

Description:
This function specifies the split between preemptable priority levels and subpriority levels in
the interrupt priority specification. The range of the grouping values are dependent upon the
hardware implementation; on the Stellaris family, three bits are available for hardware interrupt
prioritization and therefore priority grouping values of three through seven have the same effect.

Returns:
None.

13.2.1.10 ROM_IntPriorityMaskGet

Gets the priority masking level

Prototype:
unsigned long
ROM_IntPriorityMaskGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityMaskGet is a function pointer located at ROM_INTERRUPTTABLE[11].

Description:
This function gets the current setting of the interrupt priority masking level. The value returned
is the priority level such that all interrupts of that and lesser priority are masked. A value of 0
means that priority masking is disabled.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask
of 4 will allow interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and
greater is blocked.

The hardware priority mechanism will only look at the upper N bits of the priority level (where
N is 3 for the Stellaris family), so any prioritization must be performed in those bits.

Returns:
Returns the value of the interrupt priority level mask.

13.2.1.11 ROM_IntPriorityMaskSet

Sets the priority masking level

Prototype:
void
ROM_IntPriorityMaskSet(unsigned long ulPriorityMask)

156 January 4, 2013

Interrupt Controller (NVIC)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityMaskSet is a function pointer located at ROM_INTERRUPTTABLE[10].

Parameters:
ulPriorityMask is the priority level that is masked.

Description:
This function sets the interrupt priority masking level so that all interrupts at the specified or
lesser priority level is masked. This can be used to globally disable a set of interrupts with
priority below a predetermined threshold. A value of 0 disables priority masking.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask
of 4 will allow interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and
greater is blocked.

The hardware priority mechanism will only look at the upper N bits of the priority level (where
N is 3 for the Stellaris family), so any prioritization must be performed in those bits.

Returns:
None.

13.2.1.12 ROM_IntPrioritySet

Sets the priority of an interrupt.

Prototype:
void
ROM_IntPrioritySet(unsigned long ulInterrupt,

unsigned char ucPriority)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPrioritySet is a function pointer located at ROM_INTERRUPTTABLE[6].

Parameters:
ulInterrupt specifies the interrupt in question.
ucPriority specifies the priority of the interrupt.

Description:
This function is used to set the priority of an interrupt. When multiple interrupts are asserted
simultaneously, the ones with the highest priority are processed before the lower priority in-
terrupts. Smaller numbers correspond to higher interrupt priorities; priority 0 is the highest
interrupt priority.

The hardware priority mechanism will only look at the upper N bits of the priority level (where
N is 3 for the Stellaris family), so any prioritization must be performed in those bits. The
remaining bits can be used to sub-prioritize the interrupt sources, and may be used by the
hardware priority mechanism on a future part. This arrangement allows priorities to migrate to
different NVIC implementations without changing the gross prioritization of the interrupts.

Returns:
None.

January 4, 2013 157

Interrupt Controller (NVIC)

158 January 4, 2013

Memory Protection Unit (MPU)

14 Memory Protection Unit (MPU)
Introduction .159
Functions . 160

14.1 Introduction

The Memory Protection Unit (MPU) API provides functions to configure the MPU. The MPU is tightly
coupled to the Cortex-M3 processor core and provides a means to establish access permissions
on regions of memory.

Up to eight memory regions can be defined. Each region has a base address and a size. The size
is specified as a power of 2 between 32 bytes and 4 GB, inclusive. The region’s base address must
be aligned to the size of the region. Each region also has access permissions. Code execution can
be allowed or disallowed for a region. A region can be set for read-only access, read/write access,
or no access for both privileged and user modes. This can be used to set up an environment where
only kernel or system code can access certain hardware registers or sections of code.

The MPU creates 8 sub-regions within each region. Any sub-region or combination of sub-regions
can be disabled, allowing creation of “holes” or complex overlaying regions with different permis-
sions. The sub-regions can also be used to create an unaligned beginning or ending of a region by
disabling one or more of the leading or trailing sub-regions.

Once the regions are defined and the MPU is enabled, any access violation of a region will cause
a memory management fault, and the fault handler will be activated.

Generally, the memory protection regions should be defined before enabling the MPU. The regions
can be configured by calling ROM_MPURegionSet() once for each region to be configured.

A region that is defined by ROM_MPURegionSet() can be initially enabled or disabled. If the region
is not initially enabled, it can be enabled later by calling ROM_MPURegionEnable(). An enabled
region can be disabled by calling ROM_MPURegionDisable(). When a region is disabled, its con-
figuration is preserved as long as it is not overwritten. In this case it can be enabled again with
ROM_MPURegionEnable() without the need to reconfigure the region.

Care must be taken when setting up a protection region using ROM_MPURegionSet(). The function
will write to multiple registers and is not protected from interrupts. Therefore, it is possible that an
interrupt which accesses a region may occur while that region is in the process of being changed.
The safest way to protect against this is to make sure that a region is always disabled before
making any changes. Otherwise, it is up to the caller to ensure that ROM_MPURegionSet() is
always called from within code that cannot be interrupted, or from code that will not be affected if
an interrupt occurs while the region attributes are being changed.

The attributes of a region that has already been programmed can be retrieved and saved using
the ROM_MPURegionGet() function. This function is intended to save the attributes in a format
that can be used later to reload the region using the ROM_MPURegionSet() function. Note that
the enable state of the region is saved with the attributes and will take effect when the region is
reloaded.

When one or more regions are defined, the MPU can be enabled by calling ROM_MPUEnable().
This turns on the MPU and also defines the behavior in privileged mode and in the Hard Fault and
NMI fault handlers. The MPU can be configured so that when in privileged mode and no regions are

January 4, 2013 159

Memory Protection Unit (MPU)

enabled, a default memory map is applied. If this feature is not enabled, then a memory manage-
ment fault is generated if the MPU is enabled and no regions are configured and enabled. The MPU
can also be set to use a default memory map when in the Hard Fault or NMI handlers, instead of
using the configured regions. All of these features are selected when calling ROM_MPUEnable().
When the MPU is enabled, it can be disabled by calling ROM_MPUDisable().

14.2 Functions

Functions
void ROM_MPUDisable (void)
void ROM_MPUEnable (unsigned long ulMPUConfig)
unsigned long ROM_MPURegionCountGet (void)
void ROM_MPURegionDisable (unsigned long ulRegion)
void ROM_MPURegionEnable (unsigned long ulRegion)
void ROM_MPURegionGet (unsigned long ulRegion, unsigned long ∗pulAddr, unsigned long
∗pulFlags)
void ROM_MPURegionSet (unsigned long ulRegion, unsigned long ulAddr, unsigned long
ulFlags)

14.2.1 Function Documentation

14.2.1.1 ROM_MPUDisable

Disables the MPU for use.

Prototype:
void
ROM_MPUDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPUDisable is a function pointer located at ROM_MPUTABLE[1].

Description:
This function disables the Cortex-M3 memory protection unit. When the MPU is disabled, the
default memory map is used and memory management faults are not generated.

Returns:
None.

14.2.1.2 ROM_MPUEnable

Enables and configures the MPU for use.

160 January 4, 2013

Memory Protection Unit (MPU)

Prototype:
void
ROM_MPUEnable(unsigned long ulMPUConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPUEnable is a function pointer located at ROM_MPUTABLE[0].

Parameters:
ulMPUConfig is the logical OR of the possible configurations.

Description:
This function enables the Cortex-M3 memory protection unit. It also configures the default
behavior when in privileged mode and while handling a hard fault or NMI. Prior to enabling the
MPU, at least one region must be set by calling ROM_MPURegionSet() or else by enabling
the default region for privileged mode by passing the MPU_CONFIG_PRIV_DEFAULT flag to
ROM_MPUEnable(). Once the MPU is enabled, a memory management fault is generated for
any memory access violations.

The ulMPUConfig parameter should be the logical OR of any of the following:

MPU_CONFIG_PRIV_DEFAULT enables the default memory map when in privileged
mode and when no other regions are defined. If this option is not enabled, then there
must be at least one valid region already defined when the MPU is enabled.
MPU_CONFIG_HARDFLT_NMI enables the MPU while in a hard fault or NMI exception
handler. If this option is not enabled, then the MPU is disabled while in one of these
exception handlers and the default memory map is applied.
MPU_CONFIG_NONE chooses none of the above options. In this case, no default mem-
ory map is provided in privileged mode, and the MPU will not be enabled in the fault
handlers.

Returns:
None.

14.2.1.3 ROM_MPURegionCountGet

Gets the count of regions supported by the MPU.

Prototype:
unsigned long
ROM_MPURegionCountGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionCountGet is a function pointer located at ROM_MPUTABLE[2].

Description:
This function is used to get the number of regions that are supported by the MPU. This is the
total number that are supported, including regions that are already programmed.

January 4, 2013 161

Memory Protection Unit (MPU)

Returns:
The number of memory protection regions that are available for programming using
ROM_MPURegionSet().

14.2.1.4 ROM_MPURegionDisable

Disables a specific region.

Prototype:
void
ROM_MPURegionDisable(unsigned long ulRegion)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionDisable is a function pointer located at ROM_MPUTABLE[4].

Parameters:
ulRegion is the region number to disable.

Description:
This function is used to disable a previously enabled memory protection region. The region will
remain configured if it is not overwritten with another call to ROM_MPURegionSet(), and can
be enabled again by calling ROM_MPURegionEnable().

Returns:
None.

14.2.1.5 ROM_MPURegionEnable

Enables a specific region.

Prototype:
void
ROM_MPURegionEnable(unsigned long ulRegion)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionEnable is a function pointer located at ROM_MPUTABLE[3].

Parameters:
ulRegion is the region number to enable.

Description:
This function is used to enable a memory protection region. The region should already be set
up with the ROM_MPURegionSet() function. Once enabled, the memory protection rules of
the region are applied and access violations will cause a memory management fault.

Returns:
None.

162 January 4, 2013

Memory Protection Unit (MPU)

14.2.1.6 ROM_MPURegionGet

Gets the current settings for a specific region.

Prototype:
void
ROM_MPURegionGet(unsigned long ulRegion,

unsigned long *pulAddr,
unsigned long *pulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionGet is a function pointer located at ROM_MPUTABLE[6].

Parameters:
ulRegion is the region number to get.
pulAddr points to storage for the base address of the region.
pulFlags points to the attribute flags for the region.

Description:
This function retrieves the configuration of a specific region. The meanings and format of the
parameters is the same as that of the ROM_MPURegionSet() function.

This function can be used to save the configuration of a region for later use with the
ROM_MPURegionSet() function. The region’s enable state is preserved in the attributes that
are saved.

Returns:
None.

14.2.1.7 ROM_MPURegionSet

Sets up the access rules for a specific region.

Prototype:
void
ROM_MPURegionSet(unsigned long ulRegion,

unsigned long ulAddr,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionSet is a function pointer located at ROM_MPUTABLE[5].

Parameters:
ulRegion is the region number to set up.
ulAddr is the base address of the region. It must be aligned according to the size of the region

specified in ulFlags.
ulFlags is a set of flags to define the attributes of the region.

January 4, 2013 163

Memory Protection Unit (MPU)

Description:
This function sets up the protection rules for a region. The region has a base address and a
set of attributes including the size, which must be a power of 2. The base address parameter,
ulAddr , must be aligned according to the size.

The ulFlags parameter is the logical OR of all of the attributes of the region. It is a combination
of choices for region size, execute permission, read/write permissions, disabled sub-regions,
and a flag to determine if the region is enabled.

The size flag determines the size of a region, and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K
MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user modes.
The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, user no access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only

164 January 4, 2013

Memory Protection Unit (MPU)

MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, user no access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

The region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-regions
can only be used in regions of size 256 bytes or larger. Any of these 8 sub-regions can be
disabled. This allows for creation of “holes” in a region which can be left open, or overlaid by
another region with different attributes. Any of the 8 sub-regions can be disabled with a logical
OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

As an example, to set a region with the following attributes: size of 32 KB, execution en-
abled, read-only for both privileged and user, one sub-region disabled, and initially enabled;
the ulFlags parameter would have the following value:

(MPU_RG_SIZE_32K | MPU_RGN_PERM_EXEC | MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_2 | MPU_RGN_ENABLE)

Note:
This function will write to multiple registers and is not protected from interrupts. It is possible
that an interrupt which accesses a region may occur while that region is in the process of being
changed. The safest way to handle this is to disable a region before changing it. Refer to the
discussion of this in the API Detailed Description section.

Returns:
None.

January 4, 2013 165

Memory Protection Unit (MPU)

166 January 4, 2013

Pulse Width Modulator (PWM)

15 Pulse Width Modulator (PWM)
Introduction .167
Functions . 167

15.1 Introduction

The PWM module provides up to four instances of a PWM generator block, and an output control
block. Each generator block has two PWM output signals, which can be operated independently,
or as a pair of signals with dead band delays inserted. Each generator block also has an interrupt
output and a trigger output. The control block determines the polarity of the PWM signals, and
which signals are passed through to the pins.

Some of the features of the PWM module are:

Up to four generator blocks, each containing:
• One 16-bit down or up/down counter
• Two comparators
• PWM generator
• Dead band generator

Control block
• PWM output enable
• Output polarity control
• Synchronization
• Fault handling
• Interrupt status

When discussing the various components of the PWM module, the following conventions are used:

The four generator blocks are called Gen0, Gen1, Gen2, and Gen3.
The two PWM output signals associated with each generator block are called OutA and OutB.
The eight output signals are called PWM0, PWM1, PWM2, PWM3, PWM4, PWM5, PWM6,
and PWM7.
PWM0 and PWM1 are associated with Gen0, PWM2 and PWM3 are associated with Gen1,
PWM4 and PWM5 are associated with Gen2, and PWM6 and PWM7 are associated with
Gen3.

Also, as a simplifying assumption for this API, comparator A for each generator block is used exclu-
sively to adjust the pulse width of the even numbered PWM outputs (PWM0, PWM2, PWM4, and
PWM6). In addition, comparator B is used exclusively for the odd numbered PWM outputs (PWM1,
PWM3, PWM5, and PWM7).

15.2 Functions

Functions
void ROM_PWMDeadBandDisable (unsigned long ulBase, unsigned long ulGen)

January 4, 2013 167

Pulse Width Modulator (PWM)

void ROM_PWMDeadBandEnable (unsigned long ulBase, unsigned long ulGen, unsigned
short usRise, unsigned short usFall)
void ROM_PWMFaultIntClear (unsigned long ulBase)
void ROM_PWMFaultIntClearExt (unsigned long ulBase, unsigned long ulFaultInts)
void ROM_PWMGenConfigure (unsigned long ulBase, unsigned long ulGen, unsigned long
ulConfig)
void ROM_PWMGenDisable (unsigned long ulBase, unsigned long ulGen)
void ROM_PWMGenEnable (unsigned long ulBase, unsigned long ulGen)
void ROM_PWMGenFaultClear (unsigned long ulBase, unsigned long ulGen, unsigned long
ulGroup, unsigned long ulFaultTriggers)
void ROM_PWMGenFaultConfigure (unsigned long ulBase, unsigned long ulGen, unsigned
long ulMinFaultPeriod, unsigned long ulFaultSenses)
unsigned long ROM_PWMGenFaultStatus (unsigned long ulBase, unsigned long ulGen, un-
signed long ulGroup)
unsigned long ROM_PWMGenFaultTriggerGet (unsigned long ulBase, unsigned long ulGen,
unsigned long ulGroup)
void ROM_PWMGenFaultTriggerSet (unsigned long ulBase, unsigned long ulGen, unsigned
long ulGroup, unsigned long ulFaultTriggers)
void ROM_PWMGenIntClear (unsigned long ulBase, unsigned long ulGen, unsigned long
ulInts)
unsigned long ROM_PWMGenIntStatus (unsigned long ulBase, unsigned long ulGen,
tBoolean bMasked)
void ROM_PWMGenIntTrigDisable (unsigned long ulBase, unsigned long ulGen, unsigned
long ulIntTrig)
void ROM_PWMGenIntTrigEnable (unsigned long ulBase, unsigned long ulGen, unsigned
long ulIntTrig)
unsigned long ROM_PWMGenPeriodGet (unsigned long ulBase, unsigned long ulGen)
void ROM_PWMGenPeriodSet (unsigned long ulBase, unsigned long ulGen, unsigned long
ulPeriod)
void ROM_PWMIntDisable (unsigned long ulBase, unsigned long ulGenFault)
void ROM_PWMIntEnable (unsigned long ulBase, unsigned long ulGenFault)
unsigned long ROM_PWMIntStatus (unsigned long ulBase, tBoolean bMasked)
void ROM_PWMOutputFault (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean
bFaultSuppress)
void ROM_PWMOutputFaultLevel (unsigned long ulBase, unsigned long ulPWMOutBits,
tBoolean bDriveHigh)
void ROM_PWMOutputInvert (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean
bInvert)
void ROM_PWMOutputState (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean
bEnable)
unsigned long ROM_PWMPulseWidthGet (unsigned long ulBase, unsigned long ulPWMOut)
void ROM_PWMPulseWidthSet (unsigned long ulBase, unsigned long ulPWMOut, unsigned
long ulWidth)
void ROM_PWMSyncTimeBase (unsigned long ulBase, unsigned long ulGenBits)
void ROM_PWMSyncUpdate (unsigned long ulBase, unsigned long ulGenBits)

168 January 4, 2013

Pulse Width Modulator (PWM)

15.2.1 Function Documentation

15.2.1.1 ROM_PWMDeadBandDisable

Disables the PWM dead band output.

Prototype:
void
ROM_PWMDeadBandDisable(unsigned long ulBase,

unsigned long ulGen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMDeadBandDisable is a function pointer located at ROM_PWMTABLE[8].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to modify. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function disables the dead band mode for the specified PWM generator. Doing so decou-
ples the OutA and OutB signals.

Returns:
None.

15.2.1.2 ROM_PWMDeadBandEnable

Enables the PWM dead band output, and sets the dead band delays.

Prototype:
void
ROM_PWMDeadBandEnable(unsigned long ulBase,

unsigned long ulGen,
unsigned short usRise,
unsigned short usFall)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMDeadBandEnable is a function pointer located at ROM_PWMTABLE[7].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to modify. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
usRise specifies the width of delay from the rising edge.
usFall specifies the width of delay from the falling edge.

January 4, 2013 169

Pulse Width Modulator (PWM)

Description:
This function sets the dead bands for the specified PWM generator, where the dead bands
are defined as the number of PWM clock ticks from the rising or falling edge of the generator’s
OutA signal. Note that this function causes the coupling of OutB to OutA.

Returns:
None.

15.2.1.3 ROM_PWMFaultIntClear

Clears the fault interrupt for a PWM module.

Prototype:
void
ROM_PWMFaultIntClear(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMFaultIntClear is a function pointer located at ROM_PWMTABLE[20].

Parameters:
ulBase is the base address of the PWM module.

Description:
Clears the fault interrupt by writing to the appropriate bit of the interrupt status register for the
selected PWM module.

This function clears only the FAULT0 interrupt and is retained for backwards compatibility. It
is recommended that ROM_PWMFaultIntClearExt() be used instead since it supports all fault
interrupts supported on devices with and without extended PWM fault handling support.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.4 ROM_PWMFaultIntClearExt

Clears the fault interrupt for a PWM module.

Prototype:
void
ROM_PWMFaultIntClearExt(unsigned long ulBase,

unsigned long ulFaultInts)

170 January 4, 2013

Pulse Width Modulator (PWM)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMFaultIntClearExt is a function pointer located at ROM_PWMTABLE[23].

Parameters:
ulBase is the base address of the PWM module.
ulFaultInts specifies the fault interrupts to clear.

Description:
Clears one or more fault interrupts by writing to the appropriate bit of the PWM interrupt status
register. The parameter ulFaultInts must be the logical OR of any of PWM_INT_FAULT0,
PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

When running on a device supporting extended PWM fault handling, the fault interrupts are
derived by performing a logical OR of each of the configured fault trigger signals for a given
generator. Therefore, these interrupts are not directly related to the four possible FAULTn
inputs to the device but indicate that a fault has been signaled to one of the four possible PWM
generators. On a device without extended PWM fault handling, the interrupt is directly related
to the state of the single FAULT pin.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.5 ROM_PWMGenConfigure

Configures a PWM generator.

Prototype:
void
ROM_PWMGenConfigure(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenConfigure is a function pointer located at ROM_PWMTABLE[1].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to configure. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
ulConfig is the configuration for the PWM generator.

January 4, 2013 171

Pulse Width Modulator (PWM)

Description:
This function is used to set the mode of operation for a PWM generator. The counting mode,
synchronization mode, and debug behavior are all configured. After configuration, the genera-
tor is left in the disabled state.

A PWM generator can count in two different modes: count down mode or count up/down mode.
In count down mode, it will count from a value down to zero, and then reset to the preset value.
This will produce left-aligned PWM signals (that is the rising edge of the two PWM signals
produced by the generator will occur at the same time). In count up/down mode, it will count
up from zero to the preset value, count back down to zero, and then repeat the process. This
will produce center-aligned PWM signals (that is, the middle of the high/low period of the PWM
signals produced by the generator will occur at the same time).

When the PWM generator parameters (period and pulse width) are modified, their affect on
the output PWM signals can be delayed. In synchronous mode, the parameter updates are not
applied until a synchronization event occurs. This allows multiple parameters to be modified
and take affect simultaneously, instead of one at a time. Additionally, parameters to multiple
PWM generators in synchronous mode can be updated simultaneously, allowing them to be
treated as if they were a unified generator. In non-synchronous mode, the parameter updates
are not delayed until a synchronization event. In either mode, the parameter updates only
occur when the counter is at zero to help prevent oddly formed PWM signals during the update
(that is, a PWM pulse that is too short or too long).

The PWM generator can either pause or continue running when the processor is stopped via
the debugger. If configured to pause, it will continue to count until it reaches zero, at which
point it will pause until the processor is restarted. If configured to continue running, it will keep
counting as if nothing had happened.

The ulConfig parameter contains the desired configuration. It is the logical OR of the following:

PWM_GEN_MODE_DOWN or PWM_GEN_MODE_UP_DOWN to specify the counting
mode
PWM_GEN_MODE_SYNC or PWM_GEN_MODE_NO_SYNC to specify the counter load
and comparator update synchronization mode
PWM_GEN_MODE_DBG_RUN or PWM_GEN_MODE_DBG_STOP to specify the debug
behavior
PWM_GEN_MODE_GEN_NO_SYNC, PWM_GEN_MODE_GEN_SYNC_LOCAL, or
PWM_GEN_MODE_GEN_SYNC_GLOBAL to specify the update synchronization mode
for generator counting mode changes
PWM_GEN_MODE_DB_NO_SYNC, PWM_GEN_MODE_DB_SYNC_LOCAL, or
PWM_GEN_MODE_DB_SYNC_GLOBAL to specify the deadband parameter syn-
chronization mode
PWM_GEN_MODE_FAULT_LATCHED or PWM_GEN_MODE_FAULT_UNLATCHED to
specify whether fault conditions are latched or not
PWM_GEN_MODE_FAULT_MINPER or PWM_GEN_MODE_FAULT_NO_MINPER to
specify whether minimum fault period support is required
PWM_GEN_MODE_FAULT_EXT or PWM_GEN_MODE_FAULT_LEGACY to specify
whether extended fault source selection support is enabled or not

Setting PWM_GEN_MODE_FAULT_MINPER allows an application to set the minimum dura-
tion of a PWM fault signal. Faults will be signaled for at least this time even if the external fault
pin deasserts earlier. Care should be taken when using this mode since during the fault signal
period, the fault interrupt from the PWM generator will remain asserted. The fault interrupt
handler may, therefore, reenter immediately if it exits prior to expiration of the fault timer.

172 January 4, 2013

Pulse Width Modulator (PWM)

Note:
Changes to the counter mode will affect the period of the PWM signals produced.
ROM_PWMGenPeriodSet() and ROM_PWMPulseWidthSet() should be called after any
changes to the counter mode of a generator.

Returns:
None.

15.2.1.6 ROM_PWMGenDisable

Disables the timer/counter for a PWM generator block.

Prototype:
void
ROM_PWMGenDisable(unsigned long ulBase,

unsigned long ulGen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenDisable is a function pointer located at ROM_PWMTABLE[5].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to be disabled. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

Description:
This function blocks the PWM clock from driving the timer/counter for the specified generator
block.

Returns:
None.

15.2.1.7 ROM_PWMGenEnable

Enables the timer/counter for a PWM generator block.

Prototype:
void
ROM_PWMGenEnable(unsigned long ulBase,

unsigned long ulGen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenEnable is a function pointer located at ROM_PWMTABLE[4].

Parameters:
ulBase is the base address of the PWM module.

January 4, 2013 173

Pulse Width Modulator (PWM)

ulGen is the PWM generator to be enabled. Must be one of PWM_GEN_0, PWM_GEN_1,
PWM_GEN_2, or PWM_GEN_3.

Description:
This function allows the PWM clock to drive the timer/counter for the specified generator block.

Returns:
None.

15.2.1.8 ROM_PWMGenFaultClear

Clears one or more latched fault triggers for a given PWM generator.

Prototype:
void
ROM_PWMGenFaultClear(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup,
unsigned long ulFaultTriggers)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultClear is a function pointer located at ROM_PWMTABLE[28].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault trigger states are being queried. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of faults that are being queried. This must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.
ulFaultTriggers is the set of fault triggers which are to be cleared.

Description:
This function allows an application to clear the fault triggers for a given PWM genera-
tor. This is only required if ROM_PWMGenConfigure() has previously been called with flag
PWM_GEN_MODE_LATCH_FAULT in parameter ulConfig.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

15.2.1.9 ROM_PWMGenFaultConfigure

Configures the minimum fault period and fault pin senses for a given PWM generator.

174 January 4, 2013

Pulse Width Modulator (PWM)

Prototype:
void
ROM_PWMGenFaultConfigure(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulMinFaultPeriod,
unsigned long ulFaultSenses)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultConfigure is a function pointer located at ROM_PWMTABLE[24].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault configuration is being set. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulMinFaultPeriod is the minimum fault active period expressed in PWM clock cycles.
ulFaultSenses indicates which sense of each FAULT input should be considered the “as-

serted” state. Valid values are logical OR combinations of PWM_FAULTn_SENSE_HIGH
and PWM_FAULTn_SENSE_LOW.

Description:
This function sets the minimum fault period for a given generator along with the sense
of each of the 4 possible fault inputs. The minimum fault period is expressed in
PWM clock cycles and takes effect only if ROM_PWMGenConfigure() is called with flag
PWM_GEN_MODE_FAULT_PER set in the ulConfig parameter. When a fault input is as-
serted, the minimum fault period timer ensures that it remains asserted for at least the number
of clock cycles specified.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

15.2.1.10 ROM_PWMGenFaultStatus

Returns the current state of the fault triggers for a given PWM generator.

Prototype:
unsigned long
ROM_PWMGenFaultStatus(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultStatus is a function pointer located at ROM_PWMTABLE[27].

Parameters:
ulBase is the base address of the PWM module.

January 4, 2013 175

Pulse Width Modulator (PWM)

ulGen is the PWM generator whose fault trigger states are being queried. Must be one of
PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

ulGroup indicates the subset of faults that are being queried. This must be
PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

Description:
This function allows an application to query the current state of each of the fault trig-
ger inputs to a given PWM generator. The current state of each fault trigger in-
put is returned unless ROM_PWMGenConfigure() has previously been called with flag
PWM_GEN_MODE_LATCH_FAULT in the ulConfig parameter in which case the returned sta-
tus is the latched fault trigger status.

If latched faults are configured, the application must call ROM_PWMGenFaultClear() to clear
each trigger.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
Returns the current state of the fault triggers for the given PWM generator. A set bit indicates
that the associated trigger is active. For PWM_FAULT_GROUP_0, the returned value is
a logical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2,
or PWM_FAULT_FAULT3. For PWM_FAULT_GROUP_1, the return value is the log-
ical OR of PWM_FAULT_DCMP0, PWM_FAULT_DCMP1, PWM_FAULT_DCMP2,
PWM_FAULT_DCMP3, PWM_FAULT_DCMP4, PWM_FAULT_DCMP5,
PWM_FAULT_DCMP6, or PWM_FAULT_DCMP7.

15.2.1.11 ROM_PWMGenFaultTriggerGet

Returns the set of fault triggers currently configured for a given PWM generator.

Prototype:
unsigned long
ROM_PWMGenFaultTriggerGet(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultTriggerGet is a function pointer located at ROM_PWMTABLE[26].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault triggers are being queried. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of faults that are being queried. This must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

Description:
This function allows an application to query the current set of inputs that contribute towards the
generation of a fault condition to a given PWM generator.

176 January 4, 2013

Pulse Width Modulator (PWM)

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
Returns the current fault triggers configured for the fault group provided. For
PWM_FAULT_GROUP_0, the returned value is a logical OR of PWM_FAULT_FAULT0,
PWM_FAULT_FAULT1, PWM_FAULT_FAULT2, or PWM_FAULT_FAULT3. For
PWM_FAULT_GROUP_1, the return value is the logical OR of PWM_FAULT_DCMP0,
PWM_FAULT_DCMP1, PWM_FAULT_DCMP2, PWM_FAULT_DCMP3,
PWM_FAULT_DCMP4, PWM_FAULT_DCMP5, PWM_FAULT_DCMP6, or
PWM_FAULT_DCMP7.

15.2.1.12 ROM_PWMGenFaultTriggerSet

Configures the set of fault triggers for a given PWM generator.

Prototype:
void
ROM_PWMGenFaultTriggerSet(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulGroup,
unsigned long ulFaultTriggers)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultTriggerSet is a function pointer located at ROM_PWMTABLE[25].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator whose fault triggers are being set. Must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulGroup indicates the subset of possible faults that are to be configured. This must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.
ulFaultTriggers defines the set of inputs that are to contribute towards generation of the

fault signal to the given PWM generator. For PWM_FAULT_GROUP_0, this is the log-
ical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2,
or PWM_FAULT_FAULT3. For PWM_FAULT_GROUP_1, this is the logical
OR of PWM_FAULT_DCMP0, PWM_FAULT_DCMP1, PWM_FAULT_DCMP2,
PWM_FAULT_DCMP3, PWM_FAULT_DCMP4, PWM_FAULT_DCMP5,
PWM_FAULT_DCMP6, or PWM_FAULT_DCMP7.

Description:
This function allows selection of the set of fault inputs that is combined to gener-
ate a fault condition to a given PWM generator. By default, all generators use only
FAULT0 (for backwards compatibility) but if ROM_PWMGenConfigure() is called with flag
PWM_GEN_MODE_FAULT_SRC in the ulConfig parameter, extended fault handling is en-
abled and this function must be called to configure the fault triggers.

The fault signal to the PWM generator is generated by ORing together each of the sig-
nals whose inputs are specified in the ulFaultTriggers parameter after having adjusted the
sense of each FAULTn input based on the configuration previously set using a call to
ROM_PWMGenFaultConfigure().

January 4, 2013 177

Pulse Width Modulator (PWM)

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

15.2.1.13 ROM_PWMGenIntClear

Clears the specified interrupt(s) for the specified PWM generator block.

Prototype:
void
ROM_PWMGenIntClear(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulInts)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntClear is a function pointer located at ROM_PWMTABLE[17].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to query. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
ulInts specifies the interrupts to be cleared.

Description:
Clears the specified interrupt(s) by writing a 1 to the specified bits of the interrupt sta-
tus register for the specified PWM generator. The ulInts parameter is the logical OR of
PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU, PWM_INT_CNT_AD,
PWM_INT_CNT_BU, or PWM_INT_CNT_BD.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.14 ROM_PWMGenIntStatus

Gets interrupt status for the specified PWM generator block.

Prototype:
unsigned long
ROM_PWMGenIntStatus(unsigned long ulBase,

178 January 4, 2013

Pulse Width Modulator (PWM)

unsigned long ulGen,
tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntStatus is a function pointer located at ROM_PWMTABLE[16].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to query. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the contents of the interrupt status register, or the contents of the raw interrupt status
register, for the specified PWM generator.

15.2.1.15 ROM_PWMGenIntTrigDisable

Disables interrupts for the specified PWM generator block.

Prototype:
void
ROM_PWMGenIntTrigDisable(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulIntTrig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntTrigDisable is a function pointer located at ROM_PWMTABLE[15].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to have interrupts and triggers disabled. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulIntTrig specifies the interrupts and triggers to be disabled.

Description:
Masks the specified interrupt(s) and trigger(s) by clearing the specified bits of the in-
terrupt/trigger enable register for the specified PWM generator. The ulIntTrig parameter
is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

January 4, 2013 179

Pulse Width Modulator (PWM)

15.2.1.16 ROM_PWMGenIntTrigEnable

Enables interrupts and triggers for the specified PWM generator block.

Prototype:
void
ROM_PWMGenIntTrigEnable(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulIntTrig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntTrigEnable is a function pointer located at ROM_PWMTABLE[14].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to have interrupts and triggers enabled. Must be one of

PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ulIntTrig specifies the interrupts and triggers to be enabled.

Description:
Unmasks the specified interrupt(s) and trigger(s) by setting the specified bits of the in-
terrupt/trigger enable register for the specified PWM generator. The ulIntTrig parameter
is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

15.2.1.17 ROM_PWMGenPeriodGet

Gets the period of a PWM generator block.

Prototype:
unsigned long
ROM_PWMGenPeriodGet(unsigned long ulBase,

unsigned long ulGen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenPeriodGet is a function pointer located at ROM_PWMTABLE[3].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to query. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.

180 January 4, 2013

Pulse Width Modulator (PWM)

Description:
This function gets the period of the specified PWM generator block. The period of the generator
block is defined as the number of PWM clock ticks between pulses on the generator block zero
signal.

If the update of the counter for the specified PWM generator has yet to be completed, the
value returned may not be the active period. The value returned is the programmed period,
measured in PWM clock ticks.

Returns:
Returns the programmed period of the specified generator block in PWM clock ticks.

15.2.1.18 ROM_PWMGenPeriodSet

Set the period of a PWM generator.

Prototype:
void
ROM_PWMGenPeriodSet(unsigned long ulBase,

unsigned long ulGen,
unsigned long ulPeriod)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenPeriodSet is a function pointer located at ROM_PWMTABLE[2].

Parameters:
ulBase is the base address of the PWM module.
ulGen is the PWM generator to be modified. Must be one of PWM_GEN_0, PWM_GEN_1,

PWM_GEN_2, or PWM_GEN_3.
ulPeriod specifies the period of PWM generator output, measured in clock ticks.

Description:
This function sets the period of the specified PWM generator block, where the period of the
generator block is defined as the number of PWM clock ticks between pulses on the generator
block zero signal.

Note:
Any subsequent calls made to this function before an update occurs will cause the previous
values to be overwritten.

Returns:
None.

15.2.1.19 ROM_PWMIntDisable

Disables generator and fault interrupts for a PWM module.

Prototype:
void
ROM_PWMIntDisable(unsigned long ulBase,

unsigned long ulGenFault)

January 4, 2013 181

Pulse Width Modulator (PWM)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMIntDisable is a function pointer located at ROM_PWMTABLE[19].

Parameters:
ulBase is the base address of the PWM module.
ulGenFault contains the interrupts to be disabled. Must be a logical OR of any

of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
Masks the specified interrupt(s) by clearing the specified bits of the interrupt enable register for
the selected PWM module.

Returns:
None.

15.2.1.20 ROM_PWMIntEnable

Enables generator and fault interrupts for a PWM module.

Prototype:
void
ROM_PWMIntEnable(unsigned long ulBase,

unsigned long ulGenFault)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMIntEnable is a function pointer located at ROM_PWMTABLE[18].

Parameters:
ulBase is the base address of the PWM module.
ulGenFault contains the interrupts to be enabled. Must be a logical OR of any

of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
Unmasks the specified interrupt(s) by setting the specified bits of the interrupt enable register
for the selected PWM module.

Returns:
None.

15.2.1.21 ROM_PWMIntStatus

Gets the interrupt status for a PWM module.

182 January 4, 2013

Pulse Width Modulator (PWM)

Prototype:
unsigned long
ROM_PWMIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMIntStatus is a function pointer located at ROM_PWMTABLE[21].

Parameters:
ulBase is the base address of the PWM module.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
The current interrupt status, enumerated as a bit field of PWM_INT_GEN_0,
PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3, PWM_INT_FAULT0,
PWM_INT_FAULT1, PWM_INT_FAULT2, and PWM_INT_FAULT3.

15.2.1.22 ROM_PWMOutputFault

Specifies the state of PWM outputs in response to a fault condition.

Prototype:
void
ROM_PWMOutputFault(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bFaultSuppress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputFault is a function pointer located at ROM_PWMTABLE[13].

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bFaultSuppress determines if the signal is suppressed or passed through during an active
fault condition.

Description:
This function sets the fault handling characteristics of the selected PWM outputs. The outputs
are selected using the parameter ulPWMOutBits. The parameter bFaultSuppress determines
the fault handling characteristics for the selected outputs. If bFaultSuppress is true, then the
selected outputs are made inactive. If bFaultSuppress is false, then the selected outputs are
unaffected by the detected fault.

January 4, 2013 183

Pulse Width Modulator (PWM)

On devices supporting extended PWM fault handling, the state the affected output pins are
driven to can be configured with ROM_PWMOutputFaultLevel(). If not configured, or if the
device does not support extended PWM fault handling, affected outputs are driven low on a
fault condition.

Returns:
None.

15.2.1.23 ROM_PWMOutputFaultLevel

Specifies the level of PWM outputs suppressed in response to a fault condition.

Prototype:
void
ROM_PWMOutputFaultLevel(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bDriveHigh)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputFaultLevel is a function pointer located at ROM_PWMTABLE[22].

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bDriveHigh determines if the signal is driven high or low during an active fault condition.

Description:
This function determines whether a PWM output pin that is suppressed in response to a fault
condition is driven high or low. The affected outputs are selected using the parameter ulP-
WMOutBits. The parameter bDriveHigh determines the output level for the pins identified by
ulPWMOutBits. If bDriveHigh is true then the selected outputs are driven high when a fault is
detected. If it is false, the pins are driven low.

In a fault condition, pins which have not been configured to be suppressed via a call to
ROM_PWMOutputFault() are unaffected by this function.

Note:
This function is available only on devices which support extended PWM fault handling.

Returns:
None.

15.2.1.24 ROM_PWMOutputInvert

Selects the inversion mode for PWM outputs.

184 January 4, 2013

Pulse Width Modulator (PWM)

Prototype:
void
ROM_PWMOutputInvert(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bInvert)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputInvert is a function pointer located at ROM_PWMTABLE[12].

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bInvert determines if the signal is inverted or passed through.

Description:
This function is used to select the inversion mode for the selected PWM outputs. The outputs
are selected using the parameter ulPWMOutBits. The parameter bInvert determines the in-
version mode for the selected outputs. If bInvert is true, this function will cause the specified
PWM output signals to be inverted, or made active low. If bInvert is false, the specified outputs
are passed through as is, or be made active high.

Returns:
None.

15.2.1.25 ROM_PWMOutputState

Enables or disables PWM outputs.

Prototype:
void
ROM_PWMOutputState(unsigned long ulBase,

unsigned long ulPWMOutBits,
tBoolean bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputState is a function pointer located at ROM_PWMTABLE[11].

Parameters:
ulBase is the base address of the PWM module.
ulPWMOutBits are the PWM outputs to be modified. Must be the logical OR of

any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bEnable determines if the signal is enabled or disabled.

January 4, 2013 185

Pulse Width Modulator (PWM)

Description:
This function is used to enable or disable the selected PWM outputs. The outputs are selected
using the parameter ulPWMOutBits. The parameter bEnable determines the state of the se-
lected outputs. If bEnable is true, then the selected PWM outputs are enabled, or placed in
the active state. If bEnable is false, then the selected outputs are disabled, or placed in the
inactive state.

Returns:
None.

15.2.1.26 ROM_PWMPulseWidthGet

Gets the pulse width of a PWM output.

Prototype:
unsigned long
ROM_PWMPulseWidthGet(unsigned long ulBase,

unsigned long ulPWMOut)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMPulseWidthGet is a function pointer located at ROM_PWMTABLE[6].

Parameters:
ulBase is the base address of the PWM module.
ulPWMOut is the PWM output to query. Must be one of PWM_OUT_0, PWM_OUT_1,

PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5, PWM_OUT_6, or
PWM_OUT_7.

Description:
This function gets the currently programmed pulse width for the specified PWM output. If the
update of the comparator for the specified output has yet to be completed, the value returned
may not be the active pulse width. The value returned is the programmed pulse width, mea-
sured in PWM clock ticks.

Returns:
Returns the width of the pulse in PWM clock ticks.

15.2.1.27 ROM_PWMPulseWidthSet

Sets the pulse width for the specified PWM output.

Prototype:
void
ROM_PWMPulseWidthSet(unsigned long ulBase,

unsigned long ulPWMOut,
unsigned long ulWidth)

186 January 4, 2013

Pulse Width Modulator (PWM)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMPulseWidthSet is a function pointer located at ROM_PWMTABLE[0].

Parameters:
ulBase is the base address of the PWM module.
ulPWMOut is the PWM output to modify. Must be one of PWM_OUT_0, PWM_OUT_1,

PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5, PWM_OUT_6, or
PWM_OUT_7.

ulWidth specifies the width of the positive portion of the pulse.

Description:
This function sets the pulse width for the specified PWM output, where the pulse width is
defined as the number of PWM clock ticks.

Note:
Any subsequent calls made to this function before an update occurs will cause the previous
values to be overwritten.

Returns:
None.

15.2.1.28 ROM_PWMSyncTimeBase

Synchronizes the counters in one or multiple PWM generator blocks.

Prototype:
void
ROM_PWMSyncTimeBase(unsigned long ulBase,

unsigned long ulGenBits)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMSyncTimeBase is a function pointer located at ROM_PWMTABLE[10].

Parameters:
ulBase is the base address of the PWM module.
ulGenBits are the PWM generator blocks to be synchronized. Must be the logical OR of any

of PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or PWM_GEN_3_BIT.

Description:
For the selected PWM module, this function synchronizes the time base of the generator blocks
by causing the specified generator counters to be reset to zero.

Returns:
None.

January 4, 2013 187

Pulse Width Modulator (PWM)

15.2.1.29 ROM_PWMSyncUpdate

Synchronizes all pending updates.

Prototype:
void
ROM_PWMSyncUpdate(unsigned long ulBase,

unsigned long ulGenBits)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMSyncUpdate is a function pointer located at ROM_PWMTABLE[9].

Parameters:
ulBase is the base address of the PWM module.
ulGenBits are the PWM generator blocks to be updated. Must be the logical OR of any of

PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or PWM_GEN_3_BIT.

Description:
For the selected PWM generators, this function causes all queued updates to the period or
pulse width to be applied the next time the corresponding counter becomes zero.

Returns:
None.

188 January 4, 2013

Quadrature Encoder (QEI)

16 Quadrature Encoder (QEI)
Introduction .189
Functions . 189

16.1 Introduction

The quadrature encoder API provides a set of functions for dealing with the Quadrature Encoder
with Index (QEI). Functions are provided to configure and read the position and velocity captures,
register a QEI interrupt handler, and handle QEI interrupt masking/clearing.

The quadrature encoder module provides hardware encoding of the two channels and the index
signal from a quadrature encoder device into an absolute or relative position. There is additional
hardware for capturing a measure of the encoder velocity, which is simply a count of encoder pulses
during a fixed time period; the number of pulses is directly proportional to the encoder speed. Note
that the velocity capture can only operate when the position capture is enabled.

The QEI module supports two modes of operation: phase mode and clock/direction mode. In phase
mode, the encoder produces two clocks that are 90 degrees out of phase; the edge relationship is
used to determine the direction of rotation. In clock/direction mode, the encoder produces a clock
signal to indicate steps and a direction signal to indicate the direction of rotation.

When in phase mode, edges on the first channel or edges on both channels can be counted;
counting edges on both channels provides higher encoder resolution if required. In either mode,
the input signals can be swapped before being processed; this allows wiring mistakes on the circuit
board to be corrected without modifying the board.

The index pulse can be used to reset the position counter; this causes the position counter to
maintain the absolute encoder position. Otherwise, the position counter maintains the relative
position and is never reset.

The velocity capture has a timer to measure equal periods of time. The number of encoder pulses
over each time period is accumulated as a measure of the encoder velocity. The running total for
the current time period and the final count for the previous time period are available to be read. The
final count for the previous time period is usually used as the velocity measure.

The QEI module will generate interrupts when the index pulse is detected, when the velocity timer
expires, when the encoder direction changes, and when a phase signal error is detected. These
interrupt sources can be individually masked so that only the events of interest cause a processor
interrupt.

16.2 Functions

Functions
void ROM_QEIConfigure (unsigned long ulBase, unsigned long ulConfig, unsigned long ul-
MaxPosition)
long ROM_QEIDirectionGet (unsigned long ulBase)
void ROM_QEIDisable (unsigned long ulBase)

January 4, 2013 189

Quadrature Encoder (QEI)

void ROM_QEIEnable (unsigned long ulBase)
tBoolean ROM_QEIErrorGet (unsigned long ulBase)
void ROM_QEIIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_QEIIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_QEIIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
unsigned long ROM_QEIIntStatus (unsigned long ulBase, tBoolean bMasked)
unsigned long ROM_QEIPositionGet (unsigned long ulBase)
void ROM_QEIPositionSet (unsigned long ulBase, unsigned long ulPosition)
void ROM_QEIVelocityConfigure (unsigned long ulBase, unsigned long ulPreDiv, unsigned
long ulPeriod)
void ROM_QEIVelocityDisable (unsigned long ulBase)
void ROM_QEIVelocityEnable (unsigned long ulBase)
unsigned long ROM_QEIVelocityGet (unsigned long ulBase)

16.2.1 Function Documentation

16.2.1.1 ROM_QEIConfigure

Configures the quadrature encoder.

Prototype:
void
ROM_QEIConfigure(unsigned long ulBase,

unsigned long ulConfig,
unsigned long ulMaxPosition)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIConfigure is a function pointer located at ROM_QEITABLE[3].

Parameters:
ulBase is the base address of the quadrature encoder module.
ulConfig is the configuration for the quadrature encoder. See below for a description of this

parameter.
ulMaxPosition specifies the maximum position value.

Description:
This will configure the operation of the quadrature encoder. The ulConfig parameter provides
the configuration of the encoder and is the logical OR of several values:

QEI_CONFIG_CAPTURE_A or QEI_CONFIG_CAPTURE_A_B to specify if edges on
channel A or on both channels A and B should be counted by the position integrator and
velocity accumulator.
QEI_CONFIG_NO_RESET or QEI_CONFIG_RESET_IDX to specify if the position inte-
grator should be reset when the index pulse is detected.
QEI_CONFIG_QUADRATURE or QEI_CONFIG_CLOCK_DIR to specify if quadrature sig-
nals are being provided on ChA and ChB, or if a direction signal and a clock are being
provided instead.

190 January 4, 2013

Quadrature Encoder (QEI)

QEI_CONFIG_NO_SWAP or QEI_CONFIG_SWAP to specify if the signals provided on
ChA and ChB should be swapped before being processed.

ulMaxPosition is the maximum value of the position integrator, and is the value used to reset
the position capture when in index reset mode and moving in the reverse (negative) direction.

Returns:
None.

16.2.1.2 ROM_QEIDirectionGet

Gets the current direction of rotation.

Prototype:
long
ROM_QEIDirectionGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIDirectionGet is a function pointer located at ROM_QEITABLE[5].

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the current direction of rotation. In this case, current means the most recently
detected direction of the encoder; it may not be presently moving but this is the direction it last
moved before it stopped.

Returns:
Returns 1 if moving in the forward direction or -1 if moving in the reverse direction.

16.2.1.3 ROM_QEIDisable

Disables the quadrature encoder.

Prototype:
void
ROM_QEIDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIDisable is a function pointer located at ROM_QEITABLE[2].

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will disable operation of the quadrature encoder module.

January 4, 2013 191

Quadrature Encoder (QEI)

Returns:
None.

16.2.1.4 ROM_QEIEnable

Enables the quadrature encoder.

Prototype:
void
ROM_QEIEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIEnable is a function pointer located at ROM_QEITABLE[1].

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will enable operation of the quadrature encoder module. It must be configured before it is
enabled.

See also:
ROM_QEIConfigure()

Returns:
None.

16.2.1.5 ROM_QEIErrorGet

Gets the encoder error indicator.

Prototype:
tBoolean
ROM_QEIErrorGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIErrorGet is a function pointer located at ROM_QEITABLE[6].

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the error indicator for the quadrature encoder. It is an error for both of the signals
of the quadrature input to change at the same time.

Returns:
Returns true if an error has occurred and false otherwise.

192 January 4, 2013

Quadrature Encoder (QEI)

16.2.1.6 ROM_QEIIntClear

Clears quadrature encoder interrupt sources.

Prototype:
void
ROM_QEIIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntClear is a function pointer located at ROM_QEITABLE[14].

Parameters:
ulBase is the base address of the quadrature encoder module.
ulIntFlags is a bit mask of the interrupt sources to be cleared. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
The specified quadrature encoder interrupt sources are cleared, so that they no longer assert.
This must be done in the interrupt handler to keep it from being called again immediately upon
exit.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

16.2.1.7 ROM_QEIIntDisable

Disables individual quadrature encoder interrupt sources.

Prototype:
void
ROM_QEIIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntDisable is a function pointer located at ROM_QEITABLE[12].

Parameters:
ulBase is the base address of the quadrature encoder module.
ulIntFlags is a bit mask of the interrupt sources to be disabled. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

January 4, 2013 193

Quadrature Encoder (QEI)

Description:
Disables the indicated quadrature encoder interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

16.2.1.8 ROM_QEIIntEnable

Enables individual quadrature encoder interrupt sources.

Prototype:
void
ROM_QEIIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntEnable is a function pointer located at ROM_QEITABLE[11].

Parameters:
ulBase is the base address of the quadrature encoder module.
ulIntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
Enables the indicated quadrature encoder interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

16.2.1.9 ROM_QEIIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ROM_QEIIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntStatus is a function pointer located at ROM_QEITABLE[13].

Parameters:
ulBase is the base address of the quadrature encoder module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

194 January 4, 2013

Quadrature Encoder (QEI)

Description:
This returns the interrupt status for the quadrature encoder module. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of QEI_INTERROR,
QEI_INTDIR, QEI_INTTIMER, and QEI_INTINDEX.

16.2.1.10 ROM_QEIPositionGet

Gets the current encoder position.

Prototype:
unsigned long
ROM_QEIPositionGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIPositionGet is a function pointer located at ROM_QEITABLE[0].

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This returns the current position of the encoder. Depending upon the configuration of the
encoder, and the incident of an index pulse, this value may or may not contain the expected
data (that is, if in reset on index mode, if an index pulse has not been encountered, the position
counter will not be aligned with the index pulse yet).

Returns:
The current position of the encoder.

16.2.1.11 ROM_QEIPositionSet

Sets the current encoder position.

Prototype:
void
ROM_QEIPositionSet(unsigned long ulBase,

unsigned long ulPosition)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIPositionSet is a function pointer located at ROM_QEITABLE[4].

Parameters:
ulBase is the base address of the quadrature encoder module.
ulPosition is the new position for the encoder.

January 4, 2013 195

Quadrature Encoder (QEI)

Description:
This sets the current position of the encoder; the encoder position will then be measured
relative to this value.

Returns:
None.

16.2.1.12 ROM_QEIVelocityConfigure

Configures the velocity capture.

Prototype:
void
ROM_QEIVelocityConfigure(unsigned long ulBase,

unsigned long ulPreDiv,
unsigned long ulPeriod)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityConfigure is a function pointer located at ROM_QEITABLE[9].

Parameters:
ulBase is the base address of the quadrature encoder module.
ulPreDiv specifies the predivider applied to the input quadrature signal before it is counted;

can be one of QEI_VELDIV_1, QEI_VELDIV_2, QEI_VELDIV_4, QEI_VELDIV_8,
QEI_VELDIV_16, QEI_VELDIV_32, QEI_VELDIV_64, or QEI_VELDIV_128.

ulPeriod specifies the number of clock ticks over which to measure the velocity; must be non-
zero.

Description:
This will configure the operation of the velocity capture portion of the quadrature encoder. The
position increment signal is predivided as specified by ulPreDiv before being accumulated by
the velocity capture. The divided signal is accumulated over ulPeriod system clock before
being saved and resetting the accumulator.

Returns:
None.

16.2.1.13 ROM_QEIVelocityDisable

Disables the velocity capture.

Prototype:
void
ROM_QEIVelocityDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityDisable is a function pointer located at ROM_QEITABLE[8].

196 January 4, 2013

Quadrature Encoder (QEI)

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will disable operation of the velocity capture in the quadrature encoder module.

Returns:
None.

16.2.1.14 ROM_QEIVelocityEnable

Enables the velocity capture.

Prototype:
void
ROM_QEIVelocityEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityEnable is a function pointer located at ROM_QEITABLE[7].

Parameters:
ulBase is the base address of the quadrature encoder module.

Description:
This will enable operation of the velocity capture in the quadrature encoder module. It must be
configured before it is enabled. Velocity capture will not occur if the quadrature encoder is not
enabled.

See also:
ROM_QEIVelocityConfigure() and ROM_QEIEnable()

Returns:
None.

16.2.1.15 ROM_QEIVelocityGet

Gets the current encoder speed.

Prototype:
unsigned long
ROM_QEIVelocityGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityGet is a function pointer located at ROM_QEITABLE[10].

Parameters:
ulBase is the base address of the quadrature encoder module.

January 4, 2013 197

Quadrature Encoder (QEI)

Description:
This returns the current speed of the encoder. The value returned is the number of pulses
detected in the specified time period; this number can be multiplied by the number of time
periods per second and divided by the number of pulses per revolution to obtain the number of
revolutions per second.

Returns:
Returns the number of pulses captured in the given time period.

198 January 4, 2013

Synchronous Serial Interface (SSI)

17 Synchronous Serial Interface (SSI)
Introduction .199
Functions . 199

17.1 Introduction

The Synchronous Serial Interface (SSI) module provides the functionality for synchronous serial
communications with peripheral devices, and can be configured to use either the Motorola® SPI™,
National Semiconductor® Microwire, or the Texas Instruments® synchronous serial interface
frame formats. The size of the data frame is also configurable, and can be set to be between 4
and 16 bits, inclusive.

The SSI module performs serial-to-parallel data conversion on data received from a peripheral
device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX
paths are buffered with internal FIFOs allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or a slave device. As a slave device, the SSI
module can also be configured to disable its output, which allows a master device to be coupled
with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module’s input clock. Bit rates are generated based on the
input clock and the maximum bit rate supported by the connected peripheral.

For devices that include a DMA controller, the SSI module also provides a DMA interface to facilitate
data transfer via DMA.

17.2 Functions

Functions
tBoolean ROM_SSIBusy (unsigned long ulBase)
unsigned long ROM_SSIClockSourceGet (unsigned long ulBase)
void ROM_SSIClockSourceSet (unsigned long ulBase, unsigned long ulSource)
void ROM_SSIConfigSetExpClk (unsigned long ulBase, unsigned long ulSSIClk, unsigned
long ulProtocol, unsigned long ulMode, unsigned long ulBitRate, unsigned long ulDataWidth)
void ROM_SSIDataGet (unsigned long ulBase, unsigned long ∗pulData)
long ROM_SSIDataGetNonBlocking (unsigned long ulBase, unsigned long ∗pulData)
void ROM_SSIDataPut (unsigned long ulBase, unsigned long ulData)
long ROM_SSIDataPutNonBlocking (unsigned long ulBase, unsigned long ulData)
void ROM_SSIDisable (unsigned long ulBase)
void ROM_SSIDMADisable (unsigned long ulBase, unsigned long ulDMAFlags)
void ROM_SSIDMAEnable (unsigned long ulBase, unsigned long ulDMAFlags)
void ROM_SSIEnable (unsigned long ulBase)
void ROM_SSIIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_SSIIntDisable (unsigned long ulBase, unsigned long ulIntFlags)

January 4, 2013 199

Synchronous Serial Interface (SSI)

void ROM_SSIIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
unsigned long ROM_SSIIntStatus (unsigned long ulBase, tBoolean bMasked)
void ROM_UpdateSSI (void)

17.2.1 Function Documentation

17.2.1.1 ROM_SSIBusy

Determines whether the SSI transmitter is busy or not.

Prototype:
tBoolean
ROM_SSIBusy(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIBusy is a function pointer located at ROM_SSITABLE[14].

Parameters:
ulBase is the base address of the SSI port.

Description:
Allows the caller to determine whether all transmitted bytes have cleared the transmitter hard-
ware. If false is returned, then the transmit FIFO is empty and all bits of the last transmitted
word have left the hardware shift register.

Returns:
Returns true if the SSI is transmitting or false if all transmissions are complete.

17.2.1.2 ROM_SSIClockSourceGet

Gets the data clock source for the specified SSI peripheral.

Prototype:
unsigned long
ROM_SSIClockSourceGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIClockSourceGet is a function pointer located at ROM_SSITABLE[15].

Parameters:
ulBase is the base address of the SSI port.

Description:
This function returns the data clock source for the specified SSI. The possible data clock
source are the system clock (SSI_CLOCK_SYSTEM) or the precision internal oscillator
(SSI_CLOCK_PIOSC).

200 January 4, 2013

Synchronous Serial Interface (SSI)

Returns:
None.

17.2.1.3 ROM_SSIClockSourceSet

Sets the data clock source for the specified SSI peripheral.

Prototype:
void
ROM_SSIClockSourceSet(unsigned long ulBase,

unsigned long ulSource)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIClockSourceSet is a function pointer located at ROM_SSITABLE[16].

Parameters:
ulBase is the base address of the SSI port.
ulSource is the baud clock source for the SSI.

Description:
This function allows the baud clock source for the SSI to be selected. The possible clock
source are the system clock (SSI_CLOCK_SYSTEM) or the precision internal oscillator
(SSI_CLOCK_PIOSC).

Changing the baud clock source will change the data rate generated by the SSI. Therefore, the
data rate should be reconfigured after any change to the SSI clock source.

Returns:
None.

17.2.1.4 ROM_SSIConfigSetExpClk

Configures the synchronous serial interface.

Prototype:
void
ROM_SSIConfigSetExpClk(unsigned long ulBase,

unsigned long ulSSIClk,
unsigned long ulProtocol,
unsigned long ulMode,
unsigned long ulBitRate,
unsigned long ulDataWidth)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIConfigSetExpClk is a function pointer located at ROM_SSITABLE[1].

Parameters:
ulBase specifies the SSI module base address.

January 4, 2013 201

Synchronous Serial Interface (SSI)

ulSSIClk is the rate of the clock supplied to the SSI module.
ulProtocol specifies the data transfer protocol.
ulMode specifies the mode of operation.
ulBitRate specifies the clock rate.
ulDataWidth specifies number of bits transferred per frame.

Description:
This function configures the synchronous serial interface. It sets the SSI protocol, mode of
operation, bit rate, and data width.

The ulProtocol parameter defines the data frame format. The ulProtocol parameter can
be one of the following values: SSI_FRF_MOTO_MODE_0, SSI_FRF_MOTO_MODE_1,
SSI_FRF_MOTO_MODE_2, SSI_FRF_MOTO_MODE_3, SSI_FRF_TI, or SSI_FRF_NMW.
The Motorola frame formats imply the following polarity and phase configurations:

Polarity Phase Mode
0 0 SSI_FRF_MOTO_MODE_0
0 1 SSI_FRF_MOTO_MODE_1
1 0 SSI_FRF_MOTO_MODE_2
1 1 SSI_FRF_MOTO_MODE_3

The ulMode parameter defines the operating mode of the SSI module. The SSI module can
operate as a master or slave; if a slave, the SSI can be configured to disable output on its serial
output line. The ulMode parameter can be one of the following values: SSI_MODE_MASTER,
SSI_MODE_SLAVE, or SSI_MODE_SLAVE_OD.

The ulBitRate parameter defines the bit rate for the SSI. This bit rate must satisfy the following
clock ratio criteria:

FSSI >= 2 ∗ bit rate (master mode)
FSSI >= 12 ∗ bit rate (slave modes)

where FSSI is the frequency of the clock supplied to the SSI module.

The ulDataWidth parameter defines the width of the data transfers, and can be a value between
4 and 16, inclusive.

The peripheral clock is the same as the processor clock. This is the value returned by
ROM_SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save
the code/execution overhead of a call to ROM_SysCtlClockGet()).

Returns:
None.

17.2.1.5 ROM_SSIDataGet

Gets a data element from the SSI receive FIFO.

Prototype:
void
ROM_SSIDataGet(unsigned long ulBase,

unsigned long *pulData)

202 January 4, 2013

Synchronous Serial Interface (SSI)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataGet is a function pointer located at ROM_SSITABLE[9].

Parameters:
ulBase specifies the SSI module base address.
pulData is a pointer to a storage location for data that was received over the SSI interface.

Description:
This function gets received data from the receive FIFO of the specified SSI module and places
that data into the location specified by the pulData parameter.

Note:
Only the lower N bits of the value written to pulData contain valid data, where N is the data
width as configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured
for 8-bit data width, only the lower 8 bits of the value written to pulData contain valid data.

Returns:
None.

17.2.1.6 ROM_SSIDataGetNonBlocking

Gets a data element from the SSI receive FIFO.

Prototype:
long
ROM_SSIDataGetNonBlocking(unsigned long ulBase,

unsigned long *pulData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataGetNonBlocking is a function pointer located at ROM_SSITABLE[10].

Parameters:
ulBase specifies the SSI module base address.
pulData is a pointer to a storage location for data that was received over the SSI interface.

Description:
This function gets received data from the receive FIFO of the specified SSI module and places
that data into the location specified by the ulData parameter. If there is no data in the FIFO,
then this function returns a zero.

Note:
Only the lower N bits of the value written to pulData contain valid data, where N is the data
width as configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured
for 8-bit data width, only the lower 8 bits of the value written to pulData contain valid data.

Returns:
Returns the number of elements read from the SSI receive FIFO.

January 4, 2013 203

Synchronous Serial Interface (SSI)

17.2.1.7 ROM_SSIDataPut

Puts a data element into the SSI transmit FIFO.

Prototype:
void
ROM_SSIDataPut(unsigned long ulBase,

unsigned long ulData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataPut is a function pointer located at ROM_SSITABLE[0].

Parameters:
ulBase specifies the SSI module base address.
ulData is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module.

Note:
The upper 32 - N bits of the ulData are discarded by the hardware, where N is the data width
as configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, the upper 24 bits of ulData are discarded.

Returns:
None.

17.2.1.8 ROM_SSIDataPutNonBlocking

Puts a data element into the SSI transmit FIFO.

Prototype:
long
ROM_SSIDataPutNonBlocking(unsigned long ulBase,

unsigned long ulData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataPutNonBlocking is a function pointer located at ROM_SSITABLE[8].

Parameters:
ulBase specifies the SSI module base address.
ulData is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module. If
there is no space in the FIFO, then this function returns a zero.

204 January 4, 2013

Synchronous Serial Interface (SSI)

Note:
The upper 32 - N bits of the ulData are discarded by the hardware, where N is the data width
as configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, the upper 24 bits of ulData are discarded.

Returns:
Returns the number of elements written to the SSI transmit FIFO.

17.2.1.9 ROM_SSIDisable

Disables the synchronous serial interface.

Prototype:
void
ROM_SSIDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDisable is a function pointer located at ROM_SSITABLE[3].

Parameters:
ulBase specifies the SSI module base address.

Description:
This function disables operation of the synchronous serial interface.

Returns:
None.

17.2.1.10 ROM_SSIDMADisable

Disable SSI DMA operation.

Prototype:
void
ROM_SSIDMADisable(unsigned long ulBase,

unsigned long ulDMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDMADisable is a function pointer located at ROM_SSITABLE[13].

Parameters:
ulBase is the base address of the SSI port.
ulDMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable SSI DMA features that were enabled by
ROM_SSIDMAEnable(). The specified SSI DMA features are disabled. The ulDMAFlags
parameter is the logical OR of any of the following values:

January 4, 2013 205

Synchronous Serial Interface (SSI)

SSI_DMA_RX - disable DMA for receive
SSI_DMA_TX - disable DMA for transmit

Returns:
None.

17.2.1.11 ROM_SSIDMAEnable

Enable SSI DMA operation.

Prototype:
void
ROM_SSIDMAEnable(unsigned long ulBase,

unsigned long ulDMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDMAEnable is a function pointer located at ROM_SSITABLE[12].

Parameters:
ulBase is the base address of the SSI port.
ulDMAFlags is a bit mask of the DMA features to enable.

Description:
The specified SSI DMA features are enabled. The SSI can be configured to use DMA for
transmit and/or receive data transfers. The ulDMAFlags parameter is the logical OR of any of
the following values:

SSI_DMA_RX - enable DMA for receive
SSI_DMA_TX - enable DMA for transmit

Note:
The uDMA controller must also be set up before DMA can be used with the SSI.

Returns:
None.

17.2.1.12 ROM_SSIEnable

Enables the synchronous serial interface.

Prototype:
void
ROM_SSIEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIEnable is a function pointer located at ROM_SSITABLE[2].

206 January 4, 2013

Synchronous Serial Interface (SSI)

Parameters:
ulBase specifies the SSI module base address.

Description:
This function enables operation of the synchronous serial interface. The synchronous serial
interface must be configured before it is enabled.

Returns:
None.

17.2.1.13 ROM_SSIIntClear

Clears SSI interrupt sources.

Prototype:
void
ROM_SSIIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntClear is a function pointer located at ROM_SSITABLE[7].

Parameters:
ulBase specifies the SSI module base address.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified SSI interrupt sources are cleared so that they no longer assert. This function
must be called in the interrupt handler to keep the interrupts from being recognized again
immediately upon exit. The ulIntFlags parameter can consist of either or both the SSI_RXTO
and SSI_RXOR values.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

17.2.1.14 ROM_SSIIntDisable

Disables individual SSI interrupt sources.

January 4, 2013 207

Synchronous Serial Interface (SSI)

Prototype:
void
ROM_SSIIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntDisable is a function pointer located at ROM_SSITABLE[5].

Parameters:
ulBase specifies the SSI module base address.
ulIntFlags is a bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated SSI interrupt sources. The ulIntFlags parameter can be any of the
SSI_TXFF, SSI_RXFF, SSI_RXTO, or SSI_RXOR values.

Returns:
None.

17.2.1.15 ROM_SSIIntEnable

Enables individual SSI interrupt sources.

Prototype:
void
ROM_SSIIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntEnable is a function pointer located at ROM_SSITABLE[4].

Parameters:
ulBase specifies the SSI module base address.
ulIntFlags is a bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated SSI interrupt sources. Only the sources that are enabled can be reflected
to the processor interrupt; disabled sources have no effect on the processor. The ulIntFlags
parameter can be any of the SSI_TXFF, SSI_RXFF, SSI_RXTO, or SSI_RXOR values.

Returns:
None.

17.2.1.16 ROM_SSIIntStatus

Gets the current interrupt status.

208 January 4, 2013

Synchronous Serial Interface (SSI)

Prototype:
unsigned long
ROM_SSIIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntStatus is a function pointer located at ROM_SSITABLE[6].

Parameters:
ulBase specifies the SSI module base address.
bMasked is false if the raw interrupt status is required or true if the masked interrupt status is

required.

Description:
This function returns the interrupt status for the SSI module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of SSI_TXFF, SSI_RXFF, SSI_RXTO,
and SSI_RXOR.

17.2.1.17 ROM_UpdateSSI

Starts an update over the SSI0 interface.

Prototype:
void
ROM_UpdateSSI(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_UpdateSSI is a function pointer located at ROM_SSITABLE[11].

Description:
Calling this function commences an update of the firmware via the SSI0 interface. This function
assumes that the SSI0 interface has already been configured and is currently oprational.

Returns:
Never returns.

January 4, 2013 209

Synchronous Serial Interface (SSI)

210 January 4, 2013

System Control

18 System Control
Introduction .211
Functions . 212

18.1 Introduction

System control determines the overall operation of the device. It controls the clocking of the device,
the set of peripherals that are enabled, configuration of the device and its resets, and provides
information about the device.

The members of the Stellaris family have a varying peripheral set and memory sizes. The device
has a set of read-only registers that indicate the size of the memories, the peripherals that are
present, and the pins that are present for peripherals that have a varying number of pins. This
information can be used to write adaptive software that will run on more than one member of the
Stellaris family.

The device can be clocked from one of five sources: an external oscillator, the main oscillator, the
internal oscillator, the internal oscillator divided by four, or the PLL. The PLL can use any of the four
oscillators as its input. When using the PLL, the input clock frequency is constrained to specific
frequencies between 5 MHz and 25 MHz (that is, the standard crystal frequencies in that range).
When direct clocking with an external oscillator or the main oscillator, the frequency is constrained
to between 0 Hz and 80 MHz (depending on the device). The internal oscillator is 16 MHz, +/- 1%;
its frequency will vary by device, with voltage, and with temperature.

Three modes of operation are supported by the Stellaris family: run mode, sleep mode, and deep-
sleep mode. In run mode, the processor is actively executing code. In sleep mode, the clocking
of the device is unchanged but the processor no longer executes code (and is no longer clocked).
In deep-sleep mode, the clocking of the device may change (depending upon the run mode clock
configuration) and the processor no longer executes code (and is no longer clocked). An interrupt
will return the device to run mode from one of the sleep modes; the sleep modes are entered upon
request from the code.

There are several system events that, when detected, will cause system control to reset the device.
These events are the input voltage dropping too low, the LDO voltage dropping too low, an external
reset, a software reset request, and a watchdog timeout. The properties of some of these events
can be configured, and the reason for a reset can be determined from system control.

Each peripheral in the device can be individually enabled, disabled, or reset. Additionally, the set
of peripherals that remain enabled during sleep mode and deep-sleep mode can be configured,
allowing custom sleep and deep-sleep modes to be defined. Care must be taken with deep-sleep
mode, though, since in this mode the PLL is no longer used and the system is clocked by the input
crystal. Peripherals that depend upon a particular input clock rate (such as a timer) will not operate
as expected in deep-sleep mode due to the clock rate change; these peripherals must either be
reconfigured upon entry to and exit from deep-sleep mode, or simply not enabled in deep-sleep
mode.

There are various system events that, when detected, will cause system control to generate a
processor interrupt. These events are the PLL achieving lock, the internal LDO current limit being
exceeded, the internal oscillator failing, the main oscillator failing, the input voltage dropping too
low, the internal LDO voltage dropping too low, and the PLL failing. Each of these interrupts can
be individually enabled or disabled, and the sources must be cleared by the interrupt handler when

January 4, 2013 211

System Control

they occur.

18.2 Functions

Functions
unsigned long ROM_SysCtlADCSpeedGet (void)
void ROM_SysCtlADCSpeedSet (unsigned long ulSpeed)
unsigned long ROM_SysCtlClockGet (void)
void ROM_SysCtlClockSet (unsigned long ulConfig)
void ROM_SysCtlDeepSleep (void)
void ROM_SysCtlDeepSleepClockSet (unsigned long ulConfig)
void ROM_SysCtlDelay (unsigned long ulCount)
unsigned long ROM_SysCtlFlashSizeGet (void)
void ROM_SysCtlGPIOAHBDisable (unsigned long ulGPIOPeripheral)
void ROM_SysCtlGPIOAHBEnable (unsigned long ulGPIOPeripheral)
void ROM_SysCtlIntClear (unsigned long ulInts)
void ROM_SysCtlIntDisable (unsigned long ulInts)
void ROM_SysCtlIntEnable (unsigned long ulInts)
unsigned long ROM_SysCtlIntStatus (tBoolean bMasked)
void ROM_SysCtlMOSCConfigSet (unsigned long ulConfig)
void ROM_SysCtlPeripheralClockGating (tBoolean bEnable)
void ROM_SysCtlPeripheralDeepSleepDisable (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralDeepSleepEnable (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralDisable (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralEnable (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralPowerOff (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralPowerOn (unsigned long ulPeripheral)
tBoolean ROM_SysCtlPeripheralPresent (unsigned long ulPeripheral)
tBoolean ROM_SysCtlPeripheralReady (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralReset (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralSleepDisable (unsigned long ulPeripheral)
void ROM_SysCtlPeripheralSleepEnable (unsigned long ulPeripheral)
tBoolean ROM_SysCtlPinPresent (unsigned long ulPin)
unsigned long ROM_SysCtlPIOSCCalibrate (unsigned long ulType)
unsigned long ROM_SysCtlPWMClockGet (void)
void ROM_SysCtlPWMClockSet (unsigned long ulConfig)
void ROM_SysCtlReset (void)
void ROM_SysCtlResetCauseClear (unsigned long ulCauses)
unsigned long ROM_SysCtlResetCauseGet (void)
void ROM_SysCtlSleep (void)
unsigned long ROM_SysCtlSRAMSizeGet (void)
void ROM_SysCtlUSBPLLDisable (void)
void ROM_SysCtlUSBPLLEnable (void)

212 January 4, 2013

System Control

18.2.1 Function Documentation

18.2.1.1 ROM_SysCtlADCSpeedGet

Gets the sample rate of the ADC.

Prototype:
unsigned long
ROM_SysCtlADCSpeedGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlADCSpeedGet is a function pointer located at ROM_SYSCTLTABLE[28].

Description:
This function gets the current sample rate of the ADC.

Returns:
Returns the current ADC sample rate; is one of SYSCTL_ADCSPEED_1MSPS,
SYSCTL_ADCSPEED_500KSPS, SYSCTL_ADCSPEED_250KSPS, or
SYSCTL_ADCSPEED_125KSPS.

18.2.1.2 ROM_SysCtlADCSpeedSet

Sets the sample rate of the ADC.

Prototype:
void
ROM_SysCtlADCSpeedSet(unsigned long ulSpeed)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlADCSpeedSet is a function pointer located at ROM_SYSCTLTABLE[27].

Parameters:
ulSpeed is the desired sample rate of the ADC; must be one

of SYSCTL_ADCSPEED_1MSPS, SYSCTL_ADCSPEED_500KSPS,
SYSCTL_ADCSPEED_250KSPS, or SYSCTL_ADCSPEED_125KSPS.

Description:
This function sets the rate at which the ADC samples are captured by the ADC block. The
sampling speed may be limited by the hardware, so the sample rate may end up being slower
than requested. ROM_SysCtlADCSpeedGet() will return the actual speed in use.

Returns:
None.

January 4, 2013 213

System Control

18.2.1.3 ROM_SysCtlClockGet

Gets the processor clock rate.

Prototype:
unsigned long
ROM_SysCtlClockGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlClockGet is a function pointer located at ROM_SYSCTLTABLE[24].

Description:
This function determines the clock rate of the processor clock. This is also the clock rate of all
the peripheral modules (with the exception of PWM, which has its own clock divider).

Note:
This will not return accurate results if ROM_SysCtlClockSet() has not been called to configure
the clocking of the device, or if the device is directly clocked from a crystal (or a clock source)
that is not one of the supported crystal frequencies. In the later case, this function should be
modified to directly return the correct system clock rate.

Returns:
The processor clock rate.

18.2.1.4 ROM_SysCtlClockSet

Sets the clocking of the device.

Prototype:
void
ROM_SysCtlClockSet(unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlClockSet is a function pointer located at ROM_SYSCTLTABLE[23].

Parameters:
ulConfig is the required configuration of the device clocking.

Description:
This function configures the clocking of the device. The input crystal frequency, oscillator to be
used, use of the PLL, and the system clock divider are all configured with this function.

The ulConfig parameter is the logical OR of several different values, many of which are grouped
into sets where only one can be chosen.

The system clock divider is chosen with one of the following values: SYSCTL_SYSDIV_1,
SYSCTL_SYSDIV_2, SYSCTL_SYSDIV_3, ... SYSCTL_SYSDIV_64.

The use of the PLL is chosen with either SYSCTL_USE_PLL or SYSCTL_USE_OSC.

214 January 4, 2013

System Control

The external crystal frequency is chosen with one of the following val-
ues: SYSCTL_XTAL_1MHZ, SYSCTL_XTAL_1_84MHZ, SYSCTL_XTAL_2MHZ,
SYSCTL_XTAL_2_45MHZ, SYSCTL_XTAL_3_57MHZ, SYSCTL_XTAL_3_68MHZ,
SYSCTL_XTAL_4MHZ, SYSCTL_XTAL_4_09MHZ, SYSCTL_XTAL_4_91MHZ,
SYSCTL_XTAL_5MHZ, SYSCTL_XTAL_5_12MHZ, SYSCTL_XTAL_6MHZ,
SYSCTL_XTAL_6_14MHZ, SYSCTL_XTAL_7_37MHZ, SYSCTL_XTAL_8MHZ,
SYSCTL_XTAL_8_19MHZ, SYSCTL_XTAL_10MHZ, SYSCTL_XTAL_12MHZ,
SYSCTL_XTAL_12_2MHZ, SYSCTL_XTAL_13_5MHZ, SYSCTL_XTAL_14_3MHZ,
SYSCTL_XTAL_16MHZ, or SYSCTL_XTAL_16_3MHZ. Values below
SYSCTL_XTAL_3_57MHZ are not valid when the PLL is in operation.

The oscillator source is chosen with one of the following values: SYSCTL_OSC_MAIN,
SYSCTL_OSC_INT, SYSCTL_OSC_INT4, SYSCTL_OSC_EXT32, or SYSCTL_OSC_INT30.
SYSCTL_OSC_EXT32 is only available when the hibernate module has been enabled.

The internal and main oscillators are disabled with the SYSCTL_INT_OSC_DIS and
SYSCTL_MAIN_OSC_DIS flags, respectively. The external oscillator must be enabled in order
to use an external clock source. Note that attempts to disable the oscillator used to clock the
device is prevented by the hardware.

To clock the system from an external source (such as an external crystal oscillator), use
SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the main oscillator,
use SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the PLL, use
SYSCTL_USE_PLL | SYSCTL_OSC_MAIN, and select the appropriate crystal with one of
the SYSCTL_XTAL_xxx values.

Note:
If selecting the PLL as the system clock source (that is, via SYSCTL_USE_PLL), this function
will poll the PLL lock interrupt to determine when the PLL has locked. If an interrupt handler
for the system control interrupt is in place, and it responds to and clears the PLL lock interrupt,
this function will delay until its timeout has occurred instead of completing as soon as PLL lock
is achieved.

Returns:
None.

18.2.1.5 ROM_SysCtlDeepSleep

Puts the processor into deep-sleep mode.

Prototype:
void
ROM_SysCtlDeepSleep(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlDeepSleep is a function pointer located at ROM_SYSCTLTABLE[20].

Description:
This function places the processor into deep-sleep mode; it will not return un-
til the processor returns to run mode. The peripherals that are enabled via

January 4, 2013 215

System Control

ROM_SysCtlPeripheralDeepSleepEnable() continue to operate and can wake up the proces-
sor (if automatic clock gating is enabled with ROM_SysCtlPeripheralClockGating(), otherwise
all peripherals continue to operate).

Returns:
None.

18.2.1.6 ROM_SysCtlDeepSleepClockSet

Sets the clocking of the device while in deep-sleep mode.

Prototype:
void
ROM_SysCtlDeepSleepClockSet(unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlDeepSleepClockSet is a function pointer located at ROM_SYSCTLTABLE[46].

Parameters:
ulConfig is the required configuration of the device clocking while in deep-sleep mode.

Description:
This function configures the clocking of the device while in deep-sleep mode. The oscillator to
be used and the system clock divider are configured with this function.

The ulConfig parameter is the logical OR of the following values:

The system clock divider is chosen with one of the following values: SYSCTL_DSLP_DIV_1,
SYSCTL_DSLP_DIV_2, SYSCTL_DSLP_DIV_3, ... SYSCTL_DSLP_DIV_64.

The oscillator source is chosen with one of the following values: SYSCTL_DSLP_OSC_MAIN,
SYSCTL_DSLP_OSC_INT, SYSCTL_DSLP_OSC_INT30, or SYSCTL_DSLP_OSC_EXT32.
SYSCTL_OSC_EXT32 is only available on devices with the hibernate module, and then only
when the hibernate module has been enabled.

The precision internal oscillator can be powered down in deep-sleep mode by specifying
SYSCTL_DSLP_PIOSC_PD. If it is required for operation while in deep-sleep (based on other
configuration settings), it will not be powered down.

Returns:
None.

18.2.1.7 ROM_SysCtlDelay

Provides a small delay.

Prototype:
void
ROM_SysCtlDelay(unsigned long ulCount)

216 January 4, 2013

System Control

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlDelay is a function pointer located at ROM_SYSCTLTABLE[34].

Parameters:
ulCount is the number of delay loop iterations to perform.

Description:
This function provides a means of generating a constant length delay. It is written in assembly
to keep the delay consistent across tool chains, avoiding the need to tune the delay based on
the tool chain in use.

The loop takes 3 cycles/loop.

Returns:
None.

18.2.1.8 ROM_SysCtlFlashSizeGet

Gets the size of the flash.

Prototype:
unsigned long
ROM_SysCtlFlashSizeGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlFlashSizeGet is a function pointer located at ROM_SYSCTLTABLE[2].

Description:
This function determines the size of the flash on the Stellaris device.

Returns:
The total number of bytes of flash.

18.2.1.9 ROM_SysCtlGPIOAHBDisable

Disables a GPIO peripheral for access from the AHB.

Prototype:
void
ROM_SysCtlGPIOAHBDisable(unsigned long ulGPIOPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlGPIOAHBDisable is a function pointer located at ROM_SYSCTLTABLE[30].

Parameters:
ulGPIOPeripheral is the GPIO peripheral to disable.

January 4, 2013 217

System Control

Description:
This function disables the specified GPIO peripheral for access from the Advanced Host Bus
(AHB). Once disabled, the GPIO peripheral is accessed from the legacy Advanced Peripheral
Bus (AHB).

The ulGPIOPeripheral argument must be only one of the following values:
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, or SYSCTL_PERIPH_GPIOH.

Returns:
None.

18.2.1.10 ROM_SysCtlGPIOAHBEnable

Enables a GPIO peripheral for access from the AHB.

Prototype:
void
ROM_SysCtlGPIOAHBEnable(unsigned long ulGPIOPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlGPIOAHBEnable is a function pointer located at ROM_SYSCTLTABLE[29].

Parameters:
ulGPIOPeripheral is the GPIO peripheral to enable.

Description:
This function is used to enable the specified GPIO peripheral to be accessed from the Ad-
vanced Host Bus (AHB) instead of the legacy Advanced Peripheral Bus (APB). When a GPIO
peripheral is enabled for AHB access, the _AHB_BASE form of the base address should be
used for GPIO functions. For example, instead of using GPIO_PORTA_BASE as the base
address for GPIO functions, use GPIO_PORTA_AHB_BASE instead.

The ulGPIOPeripheral argument must be only one of the following values:
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, or SYSCTL_PERIPH_GPIOH.

Returns:
None.

18.2.1.11 ROM_SysCtlIntClear

Clears system control interrupt sources.

Prototype:
void
ROM_SysCtlIntClear(unsigned long ulInts)

218 January 4, 2013

System Control

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntClear is a function pointer located at ROM_SYSCTLTABLE[15].

Parameters:
ulInts is a bit mask of the interrupt sources to be cleared. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
The specified system control interrupt sources are cleared, so that they no longer assert. This
must be done in the interrupt handler to keep it from being called again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

18.2.1.12 ROM_SysCtlIntDisable

Disables individual system control interrupt sources.

Prototype:
void
ROM_SysCtlIntDisable(unsigned long ulInts)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntDisable is a function pointer located at ROM_SYSCTLTABLE[14].

Parameters:
ulInts is a bit mask of the interrupt sources to be disabled. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
Disables the indicated system control interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

January 4, 2013 219

System Control

18.2.1.13 ROM_SysCtlIntEnable

Enables individual system control interrupt sources.

Prototype:
void
ROM_SysCtlIntEnable(unsigned long ulInts)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntEnable is a function pointer located at ROM_SYSCTLTABLE[13].

Parameters:
ulInts is a bit mask of the interrupt sources to be enabled. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
Enables the indicated system control interrupt sources. Only the sources that are enabled can
be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

18.2.1.14 ROM_SysCtlIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ROM_SysCtlIntStatus(tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntStatus is a function pointer located at ROM_SYSCTLTABLE[16].

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the system controller. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of SYSCTL_INT_PLL_LOCK,
SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL, SYSCTL_INT_MOSC_FAIL,
SYSCTL_INT_POR, SYSCTL_INT_BOR, and SYSCTL_INT_PLL_FAIL.

220 January 4, 2013

System Control

18.2.1.15 ROM_SysCtlMOSCConfigSet

Sets the configuration of the main oscillator (MOSC) control.

Prototype:
void
ROM_SysCtlMOSCConfigSet(unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlMOSCConfigSet is a function pointer located at ROM_SYSCTLTABLE[44].

Parameters:
ulConfig is the required configuration of the MOSC control.

Description:
This function configures the control of the main oscillator. The ulConfig is specified as follows:

SYSCTL_MOSC_VALIDATE enables the MOSC verification circuit that detects a failure of
the main oscillator (such as a loss of the clock).
SYSCTL_MOSC_INTERRUPT indicates that a MOSC failure should generate an interrupt
instead of resetting the processor.
SYSCTL_MOSC_NO_XTAL indicates that there is no crystal connected to the
OSC0/OSC1 pins, allowing power consumption to be reduced.

Returns:
None.

18.2.1.16 ROM_SysCtlPeripheralClockGating

Controls peripheral clock gating in sleep and deep-sleep mode.

Prototype:
void
ROM_SysCtlPeripheralClockGating(tBoolean bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralClockGating is a function pointer located at
ROM_SYSCTLTABLE[12].

Parameters:
bEnable is a boolean that is true if the sleep and deep-sleep peripheral configuration should

be used and false if not.

Description:
This function controls how peripherals are clocked when the processor goes into sleep
or deep-sleep mode. By default, the peripherals are clocked the same as in run
mode; if peripheral clock gating is enabled they are clocked according to the config-
uration set by ROM_SysCtlPeripheralSleepEnable(), ROM_SysCtlPeripheralSleepDisable(),
ROM_SysCtlPeripheralDeepSleepEnable(), and ROM_SysCtlPeripheralDeepSleepDisable().

January 4, 2013 221

System Control

Returns:
None.

18.2.1.17 ROM_SysCtlPeripheralDeepSleepDisable

Disables a peripheral in deep-sleep mode.

Prototype:
void
ROM_SysCtlPeripheralDeepSleepDisable(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralDeepSleepDisable is a function pointer located at
ROM_SYSCTLTABLE[11].

Parameters:
ulPeripheral is the peripheral to disable in deep-sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into deep-sleep
mode. Disabling peripherals while in deep-sleep mode helps to lower the current draw of
the device, and can keep peripherals that require a particular clock frequency from oper-
ating when the clock changes as a result of entering deep-sleep mode. If enabled (via
ROM_SysCtlPeripheralEnable()), the peripheral will automatically resume operation when the
processor leaves deep-sleep mode, maintaining its entire state from before deep-sleep mode
was entered.

Deep-sleep mode clocking of peripherals must be enabled via
ROM_SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode con-
figuration is maintained but has no effect when deep-sleep mode is entered.

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,

222 January 4, 2013

System Control

SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

Returns:
None.

18.2.1.18 ROM_SysCtlPeripheralDeepSleepEnable

Enables a peripheral in deep-sleep mode.

Prototype:
void
ROM_SysCtlPeripheralDeepSleepEnable(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralDeepSleepEnable is a function pointer located at
ROM_SYSCTLTABLE[10].

Parameters:
ulPeripheral is the peripheral to enable in deep-sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into deep-
sleep mode. Since the clocking configuration of the device may change, not all peripherals
can safely continue operating while the processor is in sleep mode. Those that must run at a
particular frequency (such as a timer) will not work as expected if the clock changes. It is the
responsibility of the caller to make sensible choices.

Deep-sleep mode clocking of peripherals must be enabled via
ROM_SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode con-
figuration is maintained but has no effect when deep-sleep mode is entered.

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,

January 4, 2013 223

System Control

SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

Returns:
None.

18.2.1.19 ROM_SysCtlPeripheralDisable

Disables a peripheral.

Prototype:
void
ROM_SysCtlPeripheralDisable(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralDisable is a function pointer located at ROM_SYSCTLTABLE[7].

Parameters:
ulPeripheral is the peripheral to disable.

Description:
Peripherals are disabled with this function. Once disabled, they will not operate or respond to
register reads/writes.

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

224 January 4, 2013

System Control

Returns:
None.

18.2.1.20 ROM_SysCtlPeripheralEnable

Enables a peripheral.

Prototype:
void
ROM_SysCtlPeripheralEnable(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralEnable is a function pointer located at ROM_SYSCTLTABLE[6].

Parameters:
ulPeripheral is the peripheral to enable.

Description:
Peripherals are enabled with this function. At power-up, all peripherals are disabled; they must
be enabled in order to operate or respond to register reads/writes.

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

Note:
It takes five clock cycles after the write to enable a peripheral before the the peripheral is
actually enabled. During this time, attempts to access the peripheral will result in a bus fault.
Care should be taken to ensure that the peripheral is not accessed during this brief time period.

January 4, 2013 225

System Control

Returns:
None.

18.2.1.21 ROM_SysCtlPeripheralPowerOff

Powers off a peripheral.

Prototype:
void
ROM_SysCtlPeripheralPowerOff(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralPowerOff is a function pointer located at
ROM_SYSCTLTABLE[37].

Parameters:
ulPeripheral is the peripheral to be powered off.

Description:
This function allows the power to a peripheral to be turned off. The peripheral will continue
to receive power when its clock is enabled, but the power will be removed when its clock is
disabled.

The ulPeripheral paramter must be only one of the following values: SYSCTL_PERIPH_ADC0,
SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1,
SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1,
SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0,
SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3,
SYSCTL_PERIPH_UART4, SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6,
SYSCTL_PERIPH_UART7, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0,
SYSCTL_PERIPH_WTIMER1, SYSCTL_PERIPH_WTIMER2,
SYSCTL_PERIPH_WTIMER3, SYSCTL_PERIPH_WTIMER4, or
SYSCTL_PERIPH_WTIMER5.

Returns:
None.

226 January 4, 2013

System Control

18.2.1.22 ROM_SysCtlPeripheralPowerOn

Powers on a peripheral.

Prototype:
void
ROM_SysCtlPeripheralPowerOn(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralPowerOn is a function pointer located at ROM_SYSCTLTABLE[36].

Parameters:
ulPeripheral is the peripheral to be powered on.

Description:
This function turns on the power to a peripheral. It will continue to receive power even when its
clock is not enabled.

The ulPeripheral paramter must be only one of the following values: SYSCTL_PERIPH_ADC0,
SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1,
SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1,
SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0,
SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3,
SYSCTL_PERIPH_UART4, SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6,
SYSCTL_PERIPH_UART7, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0,
SYSCTL_PERIPH_WTIMER1, SYSCTL_PERIPH_WTIMER2,
SYSCTL_PERIPH_WTIMER3, SYSCTL_PERIPH_WTIMER4, or
SYSCTL_PERIPH_WTIMER5.

Returns:
None.

18.2.1.23 ROM_SysCtlPeripheralPresent

Determines if a peripheral is present.

January 4, 2013 227

System Control

Prototype:
tBoolean
ROM_SysCtlPeripheralPresent(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralPresent is a function pointer located at ROM_SYSCTLTABLE[4].

Parameters:
ulPeripheral is the peripheral in question.

Description:
Determines if a particular peripheral is present in the device. Each member of the Stellaris
family has a different peripheral set; this will determine which are present on this device.

The ulPeripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_EPI0,
SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2S0, SYSCTL_PERIPH_IEEE1588,
SYSCTL_PERIPH_MPU, SYSCTL_PERIPH_PLL, SYSCTL_PERIPH_PWM,
SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0,
SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TEMP,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0, or
SYSCTL_PERIPH_WDOG1.

Returns:
Returns true if the specified peripheral is present and false if it is not.

18.2.1.24 ROM_SysCtlPeripheralReady

Determines if a peripheral is ready.

Prototype:
tBoolean
ROM_SysCtlPeripheralReady(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralReady is a function pointer located at ROM_SYSCTLTABLE[35].

Parameters:
ulPeripheral is the peripheral in question.

228 January 4, 2013

System Control

Description:
Determines if a particular peripheral is ready to be accessed. The peripheral may be in a non-
ready state if it is not enabled, is being held in reset, or is in the process of becoming ready
after be enabled or taken out of reset.

The ulPeripheral paramter must be only one of the following values: SYSCTL_PERIPH_ADC0,
SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1,
SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1,
SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0,
SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3,
SYSCTL_PERIPH_UART4, SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6,
SYSCTL_PERIPH_UART7, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0,
SYSCTL_PERIPH_WTIMER1, SYSCTL_PERIPH_WTIMER2,
SYSCTL_PERIPH_WTIMER3, SYSCTL_PERIPH_WTIMER4, or
SYSCTL_PERIPH_WTIMER5.

Returns:
Returns true if the specified peripheral is ready and false if it is not.

18.2.1.25 ROM_SysCtlPeripheralReset

Performs a software reset of a peripheral.

Prototype:
void
ROM_SysCtlPeripheralReset(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralReset is a function pointer located at ROM_SYSCTLTABLE[5].

Parameters:
ulPeripheral is the peripheral to reset.

Description:
This function performs a software reset of the specified peripheral. An individual peripheral
reset signal is asserted for a brief period and then deasserted, returning the internal state of
the peripheral to its reset condition.

January 4, 2013 229

System Control

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

Returns:
None.

18.2.1.26 ROM_SysCtlPeripheralSleepDisable

Disables a peripheral in sleep mode.

Prototype:
void
ROM_SysCtlPeripheralSleepDisable(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralSleepDisable is a function pointer located at
ROM_SYSCTLTABLE[9].

Parameters:
ulPeripheral is the peripheral to disable in sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into sleep mode.
Disabling peripherals while in sleep mode helps to lower the current draw of the device. If en-
abled (via ROM_SysCtlPeripheralEnable()), the peripheral will automatically resume operation
when the processor leaves sleep mode, maintaining its entire state from before sleep mode
was entered.

230 January 4, 2013

System Control

Sleep mode clocking of peripherals must be enabled via ROM_SysCtlPeripheralClockGating();
if disabled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

Returns:
None.

18.2.1.27 ROM_SysCtlPeripheralSleepEnable

Enables a peripheral in sleep mode.

Prototype:
void
ROM_SysCtlPeripheralSleepEnable(unsigned long ulPeripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralSleepEnable is a function pointer located at
ROM_SYSCTLTABLE[8].

Parameters:
ulPeripheral is the peripheral to enable in sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into sleep
mode. Since the clocking configuration of the device does not change, any peripheral can
safely continue operating while the processor is in sleep mode, and can therefore wake the
processor from sleep mode.

January 4, 2013 231

System Control

Sleep mode clocking of peripherals must be enabled via ROM_SysCtlPeripheralClockGating();
if disabled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ulPeripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0,
SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3,
SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5.

Returns:
None.

18.2.1.28 ROM_SysCtlPinPresent

Determines if a pin is present.

Prototype:
tBoolean
ROM_SysCtlPinPresent(unsigned long ulPin)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPinPresent is a function pointer located at ROM_SYSCTLTABLE[3].

Parameters:
ulPin is the pin in question.

Description:
Determines if a particular pin is present in the device. The PWM, analog comparators, ADC,
and timers have a varying number of pins across members of the Stellaris family; this will
determine which are present on this device.

232 January 4, 2013

System Control

The ulPin argument must be only one of the following values: SYSCTL_PIN_PWM0,
SYSCTL_PIN_PWM1, SYSCTL_PIN_PWM2, SYSCTL_PIN_PWM3, SYSCTL_PIN_PWM4,
SYSCTL_PIN_PWM5, SYSCTL_PIN_MC_FAULT0, SYSCTL_PIN_C0MINUS,
SYSCTL_PIN_C0PLUS, SYSCTL_PIN_C0O, SYSCTL_PIN_C1MINUS,
SYSCTL_PIN_C1PLUS, SYSCTL_PIN_C1O, SYSCTL_PIN_C2MINUS,
SYSCTL_PIN_C2PLUS, SYSCTL_PIN_C2O, SYSCTL_PIN_ADC0, SYSCTL_PIN_ADC1,
SYSCTL_PIN_ADC2, SYSCTL_PIN_ADC3, SYSCTL_PIN_ADC4, SYSCTL_PIN_ADC5,
SYSCTL_PIN_ADC6, SYSCTL_PIN_ADC7, SYSCTL_PIN_CCP0, SYSCTL_PIN_CCP1,
SYSCTL_PIN_CCP2, SYSCTL_PIN_CCP3, SYSCTL_PIN_CCP4, SYSCTL_PIN_CCP5,
SYSCTL_PIN_CCP6, SYSCTL_PIN_CCP7, or SYSCTL_PIN_32KHZ.

Returns:
Returns true if the specified pin is present and false if it is not.

18.2.1.29 ROM_SysCtlPIOSCCalibrate

Calibrates the precision internal oscillator.

Prototype:
unsigned long
ROM_SysCtlPIOSCCalibrate(unsigned long ulType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPIOSCCalibrate is a function pointer located at ROM_SYSCTLTABLE[45].

Parameters:
ulType is the type of calibration to perform.

Description:
This function performs a calibration of the PIOSC. There are three types of calibration available;
the desired calibration type as specified in ulType is one of:

SYSCTL_PIOSC_CAL_AUTO to perform automatic calibration using the 32 kHz clock
from the hibernate module as a reference. This is only possible on parts that have a
hibernate module and then only if it is enabled and the hibernate module’s RTC is also
enabled.

SYSCTL_PIOSC_CAL_FACT to reset the PIOSC calibration to the factory provided cali-
bration.

SYSCTL_PIOSC_CAL_USER to set the PIOSC calibration to a user-supplied value. The
value to be used is ORed into the lower 7-bits of this value, with 0x40 being the “nominal”
value (in other words, if everything were perfect, this would provide exactly 16 MHz). Val-
ues larger than 0x40 will slow down PIOSC, and values smaller than 0x40 will speed up
PIOSC.

Returns:
None.

January 4, 2013 233

System Control

18.2.1.30 ROM_SysCtlPWMClockGet

Gets the current PWM clock configuration.

Prototype:
unsigned long
ROM_SysCtlPWMClockGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPWMClockGet is a function pointer located at ROM_SYSCTLTABLE[26].

Description:
This function returns the current PWM clock configuration.

Returns:
Returns the current PWM clock configuration; is one of SYSCTL_PWMDIV_1,
SYSCTL_PWMDIV_2, SYSCTL_PWMDIV_4, SYSCTL_PWMDIV_8, SYSCTL_PWMDIV_16,
SYSCTL_PWMDIV_32, or SYSCTL_PWMDIV_64.

18.2.1.31 ROM_SysCtlPWMClockSet

Sets the PWM clock configuration.

Prototype:
void
ROM_SysCtlPWMClockSet(unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPWMClockSet is a function pointer located at ROM_SYSCTLTABLE[25].

Parameters:
ulConfig is the configuration for the PWM clock; it must be one of SYSCTL_PWMDIV_1,

SYSCTL_PWMDIV_2, SYSCTL_PWMDIV_4, SYSCTL_PWMDIV_8,
SYSCTL_PWMDIV_16, SYSCTL_PWMDIV_32, or SYSCTL_PWMDIV_64.

Description:
This function sets the rate of the clock provided to the PWM module as a ratio of the processor
clock. This clock is used by the PWM module to generate PWM signals; its rate forms the basis
for all PWM signals.

Note:
The clocking of the PWM is dependent upon the system clock rate as configured by
ROM_SysCtlClockSet().

Returns:
None.

234 January 4, 2013

System Control

18.2.1.32 ROM_SysCtlReset

Resets the device.

Prototype:
void
ROM_SysCtlReset(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlReset is a function pointer located at ROM_SYSCTLTABLE[19].

Description:
This function will perform a software reset of the entire device. The processor and all peripher-
als are reset and all device registers will return to their default values (with the exception of the
reset cause register, which will maintain its current value but have the software reset bit set as
well).

Returns:
This function does not return.

18.2.1.33 ROM_SysCtlResetCauseClear

Clears reset reasons.

Prototype:
void
ROM_SysCtlResetCauseClear(unsigned long ulCauses)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlResetCauseClear is a function pointer located at ROM_SYSCTLTABLE[22].

Parameters:
ulCauses are the reset causes to be cleared; must be a logical OR of SYSCTL_CAUSE_LDO,

SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG, SYSCTL_CAUSE_BOR,
SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Description:
This function clears the specified sticky reset reasons. Once cleared, another reset for the
same reason can be detected, and a reset for a different reason can be distinguished (instead
of having two reset causes set). If the reset reason is used by an application, all reset causes
should be cleared after they are retrieved with ROM_SysCtlResetCauseGet().

Returns:
None.

January 4, 2013 235

System Control

18.2.1.34 ROM_SysCtlResetCauseGet

Gets the reason for a reset.

Prototype:
unsigned long
ROM_SysCtlResetCauseGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlResetCauseGet is a function pointer located at ROM_SYSCTLTABLE[21].

Description:
This function will return the reason(s) for a reset. Since the reset reasons are
sticky until either cleared by software or an external reset, multiple reset reasons
may be returned if multiple resets have occurred. The reset reason is a log-
ical OR of SYSCTL_CAUSE_LDO, SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG,
SYSCTL_CAUSE_BOR, SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Returns:
Returns the reason(s) for a reset.

18.2.1.35 ROM_SysCtlSleep

Puts the processor into sleep mode.

Prototype:
void
ROM_SysCtlSleep(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlSleep is a function pointer located at ROM_SYSCTLTABLE[0].

Description:
This function places the processor into sleep mode; it will not return until the processor re-
turns to run mode. The peripherals that are enabled via ROM_SysCtlPeripheralSleepEnable()
continue to operate and can wake up the processor (if automatic clock gating is enabled with
ROM_SysCtlPeripheralClockGating(), otherwise all peripherals continue to operate).

Returns:
None.

18.2.1.36 ROM_SysCtlSRAMSizeGet

Gets the size of the SRAM.

Prototype:
unsigned long
ROM_SysCtlSRAMSizeGet(void)

236 January 4, 2013

System Control

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlSRAMSizeGet is a function pointer located at ROM_SYSCTLTABLE[1].

Description:
This function determines the size of the SRAM on the Stellaris device.

Returns:
The total number of bytes of SRAM.

18.2.1.37 ROM_SysCtlUSBPLLDisable

Powers down the USB PLL.

Prototype:
void
ROM_SysCtlUSBPLLDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlUSBPLLDisable is a function pointer located at ROM_SYSCTLTABLE[32].

Description:
This function will disable the USB controller’s PLL which is used by it’s physical layer. The USB
registers are still accessible, but the physical layer will no longer function.

Returns:
None.

18.2.1.38 ROM_SysCtlUSBPLLEnable

Powers up the USB PLL.

Prototype:
void
ROM_SysCtlUSBPLLEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlUSBPLLEnable is a function pointer located at ROM_SYSCTLTABLE[31].

Description:
This function will enable the USB controller’s PLL which is used by it’s physical layer. This call
is necessary before connecting to any external devices.

Returns:
None.

January 4, 2013 237

System Control

238 January 4, 2013

System Exception Module

19 System Exception Module
Introduction .239
API Functions . 239

19.1 Introduction

The system exception module provides an interrupt mechanism for handling system exceptions,
such as errors from the floating-point unit..

19.2 API Functions

Functions
void ROM_SysExcIntClear (unsigned long ulIntFlags)
void ROM_SysExcIntDisable (unsigned long ulIntFlags)
void ROM_SysExcIntEnable (unsigned long ulIntFlags)
unsigned long ROM_SysExcIntStatus (tBoolean bMasked)

19.2.1 Function Documentation

19.2.1.1 ROM_SysExcIntClear

Clears system exception interrupt sources.

Prototype:
void
ROM_SysExcIntClear(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntClear is a function pointer located at ROM_SYSEXCTABLE[1].

Parameters:
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified system exception interrupt sources are cleared, so that they no longer assert.
This function must be called in the interrupt handler to keep the interrupt from being recognized
again immediately upon exit.

The ulIntFlags parameter is the logical OR of any of the following:

SYSEXCP_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXCP_INT_FP_OFC - Floating-point overflow exception interrupt

January 4, 2013 239

System Exception Module

SYSEXCP_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXCP_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXCP_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXCP_INT_FP_IDC - Floating-point input denormal exception interrupt

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

19.2.1.2 ROM_SysExcIntDisable

Disables individual system exception interrupt sources.

Prototype:
void
ROM_SysExcIntDisable(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntDisable is a function pointer located at ROM_SYSEXCTABLE[2].

Parameters:
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated system exception interrupt sources. Only sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ulIntFlags parameter is the logical OR of any of the following:

SYSEXCP_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXCP_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXCP_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXCP_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXCP_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXCP_INT_FP_IDC - Floating-point input denormal exception interrupt

Returns:
None.

240 January 4, 2013

System Exception Module

19.2.1.3 ROM_SysExcIntEnable

Enables individual system exception interrupt sources.

Prototype:
void
ROM_SysExcIntEnable(unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntEnable is a function pointer located at ROM_SYSEXCTABLE[3].

Parameters:
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated system exception interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ulIntFlags parameter is the logical OR of any of the following:

SYSEXCP_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXCP_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXCP_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXCP_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXCP_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXCP_INT_FP_IDC - Floating-point input denormal exception interrupt

Returns:
None.

19.2.1.4 ROM_SysExcIntStatus

Gets the current system exception interrupt status.

Prototype:
unsigned long
ROM_SysExcIntStatus(tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntStatus is a function pointer located at ROM_SYSEXCTABLE[0].

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the system exception interrupt status. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

January 4, 2013 241

System Exception Module

Returns:
Returns the current system exception interrupt status, enumerated as the logical
OR of SYSEXCP_INT_FP_IXC, SYSEXCP_INT_FP_OFC, SYSEXCP_INT_FP_UFC, SY-
SEXCP_INT_FP_IOC, SYSEXCP_INT_FP_DZC, and SYSEXCP_INT_FP_IDC.

242 January 4, 2013

System Tick (SysTick)

20 System Tick (SysTick)
Introduction .243
Functions . 243

20.1 Introduction

SysTick is a simple timer that is part of the NVIC controller in the Cortex-M3 microprocessor. Its
intended purpose is to provide a periodic interrupt for a RTOS, but it can be used for other simple
timing purposes.

The SysTick interrupt handler does not need to clear the SysTick interrupt source. This will be done
automatically by NVIC when the SysTick interrupt handler is called.

20.2 Functions

Functions
void ROM_SysTickDisable (void)
void ROM_SysTickEnable (void)
void ROM_SysTickIntDisable (void)
void ROM_SysTickIntEnable (void)
unsigned long ROM_SysTickPeriodGet (void)
void ROM_SysTickPeriodSet (unsigned long ulPeriod)
unsigned long ROM_SysTickValueGet (void)

20.2.1 Function Documentation

20.2.1.1 ROM_SysTickDisable

Disables the SysTick counter.

Prototype:
void
ROM_SysTickDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickDisable is a function pointer located at ROM_SYSTICKTABLE[2].

Description:
This will stop the SysTick counter. If an interrupt handler has been registered, it will no longer
be called until SysTick is restarted.

January 4, 2013 243

System Tick (SysTick)

Returns:
None.

20.2.1.2 ROM_SysTickEnable

Enables the SysTick counter.

Prototype:
void
ROM_SysTickEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickEnable is a function pointer located at ROM_SYSTICKTABLE[1].

Description:
This will start the SysTick counter. If an interrupt handler has been registered, it is called when
the SysTick counter rolls over.

Note:
Calling this function will cause the SysTick counter to (re)commence counting from its current
value. The counter is not automatically reloaded with the period as specified in a previous
call to ROM_SysTickPeriodSet(). If an immediate reload is required, the NVIC_ST_CURRENT
register must be written to force this. Any write to this register clears the SysTick counter to 0
and will cause a reload with the supplied period on the next clock.

Returns:
None.

20.2.1.3 ROM_SysTickIntDisable

Disables the SysTick interrupt.

Prototype:
void
ROM_SysTickIntDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickIntDisable is a function pointer located at ROM_SYSTICKTABLE[4].

Description:
This function will disable the SysTick interrupt, preventing it from being reflected to the proces-
sor.

Returns:
None.

244 January 4, 2013

System Tick (SysTick)

20.2.1.4 ROM_SysTickIntEnable

Enables the SysTick interrupt.

Prototype:
void
ROM_SysTickIntEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickIntEnable is a function pointer located at ROM_SYSTICKTABLE[3].

Description:
This function will enable the SysTick interrupt, allowing it to be reflected to the processor.

Note:
The SysTick interrupt handler does not need to clear the SysTick interrupt source as this is
done automatically by NVIC when the interrupt handler is called.

Returns:
None.

20.2.1.5 ROM_SysTickPeriodGet

Gets the period of the SysTick counter.

Prototype:
unsigned long
ROM_SysTickPeriodGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickPeriodGet is a function pointer located at ROM_SYSTICKTABLE[6].

Description:
This function returns the rate at which the SysTick counter wraps; this equates to the number
of processor clocks between interrupts.

Returns:
Returns the period of the SysTick counter.

20.2.1.6 ROM_SysTickPeriodSet

Sets the period of the SysTick counter.

Prototype:
void
ROM_SysTickPeriodSet(unsigned long ulPeriod)

January 4, 2013 245

System Tick (SysTick)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickPeriodSet is a function pointer located at ROM_SYSTICKTABLE[5].

Parameters:
ulPeriod is the number of clock ticks in each period of the SysTick counter; must be between

1 and 16,777,216, inclusive.

Description:
This function sets the rate at which the SysTick counter wraps; this equates to the number of
processor clocks between interrupts.

Note:
Calling this function does not cause the SysTick counter to reload immediately. If an immediate
reload is required, the NVIC_ST_CURRENT register must be written. Any write to this register
clears the SysTick counter to 0 and will cause a reload with the ulPeriod supplied here on the
next clock after the SysTick is enabled.

Returns:
None.

20.2.1.7 ROM_SysTickValueGet

Gets the current value of the SysTick counter.

Prototype:
unsigned long
ROM_SysTickValueGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickValueGet is a function pointer located at ROM_SYSTICKTABLE[0].

Description:
This function returns the current value of the SysTick counter; this will be a value between the
period - 1 and zero, inclusive.

Returns:
Returns the current value of the SysTick counter.

246 January 4, 2013

Timer

21 Timer
Introduction .247
Functions . 247

21.1 Introduction

The timer API provides a set of functions for dealing with the timer module. Functions are pro-
vided to configure and control the timer, along with functions to modify timer/counter values, and to
manage interrupt handling for the timer.

The timer module provides two 16-bit timer/counters that can be configured to operate indepen-
dently as timers or event counters, or they can be configured to operate as one 32-bit timer or one
32-bit Real Time Clock (RTC). For the purpose of this API, the two timers provided by the timer are
referred to as TimerA and TimerB.

When configured as either a 32-bit or 16-bit timer, a timer can be set up to run as a one-shot timer
or a continuous timer. If configured as a one-shot timer, when it reaches zero the timer will cease
counting. If configured as a continuous timer, when it reaches zero the timer will continue counting
from a reloaded value. When configured as a 32-bit timer, the timer can also be configured to
operate as an RTC. In that case, the timer expects to be driven by a 32 KHz external clock, which
is divided down to produce 1 second clock ticks.

When in 16-bit mode, the timer can also be configured for event capture or as a Pulse Width
Modulation (PWM) generator. When configured for event capture, the timer acts as a counter. It
can be configured to either count the time between events, or it can count the events themselves.
The type of event being counted can be configured as a positive edge, a negative edge, or both
edges. When a timer is configured as a PWM generator, the input line used to capture events
becomes an output line, and the timer is used to drive an edge-aligned pulse onto that line.

The timer module also provides the ability to control other functional parameters, such as output
inversion, output triggers, and timer behavior during stalls.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured, or that a certain number of events have been captured. Interrupts
can also be generated when the timer has counted down to zero, or when the RTC matches a
certain value.

21.2 Functions

Functions
void ROM_TimerConfigure (unsigned long ulBase, unsigned long ulConfig)
void ROM_TimerControlEvent (unsigned long ulBase, unsigned long ulTimer, unsigned long
ulEvent)
void ROM_TimerControlLevel (unsigned long ulBase, unsigned long ulTimer, tBoolean bIn-
vert)
void ROM_TimerControlStall (unsigned long ulBase, unsigned long ulTimer, tBoolean bStall)

January 4, 2013 247

Timer

void ROM_TimerControlTrigger (unsigned long ulBase, unsigned long ulTimer, tBoolean bEn-
able)
void ROM_TimerControlWaitOnTrigger (unsigned long ulBase, unsigned long ulTimer,
tBoolean bWait)
void ROM_TimerDisable (unsigned long ulBase, unsigned long ulTimer)
void ROM_TimerEnable (unsigned long ulBase, unsigned long ulTimer)
void ROM_TimerIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_TimerIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_TimerIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
unsigned long ROM_TimerIntStatus (unsigned long ulBase, tBoolean bMasked)
unsigned long ROM_TimerLoadGet (unsigned long ulBase, unsigned long ulTimer)
unsigned long long ROM_TimerLoadGet64 (unsigned long ulBase)
void ROM_TimerLoadSet (unsigned long ulBase, unsigned long ulTimer, unsigned long ul-
Value)
void ROM_TimerLoadSet64 (unsigned long ulBase, unsigned long long ullValue)
unsigned long ROM_TimerMatchGet (unsigned long ulBase, unsigned long ulTimer)
unsigned long long ROM_TimerMatchGet64 (unsigned long ulBase)
void ROM_TimerMatchSet (unsigned long ulBase, unsigned long ulTimer, unsigned long ul-
Value)
void ROM_TimerMatchSet64 (unsigned long ulBase, unsigned long long ullValue)
unsigned long ROM_TimerPrescaleGet (unsigned long ulBase, unsigned long ulTimer)
unsigned long ROM_TimerPrescaleMatchGet (unsigned long ulBase, unsigned long ulTimer)
void ROM_TimerPrescaleMatchSet (unsigned long ulBase, unsigned long ulTimer, unsigned
long ulValue)
void ROM_TimerPrescaleSet (unsigned long ulBase, unsigned long ulTimer, unsigned long
ulValue)
void ROM_TimerRTCDisable (unsigned long ulBase)
void ROM_TimerRTCEnable (unsigned long ulBase)
unsigned long ROM_TimerValueGet (unsigned long ulBase, unsigned long ulTimer)
unsigned long long ROM_TimerValueGet64 (unsigned long ulBase)

21.2.1 Function Documentation

21.2.1.1 ROM_TimerConfigure

Configures the timer(s).

Prototype:
void
ROM_TimerConfigure(unsigned long ulBase,

unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerConfigure is a function pointer located at ROM_TIMERTABLE[3].

248 January 4, 2013

Timer

Parameters:
ulBase is the base address of the timer module.
ulConfig is the configuration for the timer.

Description:
This function configures the operating mode of the timer(s). The timer module is disabled
before being configured, and is left in the disabled state. There are two types of timers; a
16/32-bit variety and a 32/64-bit variety. The 16/32-bit variety is comprised of two 16-bit timers
that can operate independently or be concatenated to form a 32-bit timer. Similarly, the 32/64-
bit variety is comprised of two 32-bit timers that can operate independently or be concatenated
to form a 64-bit timer.

The configuration is specified in ulConfig as one of the following values:

TIMER_CFG_ONE_SHOT - Full-width one-shot timer
TIMER_CFG_ONE_SHOT_UP - Full-width one-shot timer that counts up instead of down
(not available on all parts)
TIMER_CFG_PERIODIC - Full-width periodic timer
TIMER_CFG_PERIODIC_UP - Full-width periodic timer that counts up instead of down
(not available on all parts)
TIMER_CFG_RTC - Full-width real time clock timer
TIMER_CFG_SPLIT_PAIR - Two half-width timers

When configured for a pair of half-width timers, each timer is separately configured. The first
timer is configured by setting ulConfig to the result of a logical OR operation between one of
the following values and ulConfig:

TIMER_CFG_A_ONE_SHOT - Half-width one-shot timer
TIMER_CFG_A_ONE_SHOT_UP - Half-width one-shot timer that counts up instead of
down (not available on all parts)
TIMER_CFG_A_PERIODIC - Half-width periodic timer
TIMER_CFG_A_PERIODIC_UP - Half-width periodic timer that counts up instead of down
(not available on all parts)
TIMER_CFG_A_CAP_COUNT - Half-width edge count capture
TIMER_CFG_A_CAP_COUNT_UP - Half-width edge count capture that counts up instead
of down (not available on all parts)
TIMER_CFG_A_CAP_TIME - Half-width edge time capture
TIMER_CFG_A_CAP_TIME_UP - Half-width edge time capture that counts up instead of
down (not available on all parts)
TIMER_CFG_A_PWM - Half-width PWM output

Similarly, the second timer is configured by setting ulConfig to the result of a logical OR oper-
ation between one of the corresponding TIMER_CFG_B_∗ values and ulConfig.

Returns:
None.

21.2.1.2 ROM_TimerControlEvent

Controls the event type.

January 4, 2013 249

Timer

Prototype:
void
ROM_TimerControlEvent(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulEvent)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlEvent is a function pointer located at ROM_TIMERTABLE[6].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ulEvent specifies the type of event; must be one of TIMER_EVENT_POS_EDGE,

TIMER_EVENT_NEG_EDGE, or TIMER_EVENT_BOTH_EDGES.

Description:
This function sets the signal edge(s) that triggers the timer when in capture mode.

Returns:
None.

21.2.1.3 ROM_TimerControlLevel

Controls the output level.

Prototype:
void
ROM_TimerControlLevel(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bInvert)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlLevel is a function pointer located at ROM_TIMERTABLE[4].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bInvert specifies the output level.

Description:
This function sets the PWM output level for the specified timer. If the bInvert parameter is true,
then the timer’s output is made active low; otherwise, it is made active high.

Returns:
None.

250 January 4, 2013

Timer

21.2.1.4 ROM_TimerControlStall

Controls the stall handling.

Prototype:
void
ROM_TimerControlStall(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bStall)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlStall is a function pointer located at ROM_TIMERTABLE[7].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bStall specifies the response to a stall signal.

Description:
This function controls the stall response for the specified timer. If the bStall parameter is true,
then the timer will stop counting if the processor enters debug mode; otherwise the timer will
keep running while in debug mode.

Returns:
None.

21.2.1.5 ROM_TimerControlTrigger

Enables or disables the trigger output.

Prototype:
void
ROM_TimerControlTrigger(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlTrigger is a function pointer located at ROM_TIMERTABLE[5].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer to adjust; must be one of TIMER_A, TIMER_B, or TIMER_BOTH.
bEnable specifies the desired trigger state.

Description:
This function controls the trigger output for the specified timer. If the bEnable parameter is
true, then the timer’s output trigger is enabled; otherwise it is disabled.

January 4, 2013 251

Timer

Returns:
None.

21.2.1.6 ROM_TimerControlWaitOnTrigger

Controls the wait on trigger handling.

Prototype:
void
ROM_TimerControlWaitOnTrigger(unsigned long ulBase,

unsigned long ulTimer,
tBoolean bWait)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlWaitOnTrigger is a function pointer located at
ROM_TIMERTABLE[22].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bWait specifies if the timer should wait for a trigger input.

Description:
This function controls whether or not a timer waits for a trigger input to start counting. When
enabled, the previous timer in the trigger chain must count to its timeout in order for this timer
to start counting. Refer to the data sheet for a description of the trigger chain.

Returns:
None.

21.2.1.7 ROM_TimerDisable

Disables the timer(s).

Prototype:
void
ROM_TimerDisable(unsigned long ulBase,

unsigned long ulTimer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerDisable is a function pointer located at ROM_TIMERTABLE[2].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to disable; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

252 January 4, 2013

Timer

Description:
This will disable operation of the timer module.

Returns:
None.

21.2.1.8 ROM_TimerEnable

Enables the timer(s).

Prototype:
void
ROM_TimerEnable(unsigned long ulBase,

unsigned long ulTimer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerEnable is a function pointer located at ROM_TIMERTABLE[1].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to enable; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

Description:
This will enable operation of the timer module. The timer must be configured before it is en-
abled.

Returns:
None.

21.2.1.9 ROM_TimerIntClear

Clears timer interrupt sources.

Prototype:
void
ROM_TimerIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntClear is a function pointer located at ROM_TIMERTABLE[0].

Parameters:
ulBase is the base address of the timer module.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

January 4, 2013 253

Timer

Description:
The specified timer interrupt sources are cleared, so that they no longer assert. This must be
done in the interrupt handler to keep it from being called again immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
ROM_TimerIntEnable().

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

21.2.1.10 ROM_TimerIntDisable

Disables individual timer interrupt sources.

Prototype:
void
ROM_TimerIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntDisable is a function pointer located at ROM_TIMERTABLE[20].

Parameters:
ulBase is the base address of the timer module.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated timer interrupt sources. Only the sources that are enabled can be re-
flected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
ROM_TimerIntEnable().

Returns:
None.

21.2.1.11 ROM_TimerIntEnable

Enables individual timer interrupt sources.

254 January 4, 2013

Timer

Prototype:
void
ROM_TimerIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntEnable is a function pointer located at ROM_TIMERTABLE[19].

Parameters:
ulBase is the base address of the timer module.
ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated timer interrupt sources. Only the sources that are enabled can be re-
flected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter must be the logical OR of any combination of the following:

TIMER_CAPB_EVENT - Capture B event interrupt
TIMER_CAPB_MATCH - Capture B match interrupt
TIMER_TIMB_TIMEOUT - Timer B timeout interrupt
TIMER_RTC_MATCH - RTC interrupt mask
TIMER_CAPA_EVENT - Capture A event interrupt
TIMER_CAPA_MATCH - Capture A match interrupt
TIMER_TIMA_TIMEOUT - Timer A timeout interrupt

Returns:
None.

21.2.1.12 ROM_TimerIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ROM_TimerIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntStatus is a function pointer located at ROM_TIMERTABLE[21].

Parameters:
ulBase is the base address of the timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the timer module. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

January 4, 2013 255

Timer

Returns:
The current interrupt status, enumerated as a bit field of values described in
ROM_TimerIntEnable().

21.2.1.13 ROM_TimerLoadGet

Gets the timer load value.

Prototype:
unsigned long
ROM_TimerLoadGet(unsigned long ulBase,

unsigned long ulTimer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerLoadGet is a function pointer located at ROM_TIMERTABLE[15].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should be

used when the timer is configured for full-width operation.

Description:
This function gets the currently programmed interval load value for the specified timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers, and for half-
width modes of 32/64-bit timers. Use ROM_TimerLoadGet64() for full-width modes of 32/64-bit
timers.

Returns:
Returns the load value for the timer.

21.2.1.14 ROM_TimerLoadGet64

Gets the timer load value for a 64-bit timer.

Prototype:
unsigned long long
ROM_TimerLoadGet64(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerLoadGet64 is a function pointer located at ROM_TIMERTABLE[24].

Parameters:
ulBase is the base address of the timer module.

Description:
This function gets the currently programmed interval load value for the specified 64-bit timer.

256 January 4, 2013

Timer

Returns:
Returns the load value for the timer.

21.2.1.15 ROM_TimerLoadSet

Sets the timer load value.

Prototype:
void
ROM_TimerLoadSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerLoadSet is a function pointer located at ROM_TIMERTABLE[14].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for full-width
operation.

ulValue is the load value.

Description:
This function sets the timer load value; if the timer is running then the value is immediately
loaded into the timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers, and for half-
width modes of 32/64-bit timers. Use ROM_TimerLoadSet64() for full-width modes of 32/64-bit
timers.

Returns:
None.

21.2.1.16 ROM_TimerLoadSet64

Sets the timer load value for a 64-bit timer.

Prototype:
void
ROM_TimerLoadSet64(unsigned long ulBase,

unsigned long long ullValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerLoadSet64 is a function pointer located at ROM_TIMERTABLE[23].

January 4, 2013 257

Timer

Parameters:
ulBase is the base address of the timer module.
ullValue is the load value.

Description:
This function sets the timer load value for a 64-bit timer; if the timer is running then the value is
immediately loaded into the timer.

Returns:
None.

21.2.1.17 ROM_TimerMatchGet

Gets the timer match value.

Prototype:
unsigned long
ROM_TimerMatchGet(unsigned long ulBase,

unsigned long ulTimer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerMatchGet is a function pointer located at ROM_TIMERTABLE[18].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should be

used when the timer is configured for full-width operation.

Description:
This function gets the match value for the specified timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers, and for half-
width modes of 32/64-bit timers. Use ROM_TimerMatchGet64() for full-width modes of 32/64-
bit timers.

Returns:
Returns the match value for the timer.

21.2.1.18 ROM_TimerMatchGet64

Gets the timer match value for a 64-bit timer.

Prototype:
unsigned long long
ROM_TimerMatchGet64(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerMatchGet64 is a function pointer located at ROM_TIMERTABLE[27].

258 January 4, 2013

Timer

Parameters:
ulBase is the base address of the timer module.

Description:
This function gets the match value for the specified timer.

Returns:
Returns the match value for the timer.

21.2.1.19 ROM_TimerMatchSet

Sets the timer match value.

Prototype:
void
ROM_TimerMatchSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerMatchSet is a function pointer located at ROM_TIMERTABLE[17].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for full-width
operation.

ulValue is the match value.

Description:
This function sets the match value for a timer. This value is used in capture count mode to
determine when to interrupt the processor and in PWM mode to determine the duty cycle of
the output signal.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers, and for half-
width modes of 32/64-bit timers. Use ROM_TimerMatchSet64() for full-width modes of 32/64-
bit timers.

Returns:
None.

21.2.1.20 ROM_TimerMatchSet64

Sets the timer match value for a 64-bit timer.

Prototype:
void
ROM_TimerMatchSet64(unsigned long ulBase,

unsigned long long ullValue)

January 4, 2013 259

Timer

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerMatchSet64 is a function pointer located at ROM_TIMERTABLE[26].

Parameters:
ulBase is the base address of the timer module.
ullValue is the match value.

Description:
This function sets the match value for a timer. This value is used in capture count mode to
determine when to interrupt the processor and in PWM mode to determine the duty cycle of
the output signal.

Returns:
None.

21.2.1.21 ROM_TimerPrescaleGet

Get the timer prescale value.

Prototype:
unsigned long
ROM_TimerPrescaleGet(unsigned long ulBase,

unsigned long ulTimer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleGet is a function pointer located at ROM_TIMERTABLE[11].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler. The prescaler is only operational when
in half-width mode and is used to extend the range of the half-width timer modes.

Returns:
The value of the timer prescaler.

21.2.1.22 ROM_TimerPrescaleMatchGet

Get the timer prescale match value.

Prototype:
unsigned long
ROM_TimerPrescaleMatchGet(unsigned long ulBase,

unsigned long ulTimer)

260 January 4, 2013

Timer

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleMatchGet is a function pointer located at ROM_TIMERTABLE[13].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler match value. When in a half-width
mode that uses the counter match and prescaler, the prescale match effectively extends the
range of the match.

Returns:
The value of the timer prescale match.

21.2.1.23 ROM_TimerPrescaleMatchSet

Set the timer prescale match value.

Prototype:
void
ROM_TimerPrescaleMatchSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleMatchSet is a function pointer located at ROM_TIMERTABLE[12].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ulValue is the timer prescale match value which must be between 0 and 255 (inclusive) for

16/32-bit timers and between 0 and 65535 (inclusive) for 32/64-bit timers.

Description:
This function sets the value of the input clock prescaler match value. When in a half-width
mode that uses the counter match and the prescaler, the prescale match effectively extends
the range of the match.

Returns:
None.

21.2.1.24 ROM_TimerPrescaleSet

Set the timer prescale value.

January 4, 2013 261

Timer

Prototype:
void
ROM_TimerPrescaleSet(unsigned long ulBase,

unsigned long ulTimer,
unsigned long ulValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleSet is a function pointer located at ROM_TIMERTABLE[10].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ulValue is the timer prescale value which must be between 0 and 255 (inclusive) for 16/32-bit

timers and between 0 and 65535 (inclusive) for 32/64-bit timers.

Description:
This function sets the value of the input clock prescaler. The prescaler is only operational when
in half-width mode and is used to extend the range of the half-width timer modes.

Returns:
None.

21.2.1.25 ROM_TimerRTCDisable

Disable RTC counting.

Prototype:
void
ROM_TimerRTCDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerRTCDisable is a function pointer located at ROM_TIMERTABLE[9].

Parameters:
ulBase is the base address of the timer module.

Description:
This function causes the timer to stop counting when in RTC mode.

Returns:
None.

21.2.1.26 ROM_TimerRTCEnable

Enable RTC counting.

262 January 4, 2013

Timer

Prototype:
void
ROM_TimerRTCEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerRTCEnable is a function pointer located at ROM_TIMERTABLE[8].

Parameters:
ulBase is the base address of the timer module.

Description:
This function causes the timer to start counting when in RTC mode. If not configured for RTC
mode, this will do nothing.

Returns:
None.

21.2.1.27 ROM_TimerValueGet

Gets the current timer value.

Prototype:
unsigned long
ROM_TimerValueGet(unsigned long ulBase,

unsigned long ulTimer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerValueGet is a function pointer located at ROM_TIMERTABLE[16].

Parameters:
ulBase is the base address of the timer module.
ulTimer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should be

used when the timer is configured for full-width operation.

Description:
This function reads the current value of the specified timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers, and for half-
width modes of 32/64-bit timers. Use ROM_TimerValueGet64() for full-width modes of 32/64-bit
timers.

Returns:
Returns the current value of the timer.

January 4, 2013 263

Timer

21.2.1.28 ROM_TimerValueGet64

Gets the current 64-bit timer value.

Prototype:
unsigned long long
ROM_TimerValueGet64(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerValueGet64 is a function pointer located at ROM_TIMERTABLE[25].

Parameters:
ulBase is the base address of the timer module.

Description:
This function reads the current value of the specified timer.

Returns:
Returns the current value of the timer.

264 January 4, 2013

UART

22 UART
Introduction .265
Functions . 265

22.1 Introduction

The Universal Asynchronous Receiver/Transmitter (UART) API provides a set of functions for using
the Stellaris UART modules. Functions are provided to configure and control the UART modules,
to send and receive data, and to manage interrupts for the UART modules.

The Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It
is very similar in functionality to a 16C550 UART, but is not register-compatible.

Some of the features of the Stellaris UART are:

A 16x12 bit receive FIFO and a 16x8 bit transmit FIFO.

Programmable baud rate generator.

Automatic generation and stripping of start, stop, and parity bits.

Line break generation and detection.

Programmable serial interface

• 5, 6, 7, or 8 data bits
• even, odd, stick, or no parity bit generation and detection
• 1 or 2 stop bit generation
• baud rate generation, from DC to processor clock/16

IrDA serial-IR (SIR) encoder/decoder.

DMA interface

22.2 Functions

Functions
void ROM_UART9BitAddrSend (unsigned long ulBase, unsigned char ucAddr)
void ROM_UART9BitAddrSet (unsigned long ulBase, unsigned char ucAddr, unsigned char
ucMask)
void ROM_UART9BitDisable (unsigned long ulBase)
void ROM_UART9BitEnable (unsigned long ulBase)
void ROM_UARTBreakCtl (unsigned long ulBase, tBoolean bBreakState)
tBoolean ROM_UARTBusy (unsigned long ulBase)
long ROM_UARTCharGet (unsigned long ulBase)
long ROM_UARTCharGetNonBlocking (unsigned long ulBase)
void ROM_UARTCharPut (unsigned long ulBase, unsigned char ucData)
tBoolean ROM_UARTCharPutNonBlocking (unsigned long ulBase, unsigned char ucData)
tBoolean ROM_UARTCharsAvail (unsigned long ulBase)

January 4, 2013 265

UART

unsigned long ROM_UARTClockSourceGet (unsigned long ulBase)
void ROM_UARTClockSourceSet (unsigned long ulBase, unsigned long ulSource)
void ROM_UARTConfigGetExpClk (unsigned long ulBase, unsigned long ulUARTClk, un-
signed long ∗pulBaud, unsigned long ∗pulConfig)
void ROM_UARTConfigSetExpClk (unsigned long ulBase, unsigned long ulUARTClk, un-
signed long ulBaud, unsigned long ulConfig)
void ROM_UARTDisable (unsigned long ulBase)
void ROM_UARTDisableSIR (unsigned long ulBase)
void ROM_UARTDMADisable (unsigned long ulBase, unsigned long ulDMAFlags)
void ROM_UARTDMAEnable (unsigned long ulBase, unsigned long ulDMAFlags)
void ROM_UARTEnable (unsigned long ulBase)
void ROM_UARTEnableSIR (unsigned long ulBase, tBoolean bLowPower)
void ROM_UARTFIFODisable (unsigned long ulBase)
void ROM_UARTFIFOEnable (unsigned long ulBase)
void ROM_UARTFIFOLevelGet (unsigned long ulBase, unsigned long ∗pulTxLevel, unsigned
long ∗pulRxLevel)
void ROM_UARTFIFOLevelSet (unsigned long ulBase, unsigned long ulTxLevel, unsigned
long ulRxLevel)
void ROM_UARTIntClear (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_UARTIntDisable (unsigned long ulBase, unsigned long ulIntFlags)
void ROM_UARTIntEnable (unsigned long ulBase, unsigned long ulIntFlags)
unsigned long ROM_UARTIntStatus (unsigned long ulBase, tBoolean bMasked)
unsigned long ROM_UARTParityModeGet (unsigned long ulBase)
void ROM_UARTParityModeSet (unsigned long ulBase, unsigned long ulParity)
void ROM_UARTRxErrorClear (unsigned long ulBase)
unsigned long ROM_UARTRxErrorGet (unsigned long ulBase)
tBoolean ROM_UARTSpaceAvail (unsigned long ulBase)
unsigned long ROM_UARTTxIntModeGet (unsigned long ulBase)
void ROM_UARTTxIntModeSet (unsigned long ulBase, unsigned long ulMode)
void ROM_UpdateUART (void)

22.2.1 Function Documentation

22.2.1.1 ROM_UART9BitAddrSend

Sends an address character from the specified port when operating in 9-bit mode.

Prototype:
void
ROM_UART9BitAddrSend(unsigned long ulBase,

unsigned char ucAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitAddrSend is a function pointer located at ROM_UARTTABLE[36].

266 January 4, 2013

UART

Parameters:
ulBase is the base address of the UART port.
ucAddr is the address to be transmitted.

Description:
This function waits until all data has been sent from the specified port and then sends the given
address as an address byte. It then waits until the address byte has been transmitted before
returning.

The normal data functions (ROM_UARTCharPut(), ROM_UARTCharPutNonBlocking(),
ROM_UARTCharGet(), and ROM_UARTCharGetNonBlocking()) are used to send and receive
data characters in 9-bit mode.

Returns:
None.

22.2.1.2 ROM_UART9BitAddrSet

Sets the device address(es) for 9-bit mode.

Prototype:
void
ROM_UART9BitAddrSet(unsigned long ulBase,

unsigned char ucAddr,
unsigned char ucMask)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitAddrSet is a function pointer located at ROM_UARTTABLE[35].

Parameters:
ulBase is the base address of the UART port.
ucAddr is the device address.
ucMask is the device address mask.

Description:
This function sets the device address, or range of device addresses, that respond to requests
on the 9-bit UART port. The received address is masked with the mask and then compared
against the given address, allowing either a single address (if ucMask is 0xff) or a set of
addresses to be matched.

Returns:
None.

22.2.1.3 ROM_UART9BitDisable

Disables 9-bit mode on the specified UART.

Prototype:
void
ROM_UART9BitDisable(unsigned long ulBase)

January 4, 2013 267

UART

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitDisable is a function pointer located at ROM_UARTTABLE[34].

Parameters:
ulBase is the base address of the UART port.

Description:
This function disables the 9-bit operational mode of the UART.

Returns:
None.

22.2.1.4 ROM_UART9BitEnable

Enables 9-bit mode on the specified UART.

Prototype:
void
ROM_UART9BitEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitEnable is a function pointer located at ROM_UARTTABLE[33].

Parameters:
ulBase is the base address of the UART port.

Description:
This function enables the 9-bit operational mode of the UART.

Returns:
None.

22.2.1.5 ROM_UARTBreakCtl

Causes a BREAK to be sent.

Prototype:
void
ROM_UARTBreakCtl(unsigned long ulBase,

tBoolean bBreakState)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTBreakCtl is a function pointer located at ROM_UARTTABLE[16].

Parameters:
ulBase is the base address of the UART port.

268 January 4, 2013

UART

bBreakState controls the output level.

Description:
Calling this function with bBreakState set to true asserts a break condition on the UART. Calling
this function with bBreakState set to false removes the break condition. For proper transmis-
sion of a break command, the break must be asserted for at least two complete frames.

Returns:
None.

22.2.1.6 ROM_UARTBusy

Determines whether the UART transmitter is busy or not.

Prototype:
tBoolean
ROM_UARTBusy(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTBusy is a function pointer located at ROM_UARTTABLE[26].

Parameters:
ulBase is the base address of the UART port.

Description:
Allows the caller to determine whether all transmitted bytes have cleared the transmitter hard-
ware. If false is returned, the transmit FIFO is empty and all bits of the last transmitted char-
acter, including all stop bits, have left the hardware shift register.

Returns:
Returns true if the UART is transmitting or false if all transmissions are complete.

22.2.1.7 ROM_UARTCharGet

Waits for a character from the specified port.

Prototype:
long
ROM_UARTCharGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharGet is a function pointer located at ROM_UARTTABLE[14].

Parameters:
ulBase is the base address of the UART port.

January 4, 2013 269

UART

Description:
Gets a character from the receive FIFO for the specified port. If there are no characters avail-
able, this function waits until a character is received before returning.

Returns:
Returns the character read from the specified port, cast as a long.

22.2.1.8 ROM_UARTCharGetNonBlocking

Receives a character from the specified port.

Prototype:
long
ROM_UARTCharGetNonBlocking(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharGetNonBlocking is a function pointer located at ROM_UARTTABLE[13].

Parameters:
ulBase is the base address of the UART port.

Description:
Gets a character from the receive FIFO for the specified port.

Returns:
Returns the character read from the specified port, cast as a long. A -1 is returned if there
are no characters present in the receive FIFO. The ROM_UARTCharsAvail() function should
be called before attempting to call this function.

22.2.1.9 ROM_UARTCharPut

Waits to send a character from the specified port.

Prototype:
void
ROM_UARTCharPut(unsigned long ulBase,

unsigned char ucData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharPut is a function pointer located at ROM_UARTTABLE[0].

Parameters:
ulBase is the base address of the UART port.
ucData is the character to be transmitted.

Description:
Sends the character ucData to the transmit FIFO for the specified port. If there is no space
available in the transmit FIFO, this function waits until there is space available before returning.

270 January 4, 2013

UART

Returns:
None.

22.2.1.10 ROM_UARTCharPutNonBlocking

Sends a character to the specified port.

Prototype:
tBoolean
ROM_UARTCharPutNonBlocking(unsigned long ulBase,

unsigned char ucData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharPutNonBlocking is a function pointer located at ROM_UARTTABLE[15].

Parameters:
ulBase is the base address of the UART port.
ucData is the character to be transmitted.

Description:
Writes the character ucData to the transmit FIFO for the specified port. This function does not
block, so if there is no space available, then a false is returned, and the application must retry
the function later.

Returns:
Returns true if the character was successfully placed in the transmit FIFO or false if there was
no space available in the transmit FIFO.

22.2.1.11 ROM_UARTCharsAvail

Determines if there are any characters in the receive FIFO.

Prototype:
tBoolean
ROM_UARTCharsAvail(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharsAvail is a function pointer located at ROM_UARTTABLE[11].

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is data available in the receive FIFO.

Returns:
Returns true if there is data in the receive FIFO or false if there is no data in the receive FIFO.

January 4, 2013 271

UART

22.2.1.12 ROM_UARTClockSourceGet

Gets the baud clock source for the specified UART.

Prototype:
unsigned long
ROM_UARTClockSourceGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTClockSourceGet is a function pointer located at ROM_UARTTABLE[32].

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns the baud clock source for the specified UART. The possible baud clock
source are the system clock (UART_CLOCK_SYSTEM) or the precision internal oscillator
(UART_CLOCK_PIOSC).

Returns:
None.

22.2.1.13 ROM_UARTClockSourceSet

Sets the baud clock source for the specified UART.

Prototype:
void
ROM_UARTClockSourceSet(unsigned long ulBase,

unsigned long ulSource)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTClockSourceSet is a function pointer located at ROM_UARTTABLE[31].

Parameters:
ulBase is the base address of the UART port.
ulSource is the baud clock source for the UART.

Description:
This function allows the baud clock source for the UART to be selected. The possible clock
source are the system clock (UART_CLOCK_SYSTEM) or the precision internal oscillator
(UART_CLOCK_PIOSC).

Changing the baud clock source will change the baud rate generated by the UART. Therefore,
the baud rate should be reconfigured after any change to the baud clock source.

Returns:
None.

272 January 4, 2013

UART

22.2.1.14 ROM_UARTConfigGetExpClk

Gets the current configuration of a UART.

Prototype:
void
ROM_UARTConfigGetExpClk(unsigned long ulBase,

unsigned long ulUARTClk,
unsigned long *pulBaud,
unsigned long *pulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTConfigGetExpClk is a function pointer located at ROM_UARTTABLE[6].

Parameters:
ulBase is the base address of the UART port.
ulUARTClk is the rate of the clock supplied to the UART module.
pulBaud is a pointer to storage for the baud rate.
pulConfig is a pointer to storage for the data format.

Description:
The baud rate and data format for the UART is determined, given an explicitly provided periph-
eral clock (hence the ExpClk suffix). The returned baud rate is the actual baud rate; it may not
be the exact baud rate requested or an “official” baud rate. The data format returned in pul-
Config is enumerated the same as the ulConfig parameter of ROM_UARTConfigSetExpClk().

The peripheral clock is the same as the processor clock. This is the value returned by
ROM_SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save
the code/execution overhead of a call to ROM_SysCtlClockGet()).

If the peripheral clock has been changed to PIOSC (via ROM_UARTClockSourceSet()), the
peripheral clock should be specified as 16,000,000 (the nominal rate of PIOSC).

Returns:
None.

22.2.1.15 ROM_UARTConfigSetExpClk

Sets the configuration of a UART.

Prototype:
void
ROM_UARTConfigSetExpClk(unsigned long ulBase,

unsigned long ulUARTClk,
unsigned long ulBaud,
unsigned long ulConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTConfigSetExpClk is a function pointer located at ROM_UARTTABLE[5].

January 4, 2013 273

UART

Parameters:
ulBase is the base address of the UART port.
ulUARTClk is the rate of the clock supplied to the UART module.
ulBaud is the desired baud rate.
ulConfig is the data format for the port (number of data bits, number of stop bits, and parity).

Description:
This function configures the UART for operation in the specified data format. The baud rate is
provided in the ulBaud parameter and the data format in the ulConfig parameter.

The ulConfig parameter is the logical OR of three values: the number of data bits, the
number of stop bits, and the parity. UART_CONFIG_WLEN_8, UART_CONFIG_WLEN_7,
UART_CONFIG_WLEN_6, and UART_CONFIG_WLEN_5 select from eight to five data bits
per byte (respectively). UART_CONFIG_STOP_ONE and UART_CONFIG_STOP_TWO
select one or two stop bits (respectively). UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE,
and UART_CONFIG_PAR_ZERO select the parity mode (no parity bit, even parity bit, odd
parity bit, parity bit always one, and parity bit always zero, respectively).

The peripheral clock is the same as the processor clock. This is the value returned by
ROM_SysCtlClockGet(), or it can be explicitly hard-coded if it is constant and known (to save
the code/execution overhead of a call to ROM_SysCtlClockGet()).

If the peripheral clock has been changed to PIOSC (via ROM_UARTClockSourceSet()), the
peripheral clock should be specified as 16,000,000 (the nominal rate of PIOSC).

Returns:
None.

22.2.1.16 ROM_UARTDisable

Disables transmitting and receiving.

Prototype:
void
ROM_UARTDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDisable is a function pointer located at ROM_UARTTABLE[8].

Parameters:
ulBase is the base address of the UART port.

Description:
Clears the UARTEN, TXE, and RXE bits, then waits for the end of transmission of the current
character, and flushes the transmit FIFO.

Returns:
None.

274 January 4, 2013

UART

22.2.1.17 ROM_UARTDisableSIR

Disables SIR (IrDA) mode on the specified UART.

Prototype:
void
ROM_UARTDisableSIR(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDisableSIR is a function pointer located at ROM_UARTTABLE[10].

Parameters:
ulBase is the base address of the UART port.

Description:
Clears the SIREN (IrDA) and SIRLP (Low Power) bits.

Returns:
None.

22.2.1.18 ROM_UARTDMADisable

Disable UART DMA operation.

Prototype:
void
ROM_UARTDMADisable(unsigned long ulBase,

unsigned long ulDMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDMADisable is a function pointer located at ROM_UARTTABLE[23].

Parameters:
ulBase is the base address of the UART port.
ulDMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable UART DMA features that were enabled by
ROM_UARTDMAEnable(). The specified UART DMA features are disabled. The ulDMAFlags
parameter is the logical OR of any of the following values:

UART_DMA_RX - disable DMA for receive
UART_DMA_TX - disable DMA for transmit
UART_DMA_ERR_RXSTOP - do not disable DMA receive on UART error

Returns:
None.

January 4, 2013 275

UART

22.2.1.19 ROM_UARTDMAEnable

Enable UART DMA operation.

Prototype:
void
ROM_UARTDMAEnable(unsigned long ulBase,

unsigned long ulDMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDMAEnable is a function pointer located at ROM_UARTTABLE[22].

Parameters:
ulBase is the base address of the UART port.
ulDMAFlags is a bit mask of the DMA features to enable.

Description:
The specified UART DMA features are enabled. The UART can be configured to use DMA for
transmit or receive, and to disable receive if an error occurs. The ulDMAFlags parameter is the
logical OR of any of the following values:

UART_DMA_RX - enable DMA for receive
UART_DMA_TX - enable DMA for transmit
UART_DMA_ERR_RXSTOP - disable DMA receive on UART error

Note:
The uDMA controller must also be set up before DMA can be used with the UART.

Returns:
None.

22.2.1.20 ROM_UARTEnable

Enables transmitting and receiving.

Prototype:
void
ROM_UARTEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTEnable is a function pointer located at ROM_UARTTABLE[7].

Parameters:
ulBase is the base address of the UART port.

Description:
Sets the UARTEN, TXE, and RXE bits, and enables the transmit and receive FIFOs.

Returns:
None.

276 January 4, 2013

UART

22.2.1.21 ROM_UARTEnableSIR

Enables SIR (IrDA) mode on the specified UART.

Prototype:
void
ROM_UARTEnableSIR(unsigned long ulBase,

tBoolean bLowPower)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTEnableSIR is a function pointer located at ROM_UARTTABLE[9].

Parameters:
ulBase is the base address of the UART port.
bLowPower indicates if SIR Low Power Mode is to be used.

Description:
Enables the SIREN control bit for IrDA mode on the UART. If the bLowPower flag is set, then
SIRLP bit will also be set.

Returns:
None.

22.2.1.22 ROM_UARTFIFODisable

Disables the transmit and receive FIFOs.

Prototype:
void
ROM_UARTFIFODisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFODisable is a function pointer located at ROM_UARTTABLE[25].

Parameters:
ulBase is the base address of the UART port.

Description:
This functions disables the transmit and receive FIFOs in the UART.

Returns:
None.

22.2.1.23 ROM_UARTFIFOEnable

Enables the transmit and receive FIFOs.

January 4, 2013 277

UART

Prototype:
void
ROM_UARTFIFOEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFOEnable is a function pointer located at ROM_UARTTABLE[24].

Parameters:
ulBase is the base address of the UART port.

Description:
This functions enables the transmit and receive FIFOs in the UART.

Returns:
None.

22.2.1.24 ROM_UARTFIFOLevelGet

Gets the FIFO level at which interrupts are generated.

Prototype:
void
ROM_UARTFIFOLevelGet(unsigned long ulBase,

unsigned long *pulTxLevel,
unsigned long *pulRxLevel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFOLevelGet is a function pointer located at ROM_UARTTABLE[4].

Parameters:
ulBase is the base address of the UART port.
pulTxLevel is a pointer to storage for the transmit FIFO level, returned as one of

UART_FIFO_TX1_8, UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or
UART_FIFO_TX7_8.

pulRxLevel is a pointer to storage for the receive FIFO level, returned as one of
UART_FIFO_RX1_8, UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or
UART_FIFO_RX7_8.

Description:
This function gets the FIFO level at which transmit and receive interrupts are generated.

Returns:
None.

22.2.1.25 ROM_UARTFIFOLevelSet

Sets the FIFO level at which interrupts are generated.

278 January 4, 2013

UART

Prototype:
void
ROM_UARTFIFOLevelSet(unsigned long ulBase,

unsigned long ulTxLevel,
unsigned long ulRxLevel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFOLevelSet is a function pointer located at ROM_UARTTABLE[3].

Parameters:
ulBase is the base address of the UART port.
ulTxLevel is the transmit FIFO interrupt level, specified as one of UART_FIFO_TX1_8,

UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or UART_FIFO_TX7_8.
ulRxLevel is the receive FIFO interrupt level, specified as one of UART_FIFO_RX1_8,

UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or UART_FIFO_RX7_8.

Description:
This function sets the FIFO level at which transmit and receive interrupts are generated.

Returns:
None.

22.2.1.26 ROM_UARTIntClear

Clears UART interrupt sources.

Prototype:
void
ROM_UARTIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntClear is a function pointer located at ROM_UARTTABLE[20].

Parameters:
ulBase is the base address of the UART port.
ulIntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified UART interrupt sources are cleared, so that they no longer assert. This func-
tion must be called in the interrupt handler to keep the interrupt from being recognized again
immediately upon exit.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
ROM_UARTIntEnable().

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt

January 4, 2013 279

UART

source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

22.2.1.27 ROM_UARTIntDisable

Disables individual UART interrupt sources.

Prototype:
void
ROM_UARTIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntDisable is a function pointer located at ROM_UARTTABLE[18].

Parameters:
ulBase is the base address of the UART port.
ulIntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the indicated UART interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter has the same definition as the ulIntFlags parameter to
ROM_UARTIntEnable().

Returns:
None.

22.2.1.28 ROM_UARTIntEnable

Enables individual UART interrupt sources.

Prototype:
void
ROM_UARTIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntEnable is a function pointer located at ROM_UARTTABLE[17].

Parameters:
ulBase is the base address of the UART port.

280 January 4, 2013

UART

ulIntFlags is the bit mask of the interrupt sources to be enabled.

Description:
Enables the indicated UART interrupt sources. Only the sources that are enabled can be
reflected to the processor interrupt; disabled sources have no effect on the processor.

The ulIntFlags parameter is the logical OR of any of the following:

UART_INT_9BIT - 9-bit address match interrupt
UART_INT_OE - Overrun Error interrupt
UART_INT_BE - Break Error interrupt
UART_INT_PE - Parity Error interrupt
UART_INT_FE - Framing Error interrupt
UART_INT_RT - Receive Timeout interrupt
UART_INT_TX - Transmit interrupt
UART_INT_RX - Receive interrupt
UART_INT_DSR - DSR interrupt
UART_INT_DCD - DCD interrupt
UART_INT_CTS - CTS interrupt
UART_INT_RI - RI interrupt

Returns:
None.

22.2.1.29 ROM_UARTIntStatus

Gets the current interrupt status.

Prototype:
unsigned long
ROM_UARTIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntStatus is a function pointer located at ROM_UARTTABLE[19].

Parameters:
ulBase is the base address of the UART port.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the specified UART. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
ROM_UARTIntEnable().

January 4, 2013 281

UART

22.2.1.30 ROM_UARTParityModeGet

Gets the type of parity currently being used.

Prototype:
unsigned long
ROM_UARTParityModeGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTParityModeGet is a function pointer located at ROM_UARTTABLE[2].

Parameters:
ulBase is the base address of the UART port.

Description:
This function gets the type of parity used for transmitting data and expected when receiving
data.

Returns:
Returns the current parity settings, specified as one of UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or
UART_CONFIG_PAR_ZERO.

22.2.1.31 ROM_UARTParityModeSet

Sets the type of parity.

Prototype:
void
ROM_UARTParityModeSet(unsigned long ulBase,

unsigned long ulParity)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTParityModeSet is a function pointer located at ROM_UARTTABLE[1].

Parameters:
ulBase is the base address of the UART port.
ulParity specifies the type of parity to use.

Description:
Sets the type of parity to use for transmitting and expect when receiving. The ulPar-
ity parameter must be one of UART_CONFIG_PAR_NONE, UART_CONFIG_PAR_EVEN,
UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or UART_CONFIG_PAR_ZERO.
The last two allow direct control of the parity bit; it is always either one or zero based on
the mode.

Returns:
None.

282 January 4, 2013

UART

22.2.1.32 ROM_UARTRxErrorClear

Clears all reported receiver errors.

Prototype:
void
ROM_UARTRxErrorClear(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTRxErrorClear is a function pointer located at ROM_UARTTABLE[30].

Parameters:
ulBase is the base address of the UART port.

Description:
This function is used to clear all receiver error conditions reported via
ROM_UARTRxErrorGet(). If using the overrun, framing error, parity error or break inter-
rupts, this function must be called after clearing the interrupt to ensure that later errors of the
same type trigger another interrupt.

Returns:
None.

22.2.1.33 ROM_UARTRxErrorGet

Gets current receiver errors.

Prototype:
unsigned long
ROM_UARTRxErrorGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTRxErrorGet is a function pointer located at ROM_UARTTABLE[29].

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns the current state of each of the 4 receiver error sources. The returned er-
rors are equivalent to the four error bits returned via the previous call to ROM_UARTCharGet()
or ROM_UARTCharGetNonBlocking() with the exception that the overrun error is set immedi-
ately the overrun occurs rather than when a character is next read.

Returns:
Returns a logical OR combination of the receiver error flags, UART_RXERROR_FRAMING,
UART_RXERROR_PARITY, UART_RXERROR_BREAK and UART_RXERROR_OVERRUN.

January 4, 2013 283

UART

22.2.1.34 ROM_UARTSpaceAvail

Determines if there is any space in the transmit FIFO.

Prototype:
tBoolean
ROM_UARTSpaceAvail(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTSpaceAvail is a function pointer located at ROM_UARTTABLE[12].

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is space available in the transmit
FIFO.

Returns:
Returns true if there is space available in the transmit FIFO or false if there is no space
available in the transmit FIFO.

22.2.1.35 ROM_UARTTxIntModeGet

Returns the current operating mode for the UART transmit interrupt.

Prototype:
unsigned long
ROM_UARTTxIntModeGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTTxIntModeGet is a function pointer located at ROM_UARTTABLE[28].

Parameters:
ulBase is the base address of the UART port.

Description:
This function returns the current operating mode for the UART transmit interrupt. The return
value is UART_TXINT_MODE_EOT if the transmit interrupt is currently set to be asserted
once the transmitter is completely idle - the transmit FIFO is empty and all bits, including any
stop bits, have cleared the transmitter. The return value is UART_TXINT_MODE_FIFO if the
interrupt is set to be asserted based upon the level of the transmit FIFO.

Returns:
Returns UART_TXINT_MODE_FIFO or UART_TXINT_MODE_EOT.

284 January 4, 2013

UART

22.2.1.36 ROM_UARTTxIntModeSet

Sets the operating mode for the UART transmit interrupt.

Prototype:
void
ROM_UARTTxIntModeSet(unsigned long ulBase,

unsigned long ulMode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTTxIntModeSet is a function pointer located at ROM_UARTTABLE[27].

Parameters:
ulBase is the base address of the UART port.
ulMode is the operating mode for the transmit interrupt. It may be UART_TXINT_MODE_EOT

to trigger interrupts when the transmitter is idle or UART_TXINT_MODE_FIFO to trigger
based on the current transmit FIFO level.

Description:
This function allows the mode of the UART transmit interrupt to be set. By default, the
transmit interrupt is asserted when the FIFO level falls past a threshold set via a call
to ROM_UARTFIFOLevelSet(). Alternatively, if this function is called with ulMode set to
UART_TXINT_MODE_EOT, the transmit interrupt will only be asserted once the transmitter
is completely idle - the transmit FIFO is empty and all bits, including any stop bits, have cleared
the transmitter.

Returns:
None.

22.2.1.37 ROM_UpdateUART

Starts an update over the UART0 interface.

Prototype:
void
ROM_UpdateUART(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UpdateUART is a function pointer located at ROM_UARTTABLE[21].

Description:
Calling this function commences an update of the firmware via the UART0 interface. This
function assumes that the UART0 interface has already been configured and is currently oper-
ational.

Returns:
Never returns.

January 4, 2013 285

UART

286 January 4, 2013

uDMA Controller

23 uDMA Controller
Introduction .287
Functions . 289

23.1 Introduction

The microDMA (uDMA) API provides functions to configure the Stellaris uDMA (Direct Memory
Access) controller. The uDMA controller is designed to work with the the ARM Cortex-M3 processor
and provides an efficient and low-overhead means of transferring blocks of data in the system.

The uDMA controller has the following features:

dedicated channels for supported peripherals

one channel each for receive and transmit for devices with receive and transmit paths

dedicated channel for software initiated data transfers

channels can be independently configured and operated

an arbitration scheme that is configurable per channel

two levels of priority

subordinate to Cortex-M3 processor bus usage

data sizes of 8, 16, or 32 bits

address increment of byte, half-word, word, or none

maskable device requests

optional software initiated transfers on any channel

interrupt on transfer completion

The uDMA controller supports several different transfer modes, allowing for complex transfer
schemes. The following transfer modes are provided:

Basic mode performs a simple transfer when request is asserted by a device. This is ap-
propriate to use with peripherals where the peripheral asserts the request line whenever data
should be transferred. The transfer will stop if request is de-asserted, even if the transfer is
not complete.

Auto-request mode performs a simple transfer that is started by a request, but will always
complete the entire transfer, even if request is de-asserted. This is appropriate to use with
software initiated transfers.

Ping-Pong mode is used to transfer data to or from two buffers, switching from one buffer to
the other as each buffer fills. This mode is appropriate to use with peripherals as a way to
ensure a continuous flow of data to or from the peripheral. However, it is more complex to set
up and requires code to manage the ping-pong buffers in the interrupt handler.

Memory scatter/gather mode is a complex mode that provides a way to set up a list of trans-
fer “tasks” for the uDMA controller. Blocks of data can be transferred to and from arbitrary
locations in memory.

January 4, 2013 287

uDMA Controller

Peripheral scatter/gather mode is similar to memory scatter/gather mode except that it is
controlled by a peripheral request.

Detailed explanation of the various transfer modes is beyond the scope of this document. Please
refer to the device data sheet for more information on the operation of the uDMA controller.

The naming convention for the microDMA controller is to use the Greek letter “mu” to represent
“micro”. For the purposes of this document, and in the software library function names, a lower
case “u” will be used in place of “mu” when the controller is referred to as “uDMA”.

The general order of function calls to set up and perform a uDMA transfer is the following:

ROM_uDMAEnable() is called once to enable the controller.
ROM_uDMAControlBaseSet() is called once to set the channel control table.
ROM_uDMAChannelAttributeEnable() is called once or infrequently to configure the behavior
of the channel.
ROM_uDMAChannelControlSet() is used to set up characteristics of the data transfer. It only
needs to be called once if the nature of the data transfer does not change.
ROM_uDMAChannelTransferSet() is used to set the buffer pointers and size for a transfer. It
is called before each new transfer.
ROM_uDMAChannelEnable() enables a channel to perform data transfers.
ROM_uDMAChannelRequest() is used to initiate a software based transfer. This is normally
not used for peripheral based transfers.

In order to use the uDMA controller, you must first enable it by calling ROM_uDMAEnable(). You
can later disable it, if no longer needed, by calling ROM_uDMADisable().

Once the uDMA controller is enabled, you must tell it where to find the channel control structures
in system memory. This is done by using the function ROM_uDMAControlBaseSet() and passing
a pointer to the base of the channel control structure. The control structure must be allocated by
the application. One way to do this is to declare an array of data type char or unsigned char. In
order to support all channels and transfer modes, the control table array should be 1024 bytes, but
it can be fewer depending on transfer modes used and number of channels actually used.

Note:
The control table must be aligned on a 1024 byte boundary.

The uDMA controller supports multiple channels. Each channel has a set of attribute flags to con-
trol certain uDMA features and channel behavior. The attribute flags are set with the function
ROM_uDMAChannelAttributeEnable() and cleared with ROM_uDMAChannelAttributeDisable().
The setting of the channel attribute flags can be queried by using the function
ROM_uDMAChannelAttributeGet().

Next, the control parameters of the DMA transfer must be set. These parameters con-
trol the size and address increment of the data items to be transferred. The function
ROM_uDMAChannelControlSet() is used to set up these control parameters.

All of the functions mentioned so far are used only once or infrequently to set up the uDMA chan-
nel and transfer. In order to set the transfer addresses, transfer size, and transfer mode, use
the function ROM_uDMAChannelTransferSet(). This function must be called for each new trans-
fer. Once everything is set up, then channel is enabled by calling ROM_uDMAChannelEnable(),
which must be done before each new transfer. The uDMA controller will automatically disable
the channel at the completion of a transfer. A channel can be manually disabled by using
ROM_uDMAChannelDisable().

288 January 4, 2013

uDMA Controller

There are additional functions that can be used to query the status of a channel, either from an
interrupt handler or in polling fashion. The function ROM_uDMAChannelSizeGet() is used to find
the amount of data remaining to transfer on a channel. This will be zero when a transfer is complete.
The function ROM_uDMAChannelModeGet() can be used to find the transfer mode of a uDMA
channel. This is usually used to see if the mode indicates stopped which means that a transfer has
completed on a channel that was previously running. The function ROM_uDMAChannelIsEnabled()
can be used to determine if a particular channel is enabled.

The uDMA interrupt handler is only for software initiated transfers or errors. uDMA interrupts for
a peripheral occur on the peripheral’s dedicated interrupt channel, and should be handled by the
peripheral interrupt handler. It is not necessary to acknowledge or clear uDMA interrupt sources.
They are cleared automatically when they are serviced.

The uDMA interrupt handler should use the function ROM_uDMAErrorStatusGet() to test if a uDMA
error occurred. If so, the interrupt must be cleared by calling ROM_uDMAErrorStatusClear().

Note:
Many of the API functions take a channel parameter that includes the logical OR of one of
the values UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose the primary or alternate
control structure. For Basic and Auto transfer modes, only the primary control structure is
needed. The alternate control structure is only needed for complex transfer modes of Ping-
pong or Scatter/gather. Refer to the device data sheet for detailed information about transfer
modes.

23.2 Functions

Functions
void ROM_uDMAChannelAssign (unsigned long ulMapping)
void ROM_uDMAChannelAttributeDisable (unsigned long ulChannelNum, unsigned long
ulAttr)
void ROM_uDMAChannelAttributeEnable (unsigned long ulChannelNum, unsigned long
ulAttr)
unsigned long ROM_uDMAChannelAttributeGet (unsigned long ulChannelNum)
void ROM_uDMAChannelControlSet (unsigned long ulChannelStructIndex, unsigned long ul-
Control)
void ROM_uDMAChannelDisable (unsigned long ulChannelNum)
void ROM_uDMAChannelEnable (unsigned long ulChannelNum)
tBoolean ROM_uDMAChannelIsEnabled (unsigned long ulChannelNum)
unsigned long ROM_uDMAChannelModeGet (unsigned long ulChannelStructIndex)
void ROM_uDMAChannelRequest (unsigned long ulChannelNum)
void ROM_uDMAChannelScatterGatherSet (unsigned long ulChannelNum, unsigned ul-
TaskCount, void ∗pvTaskList, unsigned long ulIsPeriphSG)
void ROM_uDMAChannelSelectDefault (unsigned long ulDefPeriphs)
void ROM_uDMAChannelSelectSecondary (unsigned long ulSecPeriphs)
unsigned long ROM_uDMAChannelSizeGet (unsigned long ulChannelStructIndex)
void ROM_uDMAChannelTransferSet (unsigned long ulChannelStructIndex, unsigned long
ulMode, void ∗pvSrcAddr, void ∗pvDstAddr, unsigned long ulTransferSize)
void ∗ ROM_uDMAControlAlternateBaseGet (void)

January 4, 2013 289

uDMA Controller

void ∗ ROM_uDMAControlBaseGet (void)
void ROM_uDMAControlBaseSet (void ∗pControlTable)
void ROM_uDMADisable (void)
void ROM_uDMAEnable (void)
void ROM_uDMAErrorStatusClear (void)
unsigned long ROM_uDMAErrorStatusGet (void)
void ROM_uDMAIntClear (unsigned long ulChanMask)
unsigned long ROM_uDMAIntStatus (void)

23.2.1 Function Documentation

23.2.1.1 ROM_uDMAChannelAssign

Assigns a peripheral mapping for a uDMA channel.

Prototype:
void
ROM_uDMAChannelAssign(unsigned long ulMapping)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAssign is a function pointer located at ROM_UDMATABLE[23].

Parameters:
ulMapping is a macro specifying the peripheral assignment for a channel

Description:
This function assigns a peripheral mapping to a uDMA channel. It is used to select which
peripheral is used for a uDMA channel. The parameter ulMapping should be one of the macros
named UDMA_CHn_tttt from the header file udma.h. For example, to assign uDMA channel
0 to the UART2 RX channel, the parameter should be the macro UDMA_CH0_UART2RX.

Returns:
None.

23.2.1.2 ROM_uDMAChannelAttributeDisable

Disables attributes of a uDMA channel.

Prototype:
void
ROM_uDMAChannelAttributeDisable(unsigned long ulChannelNum,

unsigned long ulAttr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAttributeDisable is a function pointer located at
ROM_UDMATABLE[12].

290 January 4, 2013

uDMA Controller

Parameters:
ulChannelNum is the channel to configure.
ulAttr is a combination of attributes for the channel.

Description:
This function is used to disable attributes of a uDMA channel.

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12
UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX
UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5
UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13
UDMA_CHANNEL_USBEP1RX

January 4, 2013 291

uDMA Controller

UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

The ulAttr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only a burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

23.2.1.3 ROM_uDMAChannelAttributeEnable

Enables attributes of a uDMA channel.

Prototype:
void
ROM_uDMAChannelAttributeEnable(unsigned long ulChannelNum,

unsigned long ulAttr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAttributeEnable is a function pointer located at
ROM_UDMATABLE[11].

Parameters:
ulChannelNum is the channel to configure.
ulAttr is a combination of attributes for the channel.

Description:
This function is used to enable attributes of a uDMA channel.

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12

292 January 4, 2013

uDMA Controller

UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX
UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5
UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13
UDMA_CHANNEL_USBEP1RX
UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

The ulAttr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only a burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel (it is very unlikely that this flag should be used).
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.

January 4, 2013 293

uDMA Controller

UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

23.2.1.4 ROM_uDMAChannelAttributeGet

Gets the enabled attributes of a uDMA channel.

Prototype:
unsigned long
ROM_uDMAChannelAttributeGet(unsigned long ulChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAttributeGet is a function pointer located at ROM_UDMATABLE[13].

Parameters:
ulChannelNum is the channel to configure.

Description:
This function returns a combination of flags representing the attributes of the uDMA channel.

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12
UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX
UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5

294 January 4, 2013

uDMA Controller

UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13
UDMA_CHANNEL_USBEP1RX
UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

Returns:
Returns the logical OR of the attributes of the uDMA channel, which can be any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only a burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

23.2.1.5 ROM_uDMAChannelControlSet

Sets the control parameters for a uDMA channel control structure.

Prototype:
void
ROM_uDMAChannelControlSet(unsigned long ulChannelStructIndex,

unsigned long ulControl)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelControlSet is a function pointer located at ROM_UDMATABLE[14].

January 4, 2013 295

uDMA Controller

Parameters:
ulChannelStructIndex is the logical OR of the uDMA channel number with

UDMA_PRI_SELECT or UDMA_ALT_SELECT.
ulControl is logical OR of several control values to set the control parameters for the channel.

Description:
This function is used to set control parameters for a uDMA transfer. These are typically param-
eters that are not changed often.

The ulChannelStructIndex parameter should be the logical OR of the channel number with one
of UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alternate
data structure is used.

The ulControl parameter is the logical OR of five values: the data size, the source address
increment, the destination address increment, the arbitration size, and the use burst flag. The
choices available for each of these values is described below.

Choose the data size from one of UDMA_SIZE_8, UDMA_SIZE_16, or UDMA_SIZE_32 to
select a data size of 8, 16, or 32 bits.

Choose the source address increment from one of UDMA_SRC_INC_8,
UDMA_SRC_INC_16, UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE to select an
address increment of 8-bit bytes, 16-bit halfwords, 32-bit words, or to select non-incrementing.

Choose the destination address increment from one of UDMA_DST_INC_8,
UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_DST_INC_NONE to select an
address increment of 8-bit bytes, 16-bit halfwords, 32-bit words, or to select non-incrementing.

The arbitration size determines how many items are transferred before the uDMA controller re-
arbitrates for the bus. Choose the arbitration size from one of UDMA_ARB_1, UDMA_ARB_2,
UDMA_ARB_4, UDMA_ARB_8, through UDMA_ARB_1024 to select the arbitration size from
1 to 1024 items, in powers of 2.

The value UDMA_NEXT_USEBURST is used to force the channel to only respond to burst
requests at the tail end of a scatter-gather transfer.

Note:
The address increment cannot be smaller than the data size.

Returns:
None.

23.2.1.6 ROM_uDMAChannelDisable

Disables a uDMA channel for operation.

Prototype:
void
ROM_uDMAChannelDisable(unsigned long ulChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelDisable is a function pointer located at ROM_UDMATABLE[6].

296 January 4, 2013

uDMA Controller

Parameters:
ulChannelNum is the channel number to disable.

Description:
This function disables a specific uDMA channel. Once disabled, a channel will not respond to
uDMA transfer requests until re-enabled via ROM_uDMAChannelEnable().

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12
UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX
UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5
UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13
UDMA_CHANNEL_USBEP1RX

January 4, 2013 297

uDMA Controller

UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

Returns:
None.

23.2.1.7 ROM_uDMAChannelEnable

Enables a uDMA channel for operation.

Prototype:
void
ROM_uDMAChannelEnable(unsigned long ulChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelEnable is a function pointer located at ROM_UDMATABLE[5].

Parameters:
ulChannelNum is the channel number to enable.

Description:
This function enables a specific uDMA channel for use. This function must be used to enable
a channel before it can be used to perform a uDMA transfer.

When a uDMA transfer is completed, the channel is automatically disabled by the uDMA con-
troller. Therefore, this function should be called prior to starting up any new transfer.

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12
UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX

298 January 4, 2013

uDMA Controller

UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5
UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13
UDMA_CHANNEL_USBEP1RX
UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

Returns:
None.

23.2.1.8 ROM_uDMAChannelIsEnabled

Checks if a uDMA channel is enabled for operation.

Prototype:
tBoolean
ROM_uDMAChannelIsEnabled(unsigned long ulChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelIsEnabled is a function pointer located at ROM_UDMATABLE[7].

January 4, 2013 299

uDMA Controller

Parameters:
ulChannelNum is the channel number to check.

Description:
This function checks to see if a specific uDMA channel is enabled. This can be used to check
the status of a transfer, since the channel will be automatically disabled at the end of a transfer.

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12
UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX
UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5
UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13
UDMA_CHANNEL_USBEP1RX

300 January 4, 2013

uDMA Controller

UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

Returns:
Returns true if the channel is enabled, false if disabled.

23.2.1.9 ROM_uDMAChannelModeGet

Gets the transfer mode for a uDMA channel control structure.

Prototype:
unsigned long
ROM_uDMAChannelModeGet(unsigned long ulChannelStructIndex)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelModeGet is a function pointer located at ROM_UDMATABLE[16].

Parameters:
ulChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.

Description:
This function is used to get the transfer mode for the uDMA channel. It can be used to
query the status of a transfer on a channel. When the transfer is complete the mode is
UDMA_MODE_STOP.

Returns:
Returns the transfer mode of the specified channel and control structure, which is one of the
following values: UDMA_MODE_STOP, UDMA_MODE_BASIC, UDMA_MODE_AUTO,
UDMA_MODE_PINGPONG, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER.

23.2.1.10 ROM_uDMAChannelRequest

Requests a uDMA channel to start a transfer.

Prototype:
void
ROM_uDMAChannelRequest(unsigned long ulChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelRequest is a function pointer located at ROM_UDMATABLE[10].

January 4, 2013 301

uDMA Controller

Parameters:
ulChannelNum is the channel number on which to request a uDMA transfer.

Description:
This function allows software to request a uDMA channel to begin a transfer. This could be
used for performing a memory to memory transfer, or if for some reason a transfer needs to be
initiated by software instead of the peripheral associated with that channel.

The ulChannelNum parameter must be only one of the following values:

UDMA_CHANNEL_ADC0
UDMA_CHANNEL_ADC1
UDMA_CHANNEL_ADC2
UDMA_CHANNEL_ADC3
UDMA_SEC_CHANNEL_ADC10
UDMA_SEC_CHANNEL_ADC11
UDMA_SEC_CHANNEL_ADC12
UDMA_SEC_CHANNEL_ADC13
UDMA_CHANNEL_SSI0RX
UDMA_CHANNEL_SSI0TX
UDMA_CHANNEL_SSI1RX
UDMA_CHANNEL_SSI1TX
UDMA_SEC_CHANNEL_SSI1RX
UDMA_SEC_CHANNEL_SSI1TX
UDMA_CHANNEL_TMR0A
UDMA_CHANNEL_TMR0B
UDMA_CHANNEL_TMR1A
UDMA_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR1A
UDMA_SEC_CHANNEL_TMR1B
UDMA_SEC_CHANNEL_TMR2A_4
UDMA_SEC_CHANNEL_TMR2B_5
UDMA_SEC_CHANNEL_TMR2A_6
UDMA_SEC_CHANNEL_TMR2B_7
UDMA_SEC_CHANNEL_TMR2A_14
UDMA_SEC_CHANNEL_TMR2B_15
UDMA_SEC_CHANNEL_TMR3A
UDMA_SEC_CHANNEL_TMR3B
UDMA_CHANNEL_UART0RX
UDMA_CHANNEL_UART0TX
UDMA_CHANNEL_UART1RX
UDMA_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART1RX
UDMA_SEC_CHANNEL_UART1TX
UDMA_SEC_CHANNEL_UART2RX_0
UDMA_SEC_CHANNEL_UART2TX_1
UDMA_SEC_CHANNEL_UART2RX_12
UDMA_SEC_CHANNEL_UART2TX_13

302 January 4, 2013

uDMA Controller

UDMA_CHANNEL_USBEP1RX
UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX
UDMA_CHANNEL_SW
UDMA_SEC_CHANNEL_SW

Note:
If the channel is UDMA_CHANNEL_SW and interrupts are used, then the completion is sig-
naled on the uDMA dedicated interrupt. If a peripheral channel is used, then the completion is
signaled on the peripheral’s interrupt.

Returns:
None.

23.2.1.11 ROM_uDMAChannelScatterGatherSet

Configures a uDMA channel for scatter-gather mode.

Prototype:
void
ROM_uDMAChannelScatterGatherSet(unsigned long ulChannelNum,

unsigned ulTaskCount,
void *pvTaskList,
unsigned long ulIsPeriphSG)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelScatterGatherSet is a function pointer located at
ROM_UDMATABLE[22].

Parameters:
ulChannelNum is the uDMA channel number.
ulTaskCount is the number of scatter-gather tasks to execute.
pvTaskList is a pointer to the beginning of the scatter-gather task list.
ulIsPeriphSG is a flag to indicate it is a peripheral scatter-gather transfer (else it is memory

scatter-gather transfer)

Description:
This function is used to configure a channel for scatter-gather mode. The caller must have
already set up a task list, and pass a pointer to the start of the task list as the pvTaskList
parameter. The ulTaskCount parameter is the count of tasks in the task list, not the size of
the task list. The flag bIsPeriphSG should be used to indicate if the scatter-gather should be
configured for a peripheral or memory scatter-gather operation.

Returns:
None.

January 4, 2013 303

uDMA Controller

23.2.1.12 ROM_uDMAChannelSelectDefault

Selects the default peripheral for a set of uDMA channels.

Prototype:
void
ROM_uDMAChannelSelectDefault(unsigned long ulDefPeriphs)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelSelectDefault is a function pointer located at ROM_UDMATABLE[18].

Parameters:
ulDefPeriphs is the logical or of the uDMA channels for which to use the default peripheral,

instead of the secondary peripheral.

Description:
This function is used to select the default peripheral assignment for a set of uDMA channels.

The parameter ulDefPeriphs can be the logical OR of any of the following macros. If one of
the macros below is in the list passed to this function, then the default peripheral (marked as
DEF) is selected.

UDMA_DEF_USBEP1RX_SEC_UART2RX
UDMA_DEF_USBEP1TX_SEC_UART2TX
UDMA_DEF_USBEP2RX_SEC_TMR3A
UDMA_DEF_USBEP2TX_SEC_TMR3B
UDMA_DEF_USBEP3RX_SEC_TMR2A
UDMA_DEF_USBEP3TX_SEC_TMR2B
UDMA_DEF_UART0RX_SEC_UART1RX
UDMA_DEF_UART0TX_SEC_UART1TX
UDMA_DEF_SSI0RX_SEC_SSI1RX
UDMA_DEF_SSI0TX_SEC_SSI1TX
UDMA_DEF_ADC00_SEC_TMR2A
UDMA_DEF_ADC01_SEC_TMR2B
UDMA_DEF_ADC02_SEC_RESERVED
UDMA_DEF_ADC03_SEC_RESERVED
UDMA_DEF_TMR0A_SEC_TMR1A
UDMA_DEF_TMR0B_SEC_TMR1B
UDMA_DEF_TMR1A_SEC_EPI0RX
UDMA_DEF_TMR1B_SEC_EPI0TX
UDMA_DEF_UART1RX_SEC_RESERVED
UDMA_DEF_UART1TX_SEC_RESERVED
UDMA_DEF_SSI1RX_SEC_ADC10
UDMA_DEF_SSI1TX_SEC_ADC11

Returns:
None.

304 January 4, 2013

uDMA Controller

23.2.1.13 ROM_uDMAChannelSelectSecondary

Selects the secondary peripheral for a set of uDMA channels.

Prototype:
void
ROM_uDMAChannelSelectSecondary(unsigned long ulSecPeriphs)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelSelectSecondary is a function pointer located at
ROM_UDMATABLE[17].

Parameters:
ulSecPeriphs is the logical or of the uDMA channels for which to use the secondary periph-

eral, instead of the default peripheral.

Description:
This function is used to select the secondary peripheral assignment for a set of uDMA chan-
nels. By selecting the secondary peripheral assignment for a channel, the default peripheral
assignment is no longer available for that channel.

The parameter ulSecPeriphs can be the logical OR of any of the following macros. If one of
the macros below is in the list passed to this function, then the secondary peripheral (marked
as _SEC_) is selected.

UDMA_DEF_USBEP1RX_SEC_UART2RX
UDMA_DEF_USBEP1TX_SEC_UART2TX
UDMA_DEF_USBEP2RX_SEC_TMR3A
UDMA_DEF_USBEP2TX_SEC_TMR3B
UDMA_DEF_USBEP3RX_SEC_TMR2A
UDMA_DEF_USBEP3TX_SEC_TMR2B
UDMA_DEF_ETH0RX_SEC_TMR2A
UDMA_DEF_ETH0TX_SEC_TMR2B
UDMA_DEF_UART0RX_SEC_UART1RX
UDMA_DEF_UART0TX_SEC_UART1TX
UDMA_DEF_SSI0RX_SEC_SSI1RX
UDMA_DEF_SSI0TX_SEC_SSI1TX
UDMA_DEF_RESERVED_SEC_UART2RX
UDMA_DEF_RESERVED_SEC_UART2TX
UDMA_DEF_ADC00_SEC_TMR2A
UDMA_DEF_ADC01_SEC_TMR2B
UDMA_DEF_TMR0A_SEC_TMR1A
UDMA_DEF_TMR0B_SEC_TMR1B
UDMA_DEF_SSI1RX_SEC_ADC10
UDMA_DEF_SSI1TX_SEC_ADC11
UDMA_DEF_RESERVED_SEC_ADC12
UDMA_DEF_RESERVED_SEC_ADC13

Returns:
None.

January 4, 2013 305

uDMA Controller

23.2.1.14 ROM_uDMAChannelSizeGet

Gets the current transfer size for a uDMA channel control structure.

Prototype:
unsigned long
ROM_uDMAChannelSizeGet(unsigned long ulChannelStructIndex)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelSizeGet is a function pointer located at ROM_UDMATABLE[15].

Parameters:
ulChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.

Description:
This function is used to get the uDMA transfer size for a channel. The transfer size is the
number of items to transfer, where the size of an item might be 8, 16, or 32 bits. If a partial
transfer has already occurred, then the number of remaining items is returned. If the transfer
is complete, then 0 is returned.

Returns:
Returns the number of items remaining to transfer.

23.2.1.15 ROM_uDMAChannelTransferSet

Sets the transfer parameters for a uDMA channel control structure.

Prototype:
void
ROM_uDMAChannelTransferSet(unsigned long ulChannelStructIndex,

unsigned long ulMode,
void *pvSrcAddr,
void *pvDstAddr,
unsigned long ulTransferSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelTransferSet is a function pointer located at ROM_UDMATABLE[0].

Parameters:
ulChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.
ulMode is the type of uDMA transfer.
pvSrcAddr is the source address for the transfer.
pvDstAddr is the destination address for the transfer.
ulTransferSize is the number of data items to transfer.

306 January 4, 2013

uDMA Controller

Description:
This function is used to set the parameters for a uDMA transfer. These are typically parameters
that are changed often. The function ROM_uDMAChannelControlSet() MUST be called at least
once for this channel prior to calling this function.

The ulChannelStructIndex parameter should be the logical OR of the channel number with one
of UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alternate
data structure is used.

The ulMode parameter should be one of the following values:

UDMA_MODE_STOP stops the uDMA transfer. The controller sets the mode to this value
at the end of a transfer.
UDMA_MODE_BASIC to perform a basic transfer based on request.
UDMA_MODE_AUTO to perform a transfer that will always complete once started even if
request is removed.
UDMA_MODE_PINGPONG to set up a transfer that switches between the primary and
alternate control structures for the channel. This allows use of ping-pong buffering for
uDMA transfers.
UDMA_MODE_MEM_SCATTER_GATHER to set up a memory scatter-gather transfer.
UDMA_MODE_PER_SCATTER_GATHER to set up a peripheral scatter-gather transfer.

The pvSrcAddr and pvDstAddr parameters are pointers to the first location of the data to be
transferred. These addresses should be aligned according to the item size. The compiler will
take care of this if the pointers are pointing to storage of the appropriate data type.

The ulTransferSize parameter is the number of data items, not the number of bytes.

The two scatter/gather modes, memory and peripheral, are actually different depending on
whether the primary or alternate control structure is selected. This function will look for the
UDMA_PRI_SELECT and UDMA_ALT_SELECT flag along with the channel number and will
set the scatter/gather mode as appropriate for the primary or alternate control structure.

The channel must also be enabled using ROM_uDMAChannelEnable() after calling this func-
tion. The transfer will not begin until the channel has been set up and enabled. Note
that the channel is automatically disabled after the transfer is completed, meaning that
ROM_uDMAChannelEnable() must be called again after setting up the next transfer.

Note:
Great care must be taken to not modify a channel control structure that is in use or else the
results are unpredictable, including the possibility of undesired data transfers to or from mem-
ory or peripherals. For BASIC and AUTO modes, it is safe to make changes when the channel
is disabled, or the ROM_uDMAChannelModeGet() returns UDMA_MODE_STOP. For PING-
PONG or one of the SCATTER_GATHER modes, it is safe to modify the primary or alternate
control structure only when the other is being used. The ROM_uDMAChannelModeGet() func-
tion will return UDMA_MODE_STOP when a channel control structure is inactive and safe to
modify.

Returns:
None.

23.2.1.16 ROM_uDMAControlAlternateBaseGet

Gets the base address for the channel control table alternate structures.

January 4, 2013 307

uDMA Controller

Prototype:
void *
ROM_uDMAControlAlternateBaseGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAControlAlternateBaseGet is a function pointer located at
ROM_UDMATABLE[21].

Description:
This function gets the base address of the second half of the channel control table that holds
the alternate control structures for each channel.

Returns:
Returns a pointer to the base address of the second half of the channel control table.

23.2.1.17 ROM_uDMAControlBaseGet

Gets the base address for the channel control table.

Prototype:
void *
ROM_uDMAControlBaseGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAControlBaseGet is a function pointer located at ROM_UDMATABLE[9].

Description:
This function gets the base address of the channel control table. This table resides in system
memory and holds control information for each uDMA channel.

Returns:
Returns a pointer to the base address of the channel control table.

23.2.1.18 ROM_uDMAControlBaseSet

Sets the base address for the channel control table.

Prototype:
void
ROM_uDMAControlBaseSet(void *pControlTable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAControlBaseSet is a function pointer located at ROM_UDMATABLE[8].

Parameters:
pControlTable is a pointer to the 1024 byte aligned base address of the uDMA channel control

table.

308 January 4, 2013

uDMA Controller

Description:
This function sets the base address of the channel control table. This table resides in system
memory and holds control information for each uDMA channel. The table must be aligned on
a 1024 byte boundary. The base address must be set before any of the channel functions can
be used.

The size of the channel control table depends on the number of uDMA channels, and which
transfer modes are used. Refer to the introductory text and the microcontroller data sheet for
more information about the channel control table.

Returns:
None.

23.2.1.19 ROM_uDMADisable

Disables the uDMA controller for use.

Prototype:
void
ROM_uDMADisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMADisable is a function pointer located at ROM_UDMATABLE[2].

Description:
This function disables the uDMA controller. Once disabled, the uDMA controller will not operate
until re-enabled with ROM_uDMAEnable().

Returns:
None.

23.2.1.20 ROM_uDMAEnable

Enables the uDMA controller for use.

Prototype:
void
ROM_uDMAEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAEnable is a function pointer located at ROM_UDMATABLE[1].

Description:
This function enables the uDMA controller. The uDMA controller must be enabled before it can
be configured and used.

Returns:
None.

January 4, 2013 309

uDMA Controller

23.2.1.21 ROM_uDMAErrorStatusClear

Clears the uDMA error interrupt.

Prototype:
void
ROM_uDMAErrorStatusClear(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAErrorStatusClear is a function pointer located at ROM_UDMATABLE[4].

Description:
This function clears a pending uDMA error interrupt. It should be called from within the uDMA
error interrupt handler to clear the interrupt.

Returns:
None.

23.2.1.22 ROM_uDMAErrorStatusGet

Gets the uDMA error status.

Prototype:
unsigned long
ROM_uDMAErrorStatusGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAErrorStatusGet is a function pointer located at ROM_UDMATABLE[3].

Description:
This function returns the uDMA error status. It should be called from within the uDMA error
interrupt handler to determine if a uDMA error occurred.

Returns:
Returns non-zero if a uDMA error is pending.

23.2.1.23 ROM_uDMAIntClear

Clears uDMA interrupt status.

Prototype:
void
ROM_uDMAIntClear(unsigned long ulChanMask)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAIntClear is a function pointer located at ROM_UDMATABLE[20].

310 January 4, 2013

uDMA Controller

Parameters:
ulChanMask is a 32-bit mask with one bit for each uDMA channel.

Description:
Clears bits in the uDMA interrupt status register according to which bits are set in ulChanMask .
There is one bit for each channel. If a a bit is set in ulChanMask , then that corresponding
channel’s interrupt status is cleared (if it was set).

Returns:
None.

23.2.1.24 ROM_uDMAIntStatus

Gets the uDMA controller channel interrupt status.

Prototype:
unsigned long
ROM_uDMAIntStatus(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAIntStatus is a function pointer located at ROM_UDMATABLE[19].

Description:
This function is used to get the interrupt status of the uDMA controller. The returned value
is a 32-bit bit mask that indicates which channels are requesting an interrupt. This function
can be used from within an interrupt handler to determine or confirm which uDMA channel has
requested an interrupt.

Returns:
Returns a 32-bit mask which indicates requesting uDMA channels. There is a bit for each
channel, and a 1 in a bit indicates that channel is requesting an interrupt. Multiple bits can be
set.

January 4, 2013 311

uDMA Controller

312 January 4, 2013

USB Controller

24 USB Controller
Introduction .313
Using uDMA with USB . 314
Functions . 318

24.1 Introduction

The USB APIs provide a set of functions that are used to access the Stellaris USB device or
host controllers. The APIs are split into groups according to the functionality provided by the USB
controller present in the microcontroller. Because of this, the driver has to handle microcontrollers
that have only a USB device interface, a host and/or device interface, or microcontrollers that have
an OTG interface, The groups are the following: USBDev, USBHost, USBOTG, USBEndpoint, and
USBFIFO. The APIs in the USBDev group are only used with microcontrollers that have a USB
device controller. The APIs in the USBHost group can only be used with microcontrollers that have
a USB host controller. The USBOTG APIs are used by microcontrollers with an OTG interface. With
USB OTG controllers, once the mode of the USB controller is configured, the device or host APIs
should be used. The remainder of the APIs are used for both USB host and USB device controllers.
The USBEndpoint APIs are used to configure and access the endpoints while the USBFIFO APIs
are used to configure the size and location of the FIFOs.

The USB APIs abstract the IN/OUT nature of endpoints based on the type of USB controller that is
in use. Any API that uses the IN/OUT terminology will comply with the standard USB interpretation
of these terms. For example, an OUT endpoint on a microcontroller that has only a device interface
will actually receive data on this endpoint, while a microcontroller that has a host interface will
actually transmit data on an OUT endpoint.

Another important fact to understand is that all endpoints in the USB controller, whether host or
device, have two “sides” to them. This allows each endpoint to both transmit and receive data. An
application can use a single endpoint for both and IN and OUT transactions. For example: In device
mode, endpoint 1 could be configured to have BULK IN and BULK OUT handled by endpoint 1. It
is important to note that the endpoint number used is the endpoint number reported to the host.
For microcontrollers with host controllers, the application can use an endpoint communicate with
both IN and OUT endpoints of different types as well. For example: Endpoint 2 could be used to
communicate with one device’s interrupt IN endpoint and another device’s bulk OUT endpoint at
the same time. This effectively gives the application one dedicated control endpoint for IN or OUT
control transactions on endpoint 0, and three IN endpoints and three OUT endpoints.

The USB controller has a configurable FIFOs in devices that have a USB device controller as well as
those that have a host controller. The overall size of the FIFO RAM is 4096 bytes. It is important to
note that the first 64 bytes of this memory are dedicated to endpoint 0 for control transactions. The
remaining 4032 bytes are configurable however the application desires. The FIFO configuration is
usually set at the beginning of the application and not modified once the USB controller is in use.
The FIFO configuration uses the ROM_USBFIFOConfigSet() API to set the starting address and
the size of the FIFOs that are dedicated to each endpoint.

Example: FIFO Configuration

//
// 0-64 - endpoint 0 IN/OUT (64 bytes).
//

January 4, 2013 313

USB Controller

// 64-576 - endpoint 1 IN (512 bytes).
//
// 576-1088 - endpoint 1 OUT (512 bytes).
//
// 1088-1600 - endpoint 2 IN (512 bytes).
//

//
// FIFO for endpoint 1 IN starts at address 64 and is 512 bytes in size.
//
ROM_USBFIFOConfigSet(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_512,

USB_EP_DEV_IN);

//
// FIFO for endpoint 1 OUT starts at address 576 and is 512 bytes in size.
//
ROM_USBFIFOConfigSet(USB0_BASE, USB_EP_1, 576, USB_FIFO_SZ_512,

USB_EP_DEV_OUT);

//
// FIFO for endpoint 2 IN starts at address 1088 and is 512 bytes in size.
//
ROM_USBFIFOConfigSet(USB0_BASE, USB_EP_2, 1088, USB_FIFO_SZ_512,

USB_EP_DEV_IN);

24.2 Using USB with the uDMA Controller

The USB controller can be used with the uDMA for either sending or receiving data with both host
and device controllers. The uDMA controller cannot be used to access endpoint 0, however all
other endpoints are capable of using the uDMA controller. The uDMA channel numbers for USB
are defined by the following values:

UDMA_CHANNEL_USBEP1RX
UDMA_CHANNEL_USBEP1TX
UDMA_CHANNEL_USBEP2RX
UDMA_CHANNEL_USBEP2TX
UDMA_CHANNEL_USBEP3RX
UDMA_CHANNEL_USBEP3TX

Since the uDMA controller views transfers as either transmit or receive, and the USB controller
operates on IN/OUT transactions, some care must be taken to use the correct uDMA channel
with the correct endpoint. USB host IN and USB device OUT endpoints both use receive uDMA
channels while USB host OUT and USB device IN endpoints will use transmit uDMA channels.

When configuring the endpoint there are additional DMA settings needed. When call-
ing ROM_USBDevEndpointConfigSet() for an endpoint that will use uDMA, extra flags need
to be added to the ulFlags parameter. These flags are one of USB_EP_DMA_MODE_0
or USB_EP_DMA_MODE_1 to control the mode of the DMA transaction, and likely
USB_EP_AUTO_SET to allow the data to be transmitted automatically once a packet is ready.
USB_EP_DMA_MODE_0 will generate an interrupt whenever there is more space available
in the FIFO. This allows the application code to perform operations between each packet.
USB_EP_DMA_MODE_1 will only interrupt when the DMA transfer complete or there is some
type of error condition. This can be used for larger transmissions that require no interaction be-
tween packets. USB_EP_AUTO_SET should normally be specified when using uDMA to prevent
the need for application code to start the actual transfer of data.

314 January 4, 2013

USB Controller

Example: Endpoint configuration for a device IN endpoint:

//
// Endpoint 1 is a device mode BULK IN endpoint using uDMA.
//
ROM_USBDevEndpointConfigSet(USB0_BASE, USB_EP_1, 64,

(USB_EP_MODE_BULK | USB_EP_DEV_IN |
USB_EP_DMA_MODE_0 | USB_EP_AUTO_SET));

The application must provide the configuration of the actual uDMA controller. First, to clear out any
previous settings, the application should call ROM_uDMAChannelAttributeDisable(). Then the ap-
plication should call ROM_uDMAChannelAttributeEnable() for the uDMA channel that corresponds
to the endpoint, and specify the UDMA_ATTR_USEBURST flag.

Note:
All uDMA transfers used by the USB controller must enable burst mode.

The application needs to indicate the size of each uDMA transactions, combined with the source
and destination increments and the arbitration level for the uDMA controller.

Example: Configure endpoint 1 transmit channel.

//
// Set up the DMA for USB transmit.
//
ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_USBEP1TX, UDMA_ATTR_ALL);

//
// Enable uDMA burst mode.
//
ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_USBEP1TX, UDMA_ATTR_USEBURST);

//
// Data size is 8 bits and the source has a one byte increment.
// Destination has no increment as it is a FIFO.
//
ROM_uDMAChannelControlSet(UDMA_CHANNEL_USBEP1TX,

(UDMA_SIZE_8 | UDMA_SRC_INC_8 |
UDMA_DST_INC_NONE | UDMA_ARB_64));

The next step is to actually start the uDMA transfer once the data is ready to be sent. There are the
only two calls that the application needs to call to start a new transfer. Normally all of the previous
uDMA configuration can stay the same. The first call, ROM_uDMAChannelTransferSet(), resets the
source and destination addresses for the DMA transfer and specifies how much data will be sent.
The next call, ROM_uDMAChannelEnable() actually allows the uDMA controller to begin requesting
data.

Example: Start the transfer of data on endpoint 1.

//
// Configure the address and size of the data to transfer.
//
ROM_uDMAChannelTransferSet(UDMA_CHANNEL_USBEP1TX, UDMA_MODE_BASIC, pData,

(void *)ROM_USBFIFOAddr(USB0_BASE, USB_EP_1),
64);

//
// Start the transfer.
//
ROM_uDMAChannelEnable(UDMA_CHANNEL_USBEP1TX);

January 4, 2013 315

USB Controller

Because the uDMA interrupt occurs on the same interrupt vector as any other USB interrupt, the
application must perform an extra check to determine what was the actual source of the interrupt.
It is important to note that this DMA interrupt does not mean that the USB transfer is complete,
but that the data has been transferred to the USB controller’s FIFO. There will also be an interrupt
indicating that the USB transfer is complete. However, both events need to be handled in the same
interrupt routine. This because if other code in the system holds off the USB interrupt routine, both
the uDMA complete and transfer complete can occur before the USB interrupt handler is called.
The USB has no status bit indicating that the interrupt was due to a DMA complete, which means
that the application must remember if a uDMA transaction was in progress. The example below
shows the g_ulFlags global variable being used to remember that a uDMA transfer was pending.

Example: Interrupt handling with uDMA.

if((g_ulFlags & EP1_DMA_IN_PEND) &&
(ROM_uDMAChannelModeGet(UDMA_CHANNEL_USBEP1TX) == UDMA_MODE_STOP))

{
//
// Handle the uDMA complete case.
//
...

}

//
// Get the interrupt status.
//
ulStatus = ROM_USBIntStatus(USB0_BASE);

if(ulStatus & USB_INT_DEV_IN_EP1)
{

//
// Handler the transfer complete case.
//
...

}

To use the USB device controller with an OUT endpoint, the application must use a receive uDMA
channel. When calling ROM_USBDevEndpointConfigSet() for an endpoint that uses uDMA, the
application must set extra flags in the ulFlags parameter. The USB_EP_DMA_MODE_0 and
USB_EP_DMA_MODE_1 control the mode of the transaction, USB_EP_AUTO_CLEAR allows the
data to be received automatically without needing to manually acknowledge that the data has been
read. USB_EP_DMA_MODE_0 will not generate an interrupt when each packet is sent over USB
and will only interrupt when the uDMA transfer is complete. USB_EP_DMA_MODE_1 will interrupt
when the uDMA transfer complete or a short packet is received. This is useful for BULK endpoints
that may not have prior knowledge of how much data is being received. USB_EP_AUTO_CLEAR
should normally be specified when using uDMA to prevent the need for application code to ac-
knowledge that the data has been read from the FIFO. The example below configures endpoint 1
as a Device mode Bulk OUT endpoint using DMA mode 1 with a max packet size of 64 bytes.

Example: Configure endpoint 1 receive channel:

//
// Endpoint 1 is a device mode BULK OUT endpoint using uDMA.
//
ROM_USBDevEndpointConfigSet(USB0_BASE, USB_EP_1, 64,

(USB_EP_DEV_OUT | USB_EP_MODE_BULK |
USB_EP_DMA_MODE_1 | USB_EP_AUTO_CLEAR));

Next the configuration of the actual uDMA controller is needed. Like the transmit case, the first a call
to ROM_uDMAChannelAttributeDisable() is made to clear any previous settings. This is followed

316 January 4, 2013

USB Controller

by a call to ROM_uDMAChannelAttributeEnable() with the DMA_ATTR_USEBURST value.

Note:
All uDMA transfers used by the USB controller must use burst mode.

The final call sets the read access size to 8 bits wide, the source address increment to 0, the
destination address increment to 8 bits and the uDMA arbitration size to 64 bytes.

Example: Configure endpoint 1 transmit channel.

//
// Clear out any uDMA settings.
//
ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_USBEP1RX, UDMA_ATTR_ALL);

ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_USBEP1RX, UDMA_ATTR_USEBURST);

ROM_uDMAChannelControlSet(UDMA_CHANNEL_USBEP1RX,
(UDMA_SIZE_8 | UDMA_SRC_INC_NONE |
UDMA_DST_INC_8 | UDMA_ARB_64));

The next step is to actually start the uDMA transfer. Unlike the transfer side, if the application is
ready, this can be set up right away to wait for incoming data. Like the transmit case, these are
the only calls needed to start a new transfer, normally all of the previous uDMA configuration can
remain the same.

Example: Start requesting of data on endpoint 1.

//
// Configure the address and size of the data to transfer. The transfer
// is from the USB FIFO for endpoint 0 to g_DataBufferIn.
//
ROM_uDMAChannelTransferSet(UDMA_CHANNEL_USBEP1RX, UDMA_MODE_BASIC,

(void *)ROM_USBFIFOAddr(USB0_BASE, USB_EP_1),
g_DataBufferIn, 64);

//
// Enable the uDMA channel and wait for data.
//
ROM_uDMAChannelEnable(UDMA_CHANNEL_USBEP1RX);

The uDMA interrupt occurs on the same interrupt vector as any other USB interrupt, this means
that the application needs to check to see what was the actual source of the interrupt. It is possible
that the USB interrupt does not indicate that the USB transfer was complete. The interrupt could
also have been caused by a short packet, error, or even a transmit complete. This requires that the
application check both receive cases to determine if this is related to receiving data on the endpoint.
Because the USB has no status bit indicating that the interrupt was due to a uDMA complete, the
application must remember if a uDMA transaction was in progress.

Example: Interrupt handling with uDMA.

//
// Get the current interrupt status.
//
ulStatus = ROM_USBIntStatus(USB0_BASE);

if(ulStatus & USB_INT_DEV_OUT_EP1)
{

//

January 4, 2013 317

USB Controller

// Handle a short packet.
//
...

}
else if((g_ulFlags & EP1_DMA_OUT_PEND) &&

(ROM_uDMAChannelModeGet(UDMA_CHANNEL_USBEP1RX) == UDMA_MODE_STOP))
{

//
// Handle the uDMA complete case.
//
...

//
// Restart receive uDMA if desired.
//
...

}

24.3 Functions

Functions
void ROM_UpdateUSB (unsigned char ∗pucUSBBootROMInfo)
unsigned long ROM_USBDevAddrGet (unsigned long ulBase)
void ROM_USBDevAddrSet (unsigned long ulBase, unsigned long ulAddress)
void ROM_USBDevConnect (unsigned long ulBase)
void ROM_USBDevDisconnect (unsigned long ulBase)
void ROM_USBDevEndpointConfigGet (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ∗pulMaxPacketSize, unsigned long ∗pulFlags)
void ROM_USBDevEndpointConfigSet (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulMaxPacketSize, unsigned long ulFlags)
void ROM_USBDevEndpointDataAck (unsigned long ulBase, unsigned long ulEndpoint,
tBoolean bIsLastPacket)
void ROM_USBDevEndpointStall (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulFlags)
void ROM_USBDevEndpointStallClear (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
void ROM_USBDevEndpointStatusClear (unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
void ROM_USBDevMode (unsigned long ulBase)
unsigned long ROM_USBEndpointDataAvail (unsigned long ulBase, unsigned long ulEnd-
point)
long ROM_USBEndpointDataGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned
char ∗pucData, unsigned long ∗pulSize)
long ROM_USBEndpointDataPut (unsigned long ulBase, unsigned long ulEndpoint, unsigned
char ∗pucData, unsigned long ulSize)
long ROM_USBEndpointDataSend (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulTransType)
void ROM_USBEndpointDataToggleClear (unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)

318 January 4, 2013

USB Controller

void ROM_USBEndpointDMAChannel (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulChannel)
void ROM_USBEndpointDMADisable (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
void ROM_USBEndpointDMAEnable (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
unsigned long ROM_USBEndpointStatus (unsigned long ulBase, unsigned long ulEndpoint)
unsigned long ROM_USBFIFOAddrGet (unsigned long ulBase, unsigned long ulEndpoint)
void ROM_USBFIFOConfigGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ∗pulFIFOAddress, unsigned long ∗pulFIFOSize, unsigned long ulFlags)
void ROM_USBFIFOConfigSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulFIFOAddress, unsigned long ulFIFOSize, unsigned long ulFlags)
void ROM_USBFIFOFlush (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulFlags)
unsigned long ROM_USBFrameNumberGet (unsigned long ulBase)
unsigned long ROM_USBHostAddrGet (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulFlags)
void ROM_USBHostAddrSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned long
ulAddr, unsigned long ulFlags)
void ROM_USBHostEndpointConfig (unsigned long ulBase, unsigned long ulEndpoint, un-
signed long ulMaxPayload, unsigned long ulNAKPollInterval, unsigned long ulTargetEndpoint,
unsigned long ulFlags)
void ROM_USBHostEndpointDataAck (unsigned long ulBase, unsigned long ulEndpoint)
void ROM_USBHostEndpointDataToggle (unsigned long ulBase, unsigned long ulEndpoint,
tBoolean bDataToggle, unsigned long ulFlags)
void ROM_USBHostEndpointStatusClear (unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
unsigned long ROM_USBHostHubAddrGet (unsigned long ulBase, unsigned long ulEndpoint,
unsigned long ulFlags)
void ROM_USBHostHubAddrSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned
long ulAddr, unsigned long ulFlags)
void ROM_USBHostMode (unsigned long ulBase)
void ROM_USBHostPwrConfig (unsigned long ulBase, unsigned long ulFlags)
void ROM_USBHostPwrDisable (unsigned long ulBase)
void ROM_USBHostPwrEnable (unsigned long ulBase)
void ROM_USBHostPwrFaultDisable (unsigned long ulBase)
void ROM_USBHostPwrFaultEnable (unsigned long ulBase)
void ROM_USBHostRequestIN (unsigned long ulBase, unsigned long ulEndpoint)
void ROM_USBHostRequestStatus (unsigned long ulBase)
void ROM_USBHostReset (unsigned long ulBase, tBoolean bStart)
void ROM_USBHostResume (unsigned long ulBase, tBoolean bStart)
unsigned long ROM_USBHostSpeedGet (unsigned long ulBase)
void ROM_USBHostSuspend (unsigned long ulBase)
void ROM_USBIntDisable (unsigned long ulBase, unsigned long ulFlags)
void ROM_USBIntDisableControl (unsigned long ulBase, unsigned long ulFlags)
void ROM_USBIntDisableEndpoint (unsigned long ulBase, unsigned long ulFlags)
void ROM_USBIntEnable (unsigned long ulBase, unsigned long ulFlags)
void ROM_USBIntEnableControl (unsigned long ulBase, unsigned long ulFlags)

January 4, 2013 319

USB Controller

void ROM_USBIntEnableEndpoint (unsigned long ulBase, unsigned long ulFlags)
unsigned long ROM_USBIntStatus (unsigned long ulBase)
unsigned long ROM_USBIntStatusControl (unsigned long ulBase)
unsigned long ROM_USBIntStatusEndpoint (unsigned long ulBase)
unsigned long ROM_USBModeGet (unsigned long ulBase)
void ROM_USBOTGHostRequest (unsigned long ulBase, tBoolean bStart)
void ROM_USBOTGMode (unsigned long ulBase)
void ROM_USBPHYPowerOff (unsigned long ulBase)
void ROM_USBPHYPowerOn (unsigned long ulBase)

24.3.1 Function Documentation

24.3.1.1 ROM_UpdateUSB

Starts an update over the USB interface.

Prototype:
void
ROM_UpdateUSB(unsigned char *pucUSBBootROMInfo)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_UpdateUSB is a function pointer located at ROM_USBTABLE[58].

Parameters:
pucUSBBootROMInfo is a pointer to an array containing the values that are used to cus-

tomize the USB interface.

Description:
Calling this function commences an update of the firmware via the USB interface. This function
assumes that the USB interface has already been configured and the device is being clocked
by the PLL. By using the pucUSBBootROMInfo, the vendor ID, proudct ID, bus- versus self-
powered, maximum power, device version, and USB strings can be customized.

Returns:
Never returns.

24.3.1.2 ROM_USBDevAddrGet

Returns the current device address in device mode.

Prototype:
unsigned long
ROM_USBDevAddrGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevAddrGet is a function pointer located at ROM_USBTABLE[1].

320 January 4, 2013

USB Controller

Parameters:
ulBase specifies the USB module base address.

Description:
This function will return the current device address. This address was set by a call to
ROM_USBDevAddrSet().

Note:
This function should only be called in device mode.

Returns:
The current device address.

24.3.1.3 ROM_USBDevAddrSet

Sets the address in device mode.

Prototype:
void
ROM_USBDevAddrSet(unsigned long ulBase,

unsigned long ulAddress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevAddrSet is a function pointer located at ROM_USBTABLE[2].

Parameters:
ulBase specifies the USB module base address.
ulAddress is the address to use for a device.

Description:
This function will set the device address on the USB bus. This address was likely received via
a SET ADDRESS command from the host controller.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.4 ROM_USBDevConnect

Connects the USB controller to the bus in device mode.

Prototype:
void
ROM_USBDevConnect(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevConnect is a function pointer located at ROM_USBTABLE[3].

January 4, 2013 321

USB Controller

Parameters:
ulBase specifies the USB module base address.

Description:
This function will cause the soft connect feature of the USB controller to be enabled. Call
ROM_USBDevDisconnect() to remove the USB device from the bus.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.5 ROM_USBDevDisconnect

Removes the USB controller from the bus in device mode.

Prototype:
void
ROM_USBDevDisconnect(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevDisconnect is a function pointer located at ROM_USBTABLE[4].

Parameters:
ulBase specifies the USB module base address.

Description:
This function will cause the soft connect feature of the USB controller to remove the device
from the USB bus. A call to ROM_USBDevConnect() is needed to reconnect to the bus.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.6 ROM_USBDevEndpointConfigGet

Gets the current configuration for an endpoint.

Prototype:
void
ROM_USBDevEndpointConfigGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long *pulMaxPacketSize,
unsigned long *pulFlags)

322 January 4, 2013

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointConfigGet is a function pointer located at ROM_USBTABLE[41].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
pulMaxPacketSize is a pointer which is written with the maximum packet size for this end-

point.
pulFlags is a pointer which is written with the current endpoint settings. On entry to the func-

tion, this pointer must contain either USB_EP_DEV_IN or USB_EP_DEV_OUT to indicate
whether the IN or OUT endpoint is to be queried.

Description:
This function will return the basic configuration for an endpoint in device mode. The values re-
turned in ∗pulMaxPacketSize and ∗pulFlags are equivalent to the ulMaxPacketSize and ulFlags
previously passed to ROM_USBDevEndpointConfigSet() for this endpoint.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.7 ROM_USBDevEndpointConfigSet

Sets the configuration for an endpoint.

Prototype:
void
ROM_USBDevEndpointConfigSet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulMaxPacketSize,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointConfigSet is a function pointer located at ROM_USBTABLE[5].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulMaxPacketSize is the maximum packet size for this endpoint.
ulFlags are used to configure other endpoint settings.

Description:
This function will set the basic configuration for an endpoint in device mode. Endpoint zero does
not have a dynamic configuration, so this function should not be called for endpoint zero. The
ulFlags parameter determines some of the configuration while the other parameters provide
the rest.

January 4, 2013 323

USB Controller

The USB_EP_MODE_ flags define what the type is for the given endpoint.

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The USB_EP_DMA_MODE_ flags determines the type of DMA access to the endpoint data FI-
FOs. The choice of the DMA mode depends on how the DMA controller is configured and how
it is being used. See the “Using USB with the uDMA Controller” section for more information
on DMA configuration.

When configuring an IN endpoint, the USB_EP_AUTO_SET bit can be specified to cause the
automatic transmission of data on the USB bus as soon as ulMaxPacketSize bytes of data are
written into the FIFO for this endpoint. This is commonly used with DMA as no interaction is
required to start the transmission of data.

When configuring an OUT endpoint, the USB_EP_AUTO_REQUEST bit is specified to trig-
ger the request for more data once the FIFO has been drained enough to receive ulMax-
PacketSize more bytes of data. Also for OUT endpoints, the USB_EP_AUTO_CLEAR bit
can be used to clear the data packet ready flag automatically once the data has been
read from the FIFO. If this is not used, this flag must be manually cleared via a call to
ROM_USBDevEndpointStatusClear(). Both of these settings can be used to remove the need
for extra calls when using the controller in DMA mode.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.8 ROM_USBDevEndpointDataAck

Acknowledge that data was read from the given endpoint’s FIFO in device mode.

Prototype:
void
ROM_USBDevEndpointDataAck(unsigned long ulBase,

unsigned long ulEndpoint,
tBoolean bIsLastPacket)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointDataAck is a function pointer located at ROM_USBTABLE[6].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
bIsLastPacket indicates if this is the last packet.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. The bIsLast-
Packet parameter is set to a true value if this is the last in a series of data packets on endpoint

324 January 4, 2013

USB Controller

zero. The bIsLastPacket parameter is not used for endpoints other than endpoint zero. This
call can be used if processing is required between reading the data and acknowledging that
the data has been read.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.9 ROM_USBDevEndpointStall

Stalls the specified endpoint in device mode.

Prototype:
void
ROM_USBDevEndpointStall(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointStall is a function pointer located at ROM_USBTABLE[7].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies the endpoint to stall.
ulFlags specifies whether to stall the IN or OUT endpoint.

Description:
This function will cause to endpoint number passed in to go into a stall condition. If the ulFlags
parameter is USB_EP_DEV_IN then the stall is issued on the IN portion of this endpoint. If the
ulFlags parameter is USB_EP_DEV_OUT then the stall is issued on the OUT portion of this
endpoint.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.10 ROM_USBDevEndpointStallClear

Clears the stall condition on the specified endpoint in device mode.

Prototype:
void
ROM_USBDevEndpointStallClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

January 4, 2013 325

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointStallClear is a function pointer located at ROM_USBTABLE[8].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies which endpoint to remove the stall condition.
ulFlags specifies whether to remove the stall condition from the IN or the OUT portion of this

endpoint.

Description:
This function will cause the endpoint number passed in to exit the stall condition. If the ulFlags
parameter is USB_EP_DEV_IN then the stall is cleared on the IN portion of this endpoint. If
the ulFlags parameter is USB_EP_DEV_OUT then the stall is cleared on the OUT portion of
this endpoint.

Note:
This function should only be called in device mode.

Returns:
None.

24.3.1.11 ROM_USBDevEndpointStatusClear

Clears the status bits in this endpoint in device mode.

Prototype:
void
ROM_USBDevEndpointStatusClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointStatusClear is a function pointer located at ROM_USBTABLE[9].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags are the status bits that should be cleared.

Description:
This function will clear the status of any bits that are passed in the ulFlags parameter. The
ulFlags parameter can take the value returned from the ROM_USBEndpointStatus() call.

Note:
This function should only be called in device mode.

Returns:
None.

326 January 4, 2013

USB Controller

24.3.1.12 ROM_USBDevMode

Change the mode of the USB controller to device.

Prototype:
void
ROM_USBDevMode(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevMode is a function pointer located at ROM_USBTABLE[55].

Parameters:
ulBase specifies the USB module base address.

Description:
This function changes the mode of the USB controller to device mode.

Returns:
None.

24.3.1.13 ROM_USBEndpointDataAvail

Determine the number of bytes of data available in a given endpoint’s FIFO.

Prototype:
unsigned long
ROM_USBEndpointDataAvail(unsigned long ulBase,

unsigned long ulEndpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataAvail is a function pointer located at ROM_USBTABLE[44].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

Description:
This function will return the number of bytes of data currently available in the FIFO for the
given receive (OUT) endpoint. It may be used prior to calling ROM_USBEndpointDataGet() to
determine the size of buffer required to hold the newly-received packet.

Returns:
This call will return the number of bytes available in a given endpoint FIFO.

January 4, 2013 327

USB Controller

24.3.1.14 ROM_USBEndpointDataGet

Retrieves data from the given endpoint’s FIFO.

Prototype:
long
ROM_USBEndpointDataGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned char *pucData,
unsigned long *pulSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataGet is a function pointer located at ROM_USBTABLE[10].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
pucData is a pointer to the data area used to return the data from the FIFO.
pulSize is initially the size of the buffer passed into this call via the pucData parameter. It is

set to the amount of data returned in the buffer.

Description:
This function will return the data from the FIFO for the given endpoint. The pulSize parameter
should indicate the size of the buffer passed in the pulData parameter. The data in the pulSize
parameter is changed to match the amount of data returned in the pucData parameter. If a
zero byte packet was received this call will not return a error but will instead just return a zero
in the pulSize parameter. The only error case occurs when there is no data packet available.

Returns:
This call will return 0, or -1 if no packet was received.

24.3.1.15 ROM_USBEndpointDataPut

Puts data into the given endpoint’s FIFO.

Prototype:
long
ROM_USBEndpointDataPut(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned char *pucData,
unsigned long ulSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataPut is a function pointer located at ROM_USBTABLE[11].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

328 January 4, 2013

USB Controller

pucData is a pointer to the data area used as the source for the data to put into the FIFO.
ulSize is the amount of data to put into the FIFO.

Description:
This function will put the data from the pucData parameter into the FIFO for this endpoint. If
a packet is already pending for transmission then this call will not put any of the data into the
FIFO and will return -1. Care should be taken to not write more data than can fit into the FIFO
allocated by the call to ROM_USBFIFOConfigSet().

Returns:
This call will return 0 on success, or -1 to indicate that the FIFO is in use and cannot be written.

24.3.1.16 ROM_USBEndpointDataSend

Starts the transfer of data from an endpoint’s FIFO.

Prototype:
long
ROM_USBEndpointDataSend(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulTransType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataSend is a function pointer located at ROM_USBTABLE[12].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulTransType is set to indicate what type of data is being sent.

Description:
This function will start the transfer of data from the FIFO for a given endpoint. This is necessary
if the USB_EP_AUTO_SET bit was not enabled for the endpoint. Setting the ulTransType
parameter will allow the appropriate signaling on the USB bus for the type of transaction being
requested. The ulTransType parameter should be one of the following:

USB_TRANS_OUT for OUT transaction on any endpoint in host mode.
USB_TRANS_IN for IN transaction on any endpoint in device mode.
USB_TRANS_IN_LAST for the last IN transactions on endpoint zero in a sequence of IN
transactions.
USB_TRANS_SETUP for setup transactions on endpoint zero.
USB_TRANS_STATUS for status results on endpoint zero.

Returns:
This call will return 0 on success, or -1 if a transmission is already in progress.

January 4, 2013 329

USB Controller

24.3.1.17 ROM_USBEndpointDataToggleClear

Sets the Data toggle on an endpoint to zero.

Prototype:
void
ROM_USBEndpointDataToggleClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataToggleClear is a function pointer located at ROM_USBTABLE[13].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies the endpoint to reset the data toggle.
ulFlags specifies whether to access the IN or OUT endpoint.

Description:
This function will cause the controller to clear the data toggle for an endpoint. This call is not
valid for endpoint zero and can be made with host or device controllers.

The ulFlags parameter should be one of USB_EP_HOST_OUT, USB_EP_HOST_IN,
USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

24.3.1.18 ROM_USBEndpointDMAChannel

Sets the DMA channel to use for a given endpoint.

Prototype:
void
ROM_USBEndpointDMAChannel(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMAChannel is a function pointer located at ROM_USBTABLE[47].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies which endpoint’s FIFO address to return.
ulChannel specifies which DMA channel to use for which endpoint.

Description:
This function is used to configure which DMA channel to use with a given endpoint. Receive
DMA channels can only be used with receive endpoints and transmit DMA channels can only

330 January 4, 2013

USB Controller

be used with transmit endpoints. This allows the 3 receive and 3 transmit DMA channels to be
mapped to any endpoint other than 0. The values that should be passed into the ulChannel
value are the UDMA_CHANNEL_USBEP∗ values defined in udma.h.

Note:
This function only has an effect on microcontrollers that have the ability to change the DMA
channel for an endpoint. Calling this function on other devices will have no effect.

Returns:
None.

24.3.1.19 ROM_USBEndpointDMADisable

Disable DMA on a given endpoint.

Prototype:
void
ROM_USBEndpointDMADisable(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMADisable is a function pointer located at ROM_USBTABLE[43].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags specifies which direction to disable.

Description:
This function will disable DMA on a given end point to allow non-DMA USB transactions to gen-
erate interrupts normally. The ulFlags should be USB_EP_DEV_IN or USB_EP_DEV_OUT all
other bits are ignored.

Returns:
None.

24.3.1.20 ROM_USBEndpointDMAEnable

Enable DMA on a given endpoint.

Prototype:
void
ROM_USBEndpointDMAEnable(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

January 4, 2013 331

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMAEnable is a function pointer located at ROM_USBTABLE[42].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags specifies which direction and what mode to use when enabling DMA.

Description:
This function will enable DMA on a given endpoint and set the mode according to the val-
ues in the ulFlags parameter. The ulFlags parameter should have USB_EP_DEV_IN or
USB_EP_DEV_OUT set.

Returns:
None.

24.3.1.21 ROM_USBEndpointStatus

Returns the current status of an endpoint.

Prototype:
unsigned long
ROM_USBEndpointStatus(unsigned long ulBase,

unsigned long ulEndpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointStatus is a function pointer located at ROM_USBTABLE[14].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

Description:
This function will return the status of a given endpoint. If any of these status
bits need to be cleared, then these these values must be cleared by calling the
ROM_USBDevEndpointStatusClear() or ROM_USBHostEndpointStatusClear() functions.

The following are the status flags for host mode:

USB_HOST_IN_PID_ERROR - PID error on the given endpoint.
USB_HOST_IN_NOT_COMP - The device failed to respond to an IN request.
USB_HOST_IN_STALL - A stall was received on an IN endpoint.
USB_HOST_IN_DATA_ERROR - There was a CRC or bit-stuff error on an IN endpoint in
Isochronous mode.
USB_HOST_IN_NAK_TO - NAKs received on this IN endpoint for more than the specified
timeout period.
USB_HOST_IN_ERROR - Failed to communicate with a device using this IN endpoint.
USB_HOST_IN_FIFO_FULL - This IN endpoint’s FIFO is full.

332 January 4, 2013

USB Controller

USB_HOST_IN_PKTRDY - Data packet ready on this IN endpoint.
USB_HOST_OUT_NAK_TO - NAKs received on this OUT endpoint for more than the
specified timeout period.
USB_HOST_OUT_NOT_COMP - The device failed to respond to an OUT request.
USB_HOST_OUT_STALL - A stall was received on this OUT endpoint.
USB_HOST_OUT_ERROR - Failed to communicate with a device using this OUT end-
point.
USB_HOST_OUT_FIFO_NE - This endpoint’s OUT FIFO is not empty.
USB_HOST_OUT_PKTPEND - The data transfer on this OUT endpoint has not com-
pleted.
USB_HOST_EP0_NAK_TO - NAKs received on endpoint zero for more than the specified
timeout period.
USB_HOST_EP0_ERROR - The device failed to respond to a request on endpoint zero.
USB_HOST_EP0_IN_STALL - A stall was received on endpoint zero for an IN transaction.
USB_HOST_EP0_IN_PKTRDY - Data packet ready on endpoint zero for an IN transaction.

The following are the status flags for device mode:

USB_DEV_OUT_SENT_STALL - A stall was sent on this OUT endpoint.
USB_DEV_OUT_DATA_ERROR - There was a CRC or bit-stuff error on an OUT endpoint.
USB_DEV_OUT_OVERRUN - An OUT packet was not loaded due to a full FIFO.
USB_DEV_OUT_FIFO_FULL - The OUT endpoint’s FIFO is full.
USB_DEV_OUT_PKTRDY - There is a data packet ready in the OUT endpoint’s FIFO.
USB_DEV_IN_NOT_COMP - A larger packet was split up, more data to come.
USB_DEV_IN_SENT_STALL - A stall was sent on this IN endpoint.
USB_DEV_IN_UNDERRUN - Data was requested on the IN endpoint and no data was
ready.
USB_DEV_IN_FIFO_NE - The IN endpoint’s FIFO is not empty.
USB_DEV_IN_PKTPEND - The data transfer on this IN endpoint has not completed.
USB_DEV_EP0_SETUP_END - A control transaction ended before Data End condition
was sent.
USB_DEV_EP0_SENT_STALL - A stall was sent on endpoint zero.
USB_DEV_EP0_IN_PKTPEND - The data transfer on endpoint zero has not completed.
USB_DEV_EP0_OUT_PKTRDY - There is a data packet ready in endpoint zero’s OUT
FIFO.

Returns:
The current status flags for the endpoint depending on mode.

24.3.1.22 ROM_USBFIFOAddrGet

Returns the absolute FIFO address for a given endpoint.

Prototype:
unsigned long
ROM_USBFIFOAddrGet(unsigned long ulBase,

unsigned long ulEndpoint)

January 4, 2013 333

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOAddrGet is a function pointer located at ROM_USBTABLE[15].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies which endpoint’s FIFO address to return.

Description:
This function returns the actual physical address of the FIFO. This is needed when the USB is
going to be used with the uDMA controller and the source or destination address needs to be
set to the physical FIFO address for a given endpoint.

Returns:
None.

24.3.1.23 ROM_USBFIFOConfigGet

Returns the FIFO configuration for an endpoint.

Prototype:
void
ROM_USBFIFOConfigGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long *pulFIFOAddress,
unsigned long *pulFIFOSize,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOConfigGet is a function pointer located at ROM_USBTABLE[16].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
pulFIFOAddress is the starting address for the FIFO.
pulFIFOSize is the size of the FIFO in bytes.
ulFlags specifies what information to retrieve from the FIFO configuration.

Description:
This function will return the starting address and size of the FIFO for a given endpoint. End-
point zero does not have a dynamically configurable FIFO so this function should not be called
for endpoint zero. The ulFlags parameter specifies whether the endpoint’s OUT or IN FIFO
should be read. If in host mode, the ulFlags parameter should be USB_EP_HOST_OUT
or USB_EP_HOST_IN, and if in device mode the ulFlags parameter should be either
USB_EP_DEV_OUT or USB_EP_DEV_IN.

Returns:
None.

334 January 4, 2013

USB Controller

24.3.1.24 ROM_USBFIFOConfigSet

Sets the FIFO configuration for an endpoint.

Prototype:
void
ROM_USBFIFOConfigSet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFIFOAddress,
unsigned long ulFIFOSize,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOConfigSet is a function pointer located at ROM_USBTABLE[17].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFIFOAddress is the starting address for the FIFO.
ulFIFOSize is the size of the FIFO in bytes.
ulFlags specifies what information to set in the FIFO configuration.

Description:
This function will set the starting FIFO RAM address and size of the FIFO for a given end-
point. Endpoint zero does not have a dynamically configurable FIFO so this function should
not be called for endpoint zero. The ulFIFOSize parameter should be one of the values in
the USB_FIFO_SZ_ values. If the endpoint is going to use double buffering it should use the
values with the _DB at the end of the value. For example, use USB_FIFO_SZ_16_DB to con-
figure an endpoint to have a 16 byte double buffered FIFO. If a double buffered FIFO is used,
then the actual size of the FIFO is twice the size indicated by the ulFIFOSize parameter. This
means that the USB_FIFO_SZ_16_DB value will use 32 bytes of the USB controller’s FIFO
memory.

The ulFIFOAddress value should be a multiple of 8 bytes and directly indicates the start-
ing address in the USB controller’s FIFO RAM. For example, a value of 64 indicates that
the FIFO should start 64 bytes into the USB controller’s FIFO memory. The ulFlags value
specifies whether the endpoint’s OUT or IN FIFO should be configured. If in host mode, use
USB_EP_HOST_OUT or USB_EP_HOST_IN, and if in device mode use USB_EP_DEV_OUT
or USB_EP_DEV_IN.

Returns:
None.

24.3.1.25 ROM_USBFIFOFlush

Forces a flush of an endpoint’s FIFO.

Prototype:
void
ROM_USBFIFOFlush(unsigned long ulBase,

January 4, 2013 335

USB Controller

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOFlush is a function pointer located at ROM_USBTABLE[18].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags specifies if the IN or OUT endpoint should be accessed.

Description:
This function will force the controller to flush out the data in the FIFO. The function can be
called with either host or device controllers and requires the ulFlags parameter be one of
USB_EP_HOST_OUT, USB_EP_HOST_IN, USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

24.3.1.26 ROM_USBFrameNumberGet

Get the current frame number.

Prototype:
unsigned long
ROM_USBFrameNumberGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFrameNumberGet is a function pointer located at ROM_USBTABLE[19].

Parameters:
ulBase specifies the USB module base address.

Description:
This function returns the last frame number received.

Returns:
The last frame number received.

24.3.1.27 ROM_USBHostAddrGet

Gets the current functional device address for an endpoint.

Prototype:
unsigned long
ROM_USBHostAddrGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

336 January 4, 2013

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostAddrGet is a function pointer located at ROM_USBTABLE[20].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function returns the current functional address that an endpoint is using to communicate
with a device. The ulFlags parameter determines if the IN or OUT endpoint’s device address
is returned.

Note:
This function should only be called in host mode.

Returns:
Returns the current function address being used by an endpoint.

24.3.1.28 ROM_USBHostAddrSet

Sets the functional address for the device that is connected to an endpoint in host mode.

Prototype:
void
ROM_USBHostAddrSet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulAddr,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostAddrSet is a function pointer located at ROM_USBTABLE[21].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulAddr is the functional address for the controller to use for this endpoint.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function will set the functional address for a device that is using this endpoint for commu-
nication. This ulAddr parameter is the address of the target device that this endpoint is used to
communicate with. The ulFlags parameter indicates if the IN or OUT endpoint should be set.

Note:
This function should only be called in host mode.

Returns:
None.

January 4, 2013 337

USB Controller

24.3.1.29 ROM_USBHostEndpointConfig

Sets the base configuration for a host endpoint.

Prototype:
void
ROM_USBHostEndpointConfig(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulMaxPayload,
unsigned long ulNAKPollInterval,
unsigned long ulTargetEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointConfig is a function pointer located at ROM_USBTABLE[22].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulMaxPayload is the maximum payload for this endpoint.
ulNAKPollInterval is the either the NAK timeout limit or the polling interval depending on the

type of endpoint.
ulTargetEndpoint is the endpoint that the host endpoint is targeting.
ulFlags are used to configure other endpoint settings.

Description:
This function will set the basic configuration for the transmit or receive portion of an endpoint
in host mode. The ulFlags parameter determines some of the configuration while the other
parameters provide the rest. The ulFlags parameter determines whether this is an IN end-
point (USB_EP_HOST_IN or USB_EP_DEV_IN) or an OUT endpoint (USB_EP_HOST_OUT
or USB_EP_DEV_OUT), whether this is a Full speed endpoint (USB_EP_SPEED_FULL) or a
Low speed endpoint (USB_EP_SPEED_LOW).

The USB_EP_MODE_ flags control the type of the endpoint.

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The ulNAKPollInterval parameter has different meanings based on the USB_EP_MODE value
and whether or not this call is being made for endpoint zero or another endpoint. For endpoint
zero or any Bulk endpoints, this value always indicates the number of frames to allow a device
to NAK before considering it a timeout. If this endpoint is an isochronous or interrupt endpoint,
this value is the polling interval for this endpoint.

For interrupt endpoints the polling interval is simply the number of frames between polling an
interrupt endpoint. For isochronous endpoints this value represents a polling interval of 2 ∧

(ulNAKPollInterval - 1) frames. When used as a NAK timeout, the ulNAKPollInterval value
specifies 2 ∧ (ulNAKPollInterval - 1) frames before issuing a time out. There are two special
time out values that can be specified when setting the ulNAKPollInterval value. The first is

338 January 4, 2013

USB Controller

MAX_NAK_LIMIT which is the maximum value that can be passed in this variable. The other
is DISABLE_NAK_LIMIT which indicates that there should be no limit on the number of NAKs.

The USB_EP_DMA_MODE_ flags enables the type of DMA used to access the endpoint’s
data FIFOs. The choice of the DMA mode depends on how the DMA controller is configured
and how it is being used. See the “Using USB with the uDMA Controller” section for more
information on DMA configuration.

When configuring the OUT portion of an endpoint, the USB_EP_AUTO_SET bit is specified
to cause the transmission of data on the USB bus to start as soon as the number of bytes
specified by ulMaxPayload have been written into the OUT FIFO for this endpoint.

When configuring the IN portion of an endpoint, the USB_EP_AUTO_REQUEST bit can be
specified to trigger the request for more data once the FIFO has been drained enough to
fit ulMaxPayload bytes. The USB_EP_AUTO_CLEAR bit can be used to clear the data
packet ready flag automatically once the data has been read from the FIFO. If this is not
used, this flag must be manually cleared via a call to ROM_USBDevEndpointStatusClear() or
ROM_USBHostEndpointStatusClear().

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.30 ROM_USBHostEndpointDataAck

Acknowledge that data was read from the given endpoint’s FIFO in host mode.

Prototype:
void
ROM_USBHostEndpointDataAck(unsigned long ulBase,

unsigned long ulEndpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointDataAck is a function pointer located at ROM_USBTABLE[23].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. This call is used
if processing is required between reading the data and acknowledging that the data has been
read.

Note:
This function should only be called in host mode.

Returns:
None.

January 4, 2013 339

USB Controller

24.3.1.31 ROM_USBHostEndpointDataToggle

Sets the value data toggle on an endpoint in host mode.

Prototype:
void
ROM_USBHostEndpointDataToggle(unsigned long ulBase,

unsigned long ulEndpoint,
tBoolean bDataToggle,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointDataToggle is a function pointer located at ROM_USBTABLE[24].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint specifies the endpoint to reset the data toggle.
bDataToggle specifies whether to set the state to DATA0 or DATA1.
ulFlags specifies whether to set the IN or OUT endpoint.

Description:
This function is used to force the state of the data toggle in host mode. If the value passed
in the bDataToggle parameter is false, then the data toggle is set to the DATA0 state, and if
it is true it is set to the DATA1 state. The ulFlags parameter can be USB_EP_HOST_IN or
USB_EP_HOST_OUT to access the desired portion of this endpoint. The ulFlags parameter
is ignored for endpoint zero.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.32 ROM_USBHostEndpointStatusClear

Clears the status bits in this endpoint in host mode.

Prototype:
void
ROM_USBHostEndpointStatusClear(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointStatusClear is a function pointer located at ROM_USBTABLE[25].

Parameters:
ulBase specifies the USB module base address.

340 January 4, 2013

USB Controller

ulEndpoint is the endpoint to access.
ulFlags are the status bits that should be cleared.

Description:
This function will clear the status of any bits that are passed in the ulFlags parameter. The
ulFlags parameter can take the value returned from the ROM_USBEndpointStatus() call.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.33 ROM_USBHostHubAddrGet

Get the current device hub address for this endpoint.

Prototype:
unsigned long
ROM_USBHostHubAddrGet(unsigned long ulBase,

unsigned long ulEndpoint,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostHubAddrGet is a function pointer located at ROM_USBTABLE[26].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function will return the current hub address that an endpoint is using to communicate with
a device. The ulFlags parameter determines if the device address for the IN or OUT endpoint
is returned.

Note:
This function should only be called in host mode.

Returns:
This function returns the current hub address being used by an endpoint.

24.3.1.34 ROM_USBHostHubAddrSet

Set the hub address for the device that is connected to an endpoint.

Prototype:
void
ROM_USBHostHubAddrSet(unsigned long ulBase,

January 4, 2013 341

USB Controller

unsigned long ulEndpoint,
unsigned long ulAddr,
unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostHubAddrSet is a function pointer located at ROM_USBTABLE[27].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.
ulAddr is the hub address for the device using this endpoint.
ulFlags determines if this is an IN or an OUT endpoint.

Description:
This function will set the hub address for a device that is using this endpoint for communication.
The ulFlags parameter determines if the device address for the IN or the OUT endpoint is set
by this call.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.35 ROM_USBHostMode

Change the mode of the USB controller to host.

Prototype:
void
ROM_USBHostMode(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostMode is a function pointer located at ROM_USBTABLE[54].

Parameters:
ulBase specifies the USB module base address.

Description:
This function changes the mode of the USB controller to host mode.

Returns:
None.

342 January 4, 2013

USB Controller

24.3.1.36 ROM_USBHostPwrConfig

Sets the configuration for USB power fault.

Prototype:
void
ROM_USBHostPwrConfig(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrConfig is a function pointer located at ROM_USBTABLE[30].

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies the configuration of the power fault.

Description:
This function controls how the USB controller uses its external power control pins (USBnPFTL
and USBnEPEN). The flags specify the power fault level sensitivity, the power fault action, and
the power enable level and source.

One of the following can be selected as the power fault level sensitivity:

USB_HOST_PWRFLT_LOW - An external power fault is indicated by the pin being driven
low.
USB_HOST_PWRFLT_HIGH - An external power fault is indicated by the pin being driven
high.

One of the following can be selected as the power fault action:

USB_HOST_PWRFLT_EP_NONE - No automatic action when power fault detected.
USB_HOST_PWRFLT_EP_TRI - Automatically Tri-state the USBnEPEN pin on a power
fault.
USB_HOST_PWRFLT_EP_LOW - Automatically drive USBnEPEN pin low on a power
fault.
USB_HOST_PWRFLT_EP_HIGH - Automatically drive USBnEPEN pin high on a power
fault.

One of the following can be selected as the power enable level and source:

USB_HOST_PWREN_MAN_LOW - USBEPEN is driven low by the USB controller when
ROM_USBHostPwrEnable() is called.
USB_HOST_PWREN_MAN_HIGH - USBEPEN is driven high by the USB controller when
ROM_USBHostPwrEnable() is called.
USB_HOST_PWREN_AUTOLOW - USBEPEN is driven low by the USB controller auto-
matically if USBOTGSessionRequest() has enabled a session.
USB_HOST_PWREN_AUTOHIGH - USBEPEN is driven high by the USB controller auto-
matically if USBOTGSessionRequest() has enabled a session.

The USB_HOST_PWREN_FILTER flag can be added to enable the VBUS glitch filter, which
ignores small, short drops in VBUS level caused by high power consumption. This is mainly
used to avoid causing VBUS errors caused by devices with high in-rush current.

January 4, 2013 343

USB Controller

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.37 ROM_USBHostPwrDisable

Disables the external power pin.

Prototype:
void
ROM_USBHostPwrDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrDisable is a function pointer located at ROM_USBTABLE[28].

Parameters:
ulBase specifies the USB module base address.

Description:
This function disables the USBEPEN signal to disable an external power supply in host mode
operation.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.38 ROM_USBHostPwrEnable

Enables the external power pin.

Prototype:
void
ROM_USBHostPwrEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrEnable is a function pointer located at ROM_USBTABLE[29].

Parameters:
ulBase specifies the USB module base address.

Description:
This function enables the USBEPEN signal to enable an external power supply in host mode
operation.

344 January 4, 2013

USB Controller

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.39 ROM_USBHostPwrFaultDisable

Disables power fault detection.

Prototype:
void
ROM_USBHostPwrFaultDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrFaultDisable is a function pointer located at ROM_USBTABLE[31].

Parameters:
ulBase specifies the USB module base address.

Description:
This function disables power fault detection in the USB controller.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.40 ROM_USBHostPwrFaultEnable

Enables power fault detection.

Prototype:
void
ROM_USBHostPwrFaultEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrFaultEnable is a function pointer located at ROM_USBTABLE[32].

Parameters:
ulBase specifies the USB module base address.

Description:
This function enables power fault detection in the USB controller. If the USBPFLT pin is not in
use this function should not be used.

January 4, 2013 345

USB Controller

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.41 ROM_USBHostRequestIN

Schedules a request for an IN transaction on an endpoint in host mode.

Prototype:
void
ROM_USBHostRequestIN(unsigned long ulBase,

unsigned long ulEndpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostRequestIN is a function pointer located at ROM_USBTABLE[33].

Parameters:
ulBase specifies the USB module base address.
ulEndpoint is the endpoint to access.

Description:
This function will schedule a request for an IN transaction. When the USB de-
vice being communicated with responds the data, the data can be retrieved by calling
ROM_USBEndpointDataGet() or via a DMA transfer.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.42 ROM_USBHostRequestStatus

Issues a request for a status IN transaction on endpoint zero.

Prototype:
void
ROM_USBHostRequestStatus(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostRequestStatus is a function pointer located at ROM_USBTABLE[34].

Parameters:
ulBase specifies the USB module base address.

346 January 4, 2013

USB Controller

Description:
This function is used to cause a request for an status IN transaction from a device on endpoint
zero. This function can only be used with endpoint zero as that is the only control endpoint that
supports this ability. This is used to complete the last phase of a control transaction to a device
and an interrupt is signaled when the status packet has been received.

Returns:
None.

24.3.1.43 ROM_USBHostReset

Handles the USB bus reset condition.

Prototype:
void
ROM_USBHostReset(unsigned long ulBase,

tBoolean bStart)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostReset is a function pointer located at ROM_USBTABLE[35].

Parameters:
ulBase specifies the USB module base address.
bStart specifies whether to start or stop signaling reset on the USB bus.

Description:
When this function is called with the bStart parameter set to true, this function will cause the
start of a reset condition on the USB bus. The caller should then delay at least 20ms before
calling this function again with the bStart parameter set to false.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.44 ROM_USBHostResume

Handles the USB bus resume condition.

Prototype:
void
ROM_USBHostResume(unsigned long ulBase,

tBoolean bStart)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostResume is a function pointer located at ROM_USBTABLE[36].

January 4, 2013 347

USB Controller

Parameters:
ulBase specifies the USB module base address.
bStart specifies if the USB controller is entering or leaving the resume signaling state.

Description:
When in device mode this function will bring the USB controller out of the suspend state. This
call should first be made with the bStart parameter set to true to start resume signaling. The
device application should then delay at least 10ms but not more than 15ms before calling this
function with the bStart parameter set to false.

When in host mode this function will signal devices to leave the suspend state. This call
should first be made with the bStart parameter set to true to start resume signaling. The
host application should then delay at least 20ms before calling this function with the bStart
parameter set to false. This will cause the controller to complete the resume signaling on the
USB bus.

Returns:
None.

24.3.1.45 ROM_USBHostSpeedGet

Returns the current speed of the USB device connected.

Prototype:
unsigned long
ROM_USBHostSpeedGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostSpeedGet is a function pointer located at ROM_USBTABLE[37].

Parameters:
ulBase specifies the USB module base address.

Description:
This function will return the current speed of the USB bus.

Note:
This function should only be called in host mode.

Returns:
Returns either USB_LOW_SPEED, USB_FULL_SPEED, or USB_UNDEF_SPEED.

24.3.1.46 ROM_USBHostSuspend

Puts the USB bus in a suspended state.

Prototype:
void
ROM_USBHostSuspend(unsigned long ulBase)

348 January 4, 2013

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostSuspend is a function pointer located at ROM_USBTABLE[38].

Parameters:
ulBase specifies the USB module base address.

Description:
When used in host mode, this function will put the USB bus in the suspended state.

Note:
This function should only be called in host mode.

Returns:
None.

24.3.1.47 ROM_USBIntDisable

Disables the sources for USB interrupts.

Prototype:
void
ROM_USBIntDisable(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntDisable is a function pointer located at ROM_USBTABLE[39].

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which interrupts to disable.

Description:
This function will disable the USB controller from generating the interrupts indicated by the
ulFlags parameter. There are three groups of interrupt sources, IN Endpoints, OUT End-
points, and general status changes, specified by USB_INT_HOST_IN, USB_INT_HOST_OUT,
USB_INT_DEV_IN, USB_INT_DEV_OUT, and USB_INT_STATUS. If USB_INT_ALL is spec-
ified then all interrupts are disabled.

Note:
WARNING: This API cannot be used on endpoint numbers greater than endpoint 3 so
ROM_USBIntDisableControl() or ROM_USBIntDisableEndpoint() should be used instead.

Returns:
None.

January 4, 2013 349

USB Controller

24.3.1.48 ROM_USBIntDisableControl

Disables control interrupts on a given USB controller.

Prototype:
void
ROM_USBIntDisableControl(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntDisableControl is a function pointer located at ROM_USBTABLE[48].

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which control interrupts to disable.

Description:
This function will disable the control interrupts for the USB controller specified by the ulBase
parameter. The ulFlags parameter specifies which control interrupts to disable. The flags
passed in the ulFlags parameters should be the definitions that start with USB_INTCTRL_∗
and not any other USB_INT flags.

Returns:
None.

24.3.1.49 ROM_USBIntDisableEndpoint

Disables endpoint interrupts on a given USB controller.

Prototype:
void
ROM_USBIntDisableEndpoint(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntDisableEndpoint is a function pointer located at ROM_USBTABLE[51].

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which endpoint interrupts to disable.

Description:
This function will disable endpoint interrupts for the USB controller specified by the ulBase
parameter. The ulFlags parameter specifies which endpoint interrupts to disable. The flags
passed in the ulFlags parameters should be the definitions that start with USB_INTEP_∗ and
not any other USB_INT flags.

Returns:
None.

350 January 4, 2013

USB Controller

24.3.1.50 ROM_USBIntEnable

Enables the sources for USB interrupts.

Prototype:
void
ROM_USBIntEnable(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntEnable is a function pointer located at ROM_USBTABLE[40].

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which interrupts to enable.

Description:
This function will enable the USB controller’s ability to generate the interrupts indicated by
the ulFlags parameter. There are three groups of interrupt sources, IN Endpoints, OUT End-
points, and general status changes, specified by USB_INT_HOST_IN, USB_INT_HOST_OUT,
USB_INT_DEV_IN, USB_INT_DEV_OUT, and USB_STATUS. If USB_INT_ALL is specified
then all interrupts are enabled.

Note:
A call must be made to enable the interrupt in the main interrupt controller to receive interrupts.
The USBIntRegister() API performs this controller level interrupt enable. However if static
interrupt handlers are used then then a call to ROM_IntEnable() must be made in order to
allow any USB interrupts to occur.

WARNING: This API cannot be used on endpoint numbers greater than endpoint 3 so
ROM_USBIntEnableControl() or ROM_USBIntEnableEndpoint() should be used instead.

Returns:
None.

24.3.1.51 ROM_USBIntEnableControl

Enables control interrupts on a given USB controller.

Prototype:
void
ROM_USBIntEnableControl(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntEnableControl is a function pointer located at ROM_USBTABLE[49].

Parameters:
ulBase specifies the USB module base address.

January 4, 2013 351

USB Controller

ulFlags specifies which control interrupts to enable.

Description:
This function will enable the control interrupts for the USB controller specified by the ulBase
parameter. The ulFlags parameter specifies which control interrupts to enable. The flags
passed in the ulFlags parameters should be the definitions that start with USB_INTCTRL_∗
and not any other USB_INT flags.

Returns:
None.

24.3.1.52 ROM_USBIntEnableEndpoint

Enables endpoint interrupts on a given USB controller.

Prototype:
void
ROM_USBIntEnableEndpoint(unsigned long ulBase,

unsigned long ulFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntEnableEndpoint is a function pointer located at ROM_USBTABLE[52].

Parameters:
ulBase specifies the USB module base address.
ulFlags specifies which endpoint interrupts to enable.

Description:
This function will enable endpoint interrupts for the USB controller specified by the ulBase
parameter. The ulFlags parameter specifies which endpoint interrupts to enable. The flags
passed in the ulFlags parameters should be the definitions that start with USB_INTEP_∗ and
not any other USB_INT flags.

Returns:
None.

24.3.1.53 ROM_USBIntStatus

Returns the status of the USB interrupts.

Prototype:
unsigned long
ROM_USBIntStatus(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntStatus is a function pointer located at ROM_USBTABLE[0].

352 January 4, 2013

USB Controller

Parameters:
ulBase specifies the USB module base address.

Description:
This function will read the source of the interrupt for the USB controller. There are three groups
of interrupt sources, IN Endpoints, OUT Endpoints, and general status changes. This call
will return the current status for all of these interrupts. The bit values returned should be
compared against the USB_HOST_IN, USB_HOST_OUT, USB_HOST_EP0, USB_DEV_IN,
USB_DEV_OUT, and USB_DEV_EP0 values.

Note:
This call will clear the source of all of the general status interrupts.

WARNING: This API cannot be used on endpoint numbers greater than endpoint 3 so
ROM_USBIntStatusControl() or ROM_USBIntStatusEndpoint() should be used instead.

Returns:
Returns the status of the sources for the USB controller’s interrupt.

24.3.1.54 ROM_USBIntStatusControl

Returns the control interrupt status on a given USB controller.

Prototype:
unsigned long
ROM_USBIntStatusControl(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntStatusControl is a function pointer located at ROM_USBTABLE[50].

Parameters:
ulBase specifies the USB module base address.

Description:
This function will read control interrupt status for a USB controller. This call will return the
current status for control interrupts only, the endpoint interrupt status is retrieved by call-
ing ROM_USBIntStatusEndpoint(). The bit values returned should be compared against the
USB_INTCTRL_∗ values.

The following are the meanings of all USB_INCTRL_ flags and the modes for which
they are valid. These values apply to any calls to ROM_USBIntStatusControl(),
ROM_USBIntEnableControl(), and ROM_USBIntDisableControl(). Some of these flags are
only valid in the following modes as indicated in the parenthesis: Host, Device, and OTG.

USB_INTCTRL_ALL - A full mask of all control interrupt sources.
USB_INTCTRL_VBUS_ERR - A VBUS error has occurred (Host Only).
USB_INTCTRL_SESSION - Session Start Detected on A-side of cable (OTG Only).
USB_INTCTRL_SESSION_END - Session End Detected (Device Only)
USB_INTCTRL_DISCONNECT - Device Disconnect Detected (Host Only)
USB_INTCTRL_CONNECT - Device Connect Detected (Host Only)
USB_INTCTRL_SOF - Start of Frame Detected.

January 4, 2013 353

USB Controller

USB_INTCTRL_BABBLE - USB controller detected a device signaling past the end of a
frame. (Host Only)
USB_INTCTRL_RESET - Reset signaling detected by device. (Device Only)
USB_INTCTRL_RESUME - Resume signaling detected.
USB_INTCTRL_SUSPEND - Suspend signaling detected by device (Device Only)
USB_INTCTRL_MODE_DETECT - OTG cable mode detection has completed (OTG Only)
USB_INTCTRL_POWER_FAULT - Power Fault detected. (Host Only)

Note:
This call will clear the source of all of the control status interrupts.

Returns:
Returns the status of the control interrupts for a USB controller.

24.3.1.55 ROM_USBIntStatusEndpoint

Returns the endpoint interrupt status on a given USB controller.

Prototype:
unsigned long
ROM_USBIntStatusEndpoint(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntStatusEndpoint is a function pointer located at ROM_USBTABLE[53].

Parameters:
ulBase specifies the USB module base address.

Description:
This function will read endpoint interrupt status for a USB controller. This call will return
the current status for endpoint interrupts only, the control interrupt status is retrieved by
calling ROM_USBIntStatusControl(). The bit values returned should be compared against
the USB_INTEP_∗ values. These are grouped into classes for USB_INTEP_HOST_∗ and
USB_INTEP_DEV_∗ values to handle both host and device modes with all endpoints.

Note:
This call will clear the source of all of the endpoint interrupts.

Returns:
Returns the status of the endpoint interrupts for a USB controller.

24.3.1.56 ROM_USBModeGet

Returns the current operating mode of the controller.

Prototype:
unsigned long
ROM_USBModeGet(unsigned long ulBase)

354 January 4, 2013

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBModeGet is a function pointer located at ROM_USBTABLE[46].

Parameters:
ulBase specifies the USB module base address.

Description:
This function returns the current operating mode on USB controllers with OTG or Dual mode
functionality.

For OTG controllers:

The function will return on of the following values on OTG con-
trollers: USB_OTG_MODE_ASIDE_HOST, USB_OTG_MODE_ASIDE_DEV,
USB_OTG_MODE_BSIDE_HOST, USB_OTG_MODE_BSIDE_DEV,
USB_OTG_MODE_NONE.

USB_OTG_MODE_ASIDE_HOST indicates that the controller is in host mode on the A-side
of the cable.

USB_OTG_MODE_ASIDE_DEV indicates that the controller is in device mode on the A-side
of the cable.

USB_OTG_MODE_BSIDE_HOST indicates that the controller is in host mode on the B-side
of the cable.

USB_OTG_MODE_BSIDE_DEV indicates that the controller is in device mode on the B-side
of the cable. If and OTG session request is started with no cable in place this is the default
mode for the controller.

USB_OTG_MODE_NONE indicates that the controller is not attempting to determine its role
in the system.

For Dual Mode controllers:

The function will return on of the following values: USB_DUAL_MODE_HOST,
USB_DUAL_MODE_DEVICE, or USB_DUAL_MODE_NONE.

USB_DUAL_MODE_HOST indicates that the controller is acting as a host.

USB_DUAL_MODE_DEVICE indicates that the controller acting as a device.

USB_DUAL_MODE_NONE indicates that the controller is not active as either a host or device.

Returns:
Returns USB_OTG_MODE_ASIDE_HOST, USB_OTG_MODE_ASIDE_DEV,
USB_OTG_MODE_BSIDE_HOST, USB_OTG_MODE_BSIDE_DEV,
USB_OTG_MODE_NONE, USB_DUAL_MODE_HOST, USB_DUAL_MODE_DEVICE,
or USB_DUAL_MODE_NONE.

24.3.1.57 ROM_USBOTGHostRequest

This function will enable host negotiation protocol when in device mode.

Prototype:
void

January 4, 2013 355

USB Controller

ROM_USBOTGHostRequest(unsigned long ulBase,
tBoolean bStart)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBOTGHostRequest is a function pointer located at ROM_USBTABLE[45].

Parameters:
ulBase specifies the USB module base address.
bStart specifies if this call starts or ends a session.

Description:
This function is used in OTG mode when the USB controller is on the B-Side of the cable and it
needs to become the host during a session. If the bHNP parameter is set to true, then this will
enable the USB controller to initiate the Host Negotiation Protocol(HNP) and if it is set to false
it will disable HNP. Enabling the HNP sequence will allow the HNP protocol to start the next
time the USB controller sees a suspend condition on the bus. If the sequence is successful,
the USB controller will generate a USB_INTCTRL_CONNECT interrupt. The USB controller
will also automatically generate a reset condition on the bus.

Note:
The application code should wait at least 20ms after receiving the
USB_INTCTRL_CONNECT interrupt before clearing the reset condition with a call
to ROM_USBHostReset().

In order to leave host mode due to a successful HNP sequence the USB controller must put
the bus into suspend via a call to ROM_USBHostSuspend(). This signals the A-Side of the
cable to resume host operation.

Returns:
None.

24.3.1.58 ROM_USBOTGMode

Change the mode of the USB controller to OTG.

Prototype:
void
ROM_USBOTGMode(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBOTGMode is a function pointer located at ROM_USBTABLE[59].

Parameters:
ulBase specifies the USB module base address.

Description:
This function changes the mode of the USB controller to OTG mode. This is only valid on
microcontrollers that have the OTG capabilities.

356 January 4, 2013

USB Controller

Returns:
None.

24.3.1.59 ROM_USBPHYPowerOff

Powers off the USB PHY.

Prototype:
void
ROM_USBPHYPowerOff(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBPHYPowerOff is a function pointer located at ROM_USBTABLE[56].

Parameters:
ulBase specifies the USB module base address.

Description:
This function will power off the USB PHY, reducing the current consuption of the device. While
in the powered off state, the USB controller is unable to operate.

Returns:
None.

24.3.1.60 ROM_USBPHYPowerOn

Powers on the USB PHY.

Prototype:
void
ROM_USBPHYPowerOn(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBPHYPowerOn is a function pointer located at ROM_USBTABLE[57].

Parameters:
ulBase specifies the USB module base address.

Description:
This function will power on the USB PHY, enabling it return to normal operation. By default, the
PHY is powered on, so this function only needs to be called if ROM_USBPHYPowerOff() has
previously been called.

Returns:
None.

January 4, 2013 357

USB Controller

358 January 4, 2013

Watchdog Timer

25 Watchdog Timer
Introduction .359
Functions . 359

25.1 Introduction

The watchdog timer API provides a set of functions for using the watchdog timer module. Functions
are provided to deal with the watchdog timer interrupts, and to handle status and configuration of
the watchdog timer.

The watchdog timer module’s function is to prevent system hangs. The watchdog timer module
consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a
locking register. Once the watchdog timer has been configured, the lock register can be written to
prevent the timer configuration from being inadvertently altered.

The watchdog timer can be configured to generate an interrupt to the processor upon its first time-
out, and to generate a reset signal upon its second timeout. The watchdog timer module generates
the first timeout signal when the 32-bit counter reaches the zero state after being enabled; en-
abling the counter also enables the watchdog timer interrupt. After the first timeout event, the 32-bit
counter is reloaded with the value of the watchdog timer load register, and the timer resumes count-
ing down from that value. If the timer counts down to its zero state again before the first timeout
interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset
signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second timeout,
the 32-bit counter is loaded with the value in the load register, and counting resumes from that
value. If the load register is written with a new value while the watchdog timer counter is counting,
then the counter is loaded with the new value and continues counting.

25.2 Functions

Functions
void ROM_WatchdogEnable (unsigned long ulBase)
void ROM_WatchdogIntClear (unsigned long ulBase)
void ROM_WatchdogIntEnable (unsigned long ulBase)
unsigned long ROM_WatchdogIntStatus (unsigned long ulBase, tBoolean bMasked)
void ROM_WatchdogIntTypeSet (unsigned long ulBase, unsigned long ulType)
void ROM_WatchdogLock (unsigned long ulBase)
tBoolean ROM_WatchdogLockState (unsigned long ulBase)
unsigned long ROM_WatchdogReloadGet (unsigned long ulBase)
void ROM_WatchdogReloadSet (unsigned long ulBase, unsigned long ulLoadVal)
void ROM_WatchdogResetDisable (unsigned long ulBase)
void ROM_WatchdogResetEnable (unsigned long ulBase)
tBoolean ROM_WatchdogRunning (unsigned long ulBase)
void ROM_WatchdogStallDisable (unsigned long ulBase)
void ROM_WatchdogStallEnable (unsigned long ulBase)

January 4, 2013 359

Watchdog Timer

void ROM_WatchdogUnlock (unsigned long ulBase)
unsigned long ROM_WatchdogValueGet (unsigned long ulBase)

25.2.1 Function Documentation

25.2.1.1 ROM_WatchdogEnable

Enables the watchdog timer.

Prototype:
void
ROM_WatchdogEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogEnable is a function pointer located at ROM_WATCHDOGTABLE[2].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This will enable the watchdog timer counter and interrupt.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
ROM_WatchdogLock(), ROM_WatchdogUnlock()

Returns:
None.

25.2.1.2 ROM_WatchdogIntClear

Clears the watchdog timer interrupt.

Prototype:
void
ROM_WatchdogIntClear(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntClear is a function pointer located at ROM_WATCHDOGTABLE[0].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
The watchdog timer interrupt source is cleared, so that it no longer asserts.

360 January 4, 2013

Watchdog Timer

Note:
Because there is a write buffer in the Cortex-M3 processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

25.2.1.3 ROM_WatchdogIntEnable

Enables the watchdog timer interrupt.

Prototype:
void
ROM_WatchdogIntEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntEnable is a function pointer located at ROM_WATCHDOGTABLE[11].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Enables the watchdog timer interrupt.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
ROM_WatchdogLock(), ROM_WatchdogUnlock(), ROM_WatchdogEnable()

Returns:
None.

25.2.1.4 ROM_WatchdogIntStatus

Gets the current watchdog timer interrupt status.

Prototype:
unsigned long
ROM_WatchdogIntStatus(unsigned long ulBase,

tBoolean bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntStatus is a function pointer located at ROM_WATCHDOGTABLE[12].

January 4, 2013 361

Watchdog Timer

Parameters:
ulBase is the base address of the watchdog timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This returns the interrupt status for the watchdog timer module. Either the raw interrupt status
or the status of interrupt that is allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, where a 1 indicates that the watchdog interrupt is active,
and a 0 indicates that it is not active.

25.2.1.5 ROM_WatchdogIntTypeSet

Sets the type of interrupt generated by the watchdog.

Prototype:
void
ROM_WatchdogIntTypeSet(unsigned long ulBase,

unsigned long ulType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntTypeSet is a function pointer located at ROM_WATCHDOGTABLE[15].

Parameters:
ulBase is the base address of the watchdog timer module.
ulType is the type of interrupt to generate.

Description:
This function sets the type of interrupt that is generated if the watchdog timer expires. ulType
can be either WATCHDOG_INT_TYPE_INT to generate a standard interrupt (the default) or
WATCHDOG_INT_TYPE_NMI to generate a non-maskable interrupt (NMI).

When configured to generate an NMI, the watchdog interrupt must still be enabled with
ROM_WatchdogIntEnable(), and it must still be cleared inside the NMI handler with
ROM_WatchdogIntClear().

Returns:
None.

25.2.1.6 ROM_WatchdogLock

Enables the watchdog timer lock mechanism.

Prototype:
void
ROM_WatchdogLock(unsigned long ulBase)

362 January 4, 2013

Watchdog Timer

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogLock is a function pointer located at ROM_WATCHDOGTABLE[5].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Locks out write access to the watchdog timer configuration registers.

Returns:
None.

25.2.1.7 ROM_WatchdogLockState

Gets the state of the watchdog timer lock mechanism.

Prototype:
tBoolean
ROM_WatchdogLockState(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogLockState is a function pointer located at ROM_WATCHDOGTABLE[7].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Returns the lock state of the watchdog timer registers.

Returns:
Returns true if the watchdog timer registers are locked, and false if they are not locked.

25.2.1.8 ROM_WatchdogReloadGet

Gets the watchdog timer reload value.

Prototype:
unsigned long
ROM_WatchdogReloadGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogReloadGet is a function pointer located at ROM_WATCHDOGTABLE[9].

Parameters:
ulBase is the base address of the watchdog timer module.

January 4, 2013 363

Watchdog Timer

Description:
This function gets the value that is loaded into the watchdog timer when the count reaches
zero for the first time.

See also:
ROM_WatchdogReloadSet()

Returns:
None.

25.2.1.9 ROM_WatchdogReloadSet

Sets the watchdog timer reload value.

Prototype:
void
ROM_WatchdogReloadSet(unsigned long ulBase,

unsigned long ulLoadVal)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogReloadSet is a function pointer located at ROM_WATCHDOGTABLE[8].

Parameters:
ulBase is the base address of the watchdog timer module.
ulLoadVal is the load value for the watchdog timer.

Description:
This function sets the value to load into the watchdog timer when the count reaches zero for
the first time; if the watchdog timer is running when this function is called, then the value is
immediately loaded into the watchdog timer counter. If the ulLoadVal parameter is 0, then an
interrupt is immediately generated.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
ROM_WatchdogLock(), ROM_WatchdogUnlock(), ROM_WatchdogReloadGet()

Returns:
None.

25.2.1.10 ROM_WatchdogResetDisable

Disables the watchdog timer reset.

Prototype:
void
ROM_WatchdogResetDisable(unsigned long ulBase)

364 January 4, 2013

Watchdog Timer

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogResetDisable is a function pointer located at ROM_WATCHDOGTABLE[4].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Disables the capability of the watchdog timer to issue a reset to the processor upon a second
timeout condition.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
ROM_WatchdogLock(), ROM_WatchdogUnlock()

Returns:
None.

25.2.1.11 ROM_WatchdogResetEnable

Enables the watchdog timer reset.

Prototype:
void
ROM_WatchdogResetEnable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogResetEnable is a function pointer located at ROM_WATCHDOGTABLE[3].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Enables the capability of the watchdog timer to issue a reset to the processor upon a second
timeout condition.

Note:
This function will have no effect if the watchdog timer has been locked.

See also:
ROM_WatchdogLock(), ROM_WatchdogUnlock()

Returns:
None.

January 4, 2013 365

Watchdog Timer

25.2.1.12 ROM_WatchdogRunning

Determines if the watchdog timer is enabled.

Prototype:
tBoolean
ROM_WatchdogRunning(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogRunning is a function pointer located at ROM_WATCHDOGTABLE[1].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This will check to see if the watchdog timer is enabled.

Returns:
Returns true if the watchdog timer is enabled, and false if it is not.

25.2.1.13 ROM_WatchdogStallDisable

Disables stalling of the watchdog timer during debug events.

Prototype:
void
ROM_WatchdogStallDisable(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogStallDisable is a function pointer located at ROM_WATCHDOGTABLE[14].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function disables the debug mode stall of the watchdog timer. By doing so, the watchdog
timer continues to count regardless of the processor debug state.

Returns:
None.

25.2.1.14 ROM_WatchdogStallEnable

Enables stalling of the watchdog timer during debug events.

Prototype:
void
ROM_WatchdogStallEnable(unsigned long ulBase)

366 January 4, 2013

Watchdog Timer

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogStallEnable is a function pointer located at ROM_WATCHDOGTABLE[13].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function allows the watchdog timer to stop counting when the processor is stopped by the
debugger. By doing so, the watchdog is prevented from expiring (typically almost immediately
from a human time perspective) and resetting the system (if reset is enabled). The watchdog
will instead expired after the appropriate number of processor cycles have been executed while
debugging (or at the appropriate time after the processor has been restarted).

Returns:
None.

25.2.1.15 ROM_WatchdogUnlock

Disables the watchdog timer lock mechanism.

Prototype:
void
ROM_WatchdogUnlock(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogUnlock is a function pointer located at ROM_WATCHDOGTABLE[6].

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
Enables write access to the watchdog timer configuration registers.

Returns:
None.

25.2.1.16 ROM_WatchdogValueGet

Gets the current watchdog timer value.

Prototype:
unsigned long
ROM_WatchdogValueGet(unsigned long ulBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogValueGet is a function pointer located at ROM_WATCHDOGTABLE[10].

January 4, 2013 367

Watchdog Timer

Parameters:
ulBase is the base address of the watchdog timer module.

Description:
This function reads the current value of the watchdog timer.

Returns:
Returns the current value of the watchdog timer.

368 January 4, 2013

January 4, 2013 369

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifi-
cally designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011-2013, Texas Instruments Incorporated

370 January 4, 2013

www.ti.com/audio
www.ti.com/automotive
amplifier.ti.com
www.ti.com/communications
dataconverter.ti.com
www.ti.com/computers
www.dlp.com
www.ti.com/consumer-apps
dsp.ti.com
www.ti.com/energy
www.ti.com/clocks
www.ti.com/industrial
interface.ti.com
www.ti.com/medical
logic.ti.com
www.ti.com/security
power.ti.com
www.ti.com/space-avionics-defense
microcontroller.ti.com
www.ti.com/video
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity
e2e.ti.com

	Copyright
	Revision Information
	1 Introduction
	2 Boot Loader
	2.1 Introduction
	2.2 Serial Interfaces
	2.3 USB Interface

	3 AES Data Tables
	3.1 Introduction
	3.2 Data Structures

	4 Analog Comparator
	4.1 Introduction
	4.2 Functions

	5 Analog to Digital Converter (ADC)
	5.1 Introduction
	5.2 Functions

	6 Controller Area Network (CAN)
	6.1 Introduction
	6.2 Functions

	7 CRC
	7.1 Introduction
	7.2 Functions

	8 Flash
	8.1 Introduction
	8.2 Functions

	9 Floating-Point Unit (FPU)
	9.1 Introduction
	9.2 API Functions

	10 GPIO
	10.1 Introduction
	10.2 Functions

	11 Hibernation Module
	11.1 Introduction
	11.2 Functions

	12 Inter-Integrated Circuit (I2C)
	12.1 Introduction
	12.2 Functions

	13 Interrupt Controller (NVIC)
	13.1 Introduction
	13.2 Functions

	14 Memory Protection Unit (MPU)
	14.1 Introduction
	14.2 Functions

	15 Pulse Width Modulator (PWM)
	15.1 Introduction
	15.2 Functions

	16 Quadrature Encoder (QEI)
	16.1 Introduction
	16.2 Functions

	17 Synchronous Serial Interface (SSI)
	17.1 Introduction
	17.2 Functions

	18 System Control
	18.1 Introduction
	18.2 Functions

	19 System Exception Module
	19.1 Introduction
	19.2 API Functions

	20 System Tick (SysTick)
	20.1 Introduction
	20.2 Functions

	21 Timer
	21.1 Introduction
	21.2 Functions

	22 UART
	22.1 Introduction
	22.2 Functions

	23 uDMA Controller
	23.1 Introduction
	23.2 Functions

	24 USB Controller
	24.1 Introduction
	24.2 Using USB with the uDMA Controller
	24.3 Functions

	25 Watchdog Timer
	25.1 Introduction
	25.2 Functions

	IMPORTANT NOTICE

