
W H I T E PA P E R

Jean Anne Booth
Director of WW Stellaris Marketing
and Customer-Facing Engineering

Sue Cozart
Applications Engineer

Serial Wire Debug—Ideal
for Microcontrollers

 Introduction
 Serial-wire brings robust

debugging capability to

low-cost micorocontrollers

Digital electronic equipment is becoming more sophisticated every day, so the
programs running these processor-driven systems are becoming bigger and
more intricate. Debugging these complex programs requires very capable
facilities so the designer can track down problems and perfect the software.

The ARM® Cortex-M3™ processor core brought the performance and
popularity of the ARM architecture to a compact size with deterministic real-time
features, enabling Texas Instruments to build 32-bit Stellaris® microcontrollers
(MCUs) that offer high performance and functionality at price points that are
normally associated with much slower 8-bit MCUs. Serial Wire Debug (SWD)
similarly brings fully capable debug and trace facilities to these MCUs while
keeping chip and tool costs low, yet leaving the greatest number of pins
available for system I/O.

Debugging on
Stellaris

Microcontrollers

The greater resources of 32-bit microcontrollers and the wide user base of the
ARM architecture make code development easier for programmers in
comparison to 8-bit and 16-bit offerings. High-level languages like C compile
quickly and more compactly into 32-bit RISC code, limiting the errors of
assembly language coding that are common with smaller MCUs. Debugging is
still going to be necessary and Stellaris MCUs offer rich capabilities for locating
problem code so it can be corrected. With the Cortex-M3 processor core,
monitoring and debugging can take place in real time, without having to stop or
slow the processor so internal resources can be interrogated or external
instruments can keep up.

Stellaris MCUs have all of the debug and trace capabilities a high-end
microcontroller needs. Program flow can be monitored with a rich set of
hardware execution breakpoints and sophisticated watchpoints, vector
catching, and meta trace facilities even with all interrupts enabled. Data in
registers and memory can be read and written while the processor is running,
and resource use can be verified. Code profiling can determine where the
processor is spending its time, revealing when it is hung in an endless loop or
where best to devote efforts to quicken program execution. Sections of code
that never execute are exposed, freeing up valuable space for needed features.
Programmers can verify that pulse-width modulators (PWMs) are firing as
needed, stacks and heaps can be inspected for buried problems, exception
returns can be confirmed, and status, condition codes, and branches can be
validated. Breakpoints can be set to trigger on data values, address locations,

2

Serial Wire Debug—Ideal for Microcontrollers September 2010

Texas Instruments

and conditions on the chip. Detailed trace capabilities of the Stellaris
microcontrollers are listed in Table 1. The MCU can be made to halt, single-step,
and run with controls over the SWD connection as the operator desires. As needed,
memory and on-chip registers can be written by the debugging tool.

CoreSight—
The Basis of

Debugging

CoreSight is the comprehensive debugging and trace architecture which was
developed by ARM in 2003. Some ARM9s and ARM11s use an early version of
CoreSight, but the more recent popularity of the Cortex processors has really
proven its advantages. CoreSight is made up of a number of components that each
aid an external host’s ability to see into the live operation of the chip in a highly
efficient manner.

The components included in a given chip and the sophistication of the specific
development tools in use determine the ultimate capabilities of real-time monitoring,
control, and debugging of running programs. Most system designers make use of
CoreSight through a development tool rather than by directly setting registers,
following the protocol, and manipulating low-level signals, but a quick understanding
of the architecture is instructive in highlighting the effectiveness of the design.
Figure 1 illustrates the components used in Stellaris microcontrollers with their
functionality described below.

Table 1. Serial Wire Trace Capabilities
Feature Use

Time-stamped program counter Supports profiling and coverage

Data reads and writes Interject desired data

Peripheral register values Monitor operation

Event counters Evaluate clocks per instruction

Subroutine, interrupt and exception calls, and returns Complete live change-of-flow

Timestamps and CPU cycle counts Program execution profiling

Messages from OS/user code Printf documentation of code flow

Serial Wire Debug—Ideal for Microcontrollers September 2010

3Texas Instruments

Figure 1. Debug and Trace Components in Stellaris Cortex-M3 Microcontrollers

The Data Watchpoint and Trace (DWT) macrocell keeps an eye on data accesses
by the Cortex-M3 with four watchpoint comparators that can trigger an event at the
debug host when a specified address or data value is put on an internal bus. The
event can break the core flow or just be logged for transmission to the host. The
program counter can be captured and saved. Selecting the action to be taken for a
given event can be determined and programmed by the debug host. One very
useful function of the DWT is to profile a program to determine where the processor
is spending most of its time, possibly hung in an endless loop, and to monitor key
data as it is being changed.

The Instrumentation Trace Macrocell (ITM) in the Stellaris MCU provides the
fundamental trace information to an external monitor. Software running in the ARM
core can use a single-cycle instruction to expressly send data to the ITM, which
then transmits the data to the host tool. These printf -style messages can be used to
communicate operating system, self-diagnostic, or application-specific information
to the tool for monitoring progress and status of program execution.

It is very useful to have this back channel on which to send such console messages
so that a traditional MCU peripheral like a UART or I/O port is not tied up with
debugging data when it should be available for use by the running application. The
ITM actually forwards trace and event data from the DWT to the external tools and
can insert timestamp data unobtrusively that lets the tool determine the time
between various events.

A Flash Patch and Breakpoint unit (FPB) can trigger a breakpoint when a
matching address is hit, at which point the instruction or literal value can be
replaced. Six instruction values and two literals can be set. For patching, a
successful match can remap the address to a section of RAM, allowing different
instructions or data to be inserted into the running program, even if the original is in

Run Control

Breakpoint Unit

Memory
Access Unit

Debug
Interface

10-pin Debug
Connector

ITM Instrumentation
Trace

Trace Port
Interface

DWT Data Watchpoint
and Trace Unit

Cortex-M3
CPU Core

Stellaris Processor

Serial Wire
Debug Serial Wire Viewer

CPU and Interrupt Events

4

Serial Wire Debug—Ideal for Microcontrollers September 2010

Texas Instruments

ROM or Flash memory. For breakpoints, it allows loading a breakpoint instruction
into the upper and/or lower half word.

A key component of CoreSight is the Serial Wire Debug. This optimized two-wire
physical interface utilizes a packet-based protocol to connect the chip-bound
components with external debugging tools, offering complete debugging and trace
capabilities to the programmer. And yet, SWD requires minimal silicon real estate
and just two pins on the chip, consistent with a very low-cost microcontroller. Its
advantages for Stellaris are best seen in light of alternatives that might have been
used and an awareness of the needs for a successful 32-bit microcontroller.

Serial Wire
Debug—Key to

Cortex-M3
Debugging

ARM carefully considered the optimizations it made for the Cortex-M family of
processor cores – cores destined for the smallest of processing applications. From
the highly-efficient Thumb2 instructions to the debug and trace mechanisms
available, these cores have to be very small in physical size and very thrifty in power
consumption, delivering the best performance within those constraints. As the core
is the heart of a microcontroller, the best in size and power is necessary. The core’s
small size is one of the reasons that Stellaris MCUs can replace 8-bit MCUs at
equivalent prices.

Some features of the new CoreSight debug architecture are critical, but others
require a lot of circuitry while providing little additional benefit for the smaller,
more-contained chip implementations of the Cortex-M series. While exotic
debugging facilities may sound attractive, cost is always a driving concern for MCU
selection, so all of the features within the chip must be optimized, including debug
support.

Microcontrollers
Must Be

Cost-Effective

Whether performing a dedicated function in a larger system or managing the entire
application, small size and low cost are key decision-factors in a microcontroller. A
careful balance must be made for every function included in an MCU.

The peripherals included on any one microcontroller are chosen according to the
applications for which the MCU is expected to be used. If there are too many
unused peripherals on a specific device, then another MCU is chosen to save chip,
and therefore system, cost. This economic reality is reflected by the large array of
MCUs offered by suppliers; the greater the variety available, the better the chance
that just the right combination of performance, functions, and peripherals can be
found for any system design. Because MCUs go into some very high-volume
applications, every penny counts.

The cost of a semiconductor is highly influenced by the number of transistors used
to implement the circuit. However, there is not purely a linear relationship of
transistors to cost because there are interconnects and distances that complicate
the issue. Adding a few more transistors may add nothing to the cost if they fit in just
the right places, but doubling the transistors can more than double the silicon
required in many circumstances.

Serial Wire Debug—Ideal for Microcontrollers September 2010

5Texas Instruments

More transistors and more complex circuitry affect more than just silicon area. Every
transistor consumes power both in a quiescent state as well as when switching.
Power domains can be switched off to conserve power, but when they are
operating, transistors are going to draw power and generate heat. Both are
undesirable and a good reason to minimize the transistor- and gate-count of MCUs.

Signal pins (or leads) are precious on a microcontroller. MCUs are packed with
peripheral circuits specifically to sense the outside world through switches, analog
signals, sensors, and communications channels and to drive outputs to motors,
displays, networks, and ports. A number of signal lines are needed to support each
peripheral and the more pins that are available, the more functions can be
supported. Any function that can be served with fewer pins leaves room for other
functions to be included within the same package footprint.

It should also be noted that debug facilities would typically be used rarely over the
life of a piece of equipment. Once the design is final and the code is approved, there
is usually no further need of the debug circuitry. Any transistors, signals, silicon
space, or pins associated with debugging are likely to never be used again; yet a
million chips shipped in production equipment still contain those resources, paid for,
but idle. Keeping the circuits and pins to a minimum is clearly the best approach. A
single pin used as a general-purpose I/O line is far more valuable in the end
equipment than that pin being used for debugging during system design.

The package size of a microcontroller is also a key element of the chip. As systems
become more portable and personal, size and shape are key convenience factors
and selling points for the end equipment where small is usually better. Each signal
pin on the package requires more space on the circuit board and in the equipment,
and small physical size is a very important feature on many of today’s most
attractive devices. Some 32-bit MCUs are as small as 28 pins, and devoting 15% of
those pins to any single purpose, such as debugging, had better be justifiable.
Multiplexing is often used to maximize pin utility, but that has downsides, too.

JTAG, the Old Standby Debug Interface
For debug communications, JTAG has evolved as a popular hardware interface
between MCUs and external debugging tools. The origins of JTAG, however, have
little to do with processor debuggers. JTAG (which stands for Joint Test Action
Group) was established primarily to permit easy verification of the integrity of signals
between multiple chips in electronic systems. JTAG helps narrow down signal flaws
caused by shorts, opens, and cross-talk that can be difficult to detect with the small
dimensions, multi-level pathways, hidden solder joints, environmental conditions,
and numerous sources of noise found on modern circuit boards.

JTAG offers a channel into the back alleys of a chip, but is not the perfect transport
mechanism for debugging. JTAG makes use of four pins (five when a reset is
utilized) to connect to boundary scan, test, and debugging components on the chip.
JTAG data transmission rates are slow by today’s frequency standards.

6

Serial Wire Debug—Ideal for Microcontrollers September 2010

Texas Instruments

Serial Wire—
Four Pins

Good, Two Pins
Better

Ultimately, there are really only two signals needed for a serial port to be used for
debugging: the clock and the data signal (see Table 2). The more streamlined Serial
Wire Debug technology implemented on the Stellaris MCU recommissions the TCK
and TMS pins of JTAG, and uses a packet-based protocol that provides data rates
more than double that which JTAG can offer in spite of the reduced pin count. The
daisy-chain topology of JTAG is not used with SWD, but a multi-drop scheme allows
multiple cores to still be accessed and coordinated by the host. While not as simple
as daisy-chaining or the singular point-to-point connections, multi-drop allows
individual cores to be completely disabled, as might be needed to conserve power,
without impacting the remaining, still operating cores. Turn off a link in a daisy-chain
and nothing downstream gets the message.

JTAG is still available on Stellaris MCUs for its boundary-scan test facility, but by
using SWD, the two JTAG pins that are no longer needed are available for
traditional microcontroller I/O (input/output) use. These are two more I/O lines that
are not inhibited by the system running in a debug mode, perhaps aiding the
tracking down of errant code. The less obtrusive the debug mode is to the target
code, the more effective the problem-solving capability.

Real-time trace capability in Stellaris MCUs is made available using a third serial
wire on Cortex-M3, the Serial Wire Output (SWO). The Instrumentation Trace
Macrocell sends its data to the host over this line which often overlays the JTAG
serial out pin (but that still totals two fewer pins than the five-pin JTAG port.) With
the console messages being coordinated at the host with the program code, very
effective trace debugging can take place.

ETM—
Diminishing

Returns

One additional trace component available for Cortex-M3 was not implemented in
the Stellaris microcontroller family. The Embedded Trace Macrocell (ETM) is
designed to provide explicit instruction-by-instruction trace information to the
development tool.

This capability is especially useful in more complex microprocessors that make use
of on-chip resources that are too dynamic for real-time determinism from the
outside. For example, the variability of on-chip caches which are dependent upon

Table 2. Signal Comparison between JTAG and Serial Wire Debug (SWD)
JTAG 1149.1 Serial Wire Debug

Pin Purpose Pin Purpose

TCK Clock SWCLK Clock

TMS State Machine Control SWDIO Data In & Out

TDI Data In — —

TDO Data Out SWOa

a. SWO, a serial wire output, is used to aid trace.

—

TRST Reset — —

Serial Wire Debug—Ideal for Microcontrollers September 2010

7Texas Instruments

the specific dynamics of the execution of a program loop with constantly changing
data and inputs is impractical to replicate in an external tool at a reasonable price.
However, MCUs do not utilize caches and so have little to gain from an ETM.

The original ETM put trace data out on 4-, 8-, and even 16-bit buses. The ETM
designed for the Cortex-M3 holds this down to just 4 bits. But the ETM comes at a
price in two areas: transistors and pins. The ETM requires more gates to implement
and needs four pins to transfer information off the chip with fast drive pins and at
high transfer rates. These are not huge numbers, but everything in an MCU is a
tradeoff, and if saving two pins in the SWD interface is considered very positive,
then using twice as many—four—to get generally-unneeded trace data off the chip
would be very negative. Also, as noted elsewhere, multiplexing pins for debug
signals makes debugging more intrusive to the main application program and the
silicon real estate is being paid for with every production chip purchase. For the
Stellaris microcontroller product line, the ETM was judged as more bulky than its
function can justify for 99% of the applications, so it is not implemented. Many years
of use in designers’ hands has confirmed that to be a good decision.

The development tools which can make use of the ETM information are higher-end,
more expensive tools, some described by one tool vendor as costing “more than a
sane person can afford.”1 (Skrtic, Mike. IAR Systems.) In addition, the time period
covered by the ETM information is very short.

In contrast, the ITM can provide significant trace information over the SWD and
SWO lines with very modest, but very useful, development tools. A quick
comparison of possible debug and trace facilities for the Stellaris microcontrollers is
shown in Table 3.

1. Skrtic, Mike. A Giant Leap or a Small Step? Making the Move from 8-bit to 32-bit. IAR
Systems. http://www.iar.com/website1/1.0.1.0/485/1/

Table 3. Stellaris MCUs Utilize the Most Efficient Debug and Trace Facilities
Component ITM ETM JTAG SWD SWO

Features printf msg instr trace test/ debug debug msg

Transfer Speeda

a. At 20 MHz

— — 640 KBps 1,500 KBps —

Pins Needed 1 (SWO) 4 5 2b

b. Shared with JTAG pins

1b

Stellaris Feature yes no yes yes yes

Texas Instruments • 108 Wild Basin, Suite 350 • Austin, TX 78746
http://www.ti.com/stellaris

Copyright © 2010 Texas Instruments, Inc. All rights reserved. Stellaris and
StellarisWare are registered trademarks of Texas Instruments. ARM and Thumb are
registered trademarks, and Cortex is a trademark of ARM Limited. Other names and
brands may be claimed as the property of others.

WP-STELLARIS-04 September 2010
SPMY004

Stellaris—
Effective,
Low-Cost

Debug and
Trace

The debug and trace facilities found in the Stellaris microcontrollers are true to the
intent of the microcontrollers themselves: high performance at low cost. Serial Wire
Debug is especially helpful in freeing up pins, increasing throughput, and enabling
low-cost tools and chips. Debug components were eliminated that provide little
additional value but consume more precious space and pins than can be justified for
a compact MCU destined for price-sensitive applications. The result is an advanced
32-bit microcontroller family that has real-time debugging and trace support for the
processor, memory, and peripherals that is optimal for the intricate application code
that runs on the powerful chips, without requiring expensive development tools or
driving up the cost of the production chips.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

