
1 Introduction

Application Report
SPNA093A–February 2006–Revised December 2007

In-System Programming With Catalog TMS470 Devices
John Mangino ... TMS470 Applications

ABSTRACT
This document gives two examples of reprogramming the flash memory in-system on
the TMS470 devices. These examples are intended as a reference to enable users to
create their own in-system programming (ISP) methods. The reference design includes
TMS470 software for use with the IAR Embedded Workbench™ tool.

Note: The examples in this application report require the Flash API Modules
(SPRC236) within the "Tools & Software" folder.

Contents
1 Introduction .. 1
2 Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory

and Run From RAM .. 5
3 Programming Example Using the TI Flash-Memory APIs Loaded and Run From

Bank-0 and Reprogramming Bank-1... 7

List of Figures

1 Flash-Memory Erase Flow Chart ... 3
2 Programming Flow Chart .. 4
3 Diagram Showing the API Routines in Flash Memory and Copied to RAM 7
4 Files for Example Program .. 7
5 Files for Example Program .. 9

This application report introduces an understanding of in-system programming (ISP) of the TMS470
flash-memory devices. These examples use the IAR Embedded Workbench tool and have information for
code generation specific to the IAR tools. The examples use compiled TI flash-memory API modules that
are tested for flash-memory manipulation. It is recommended to use the IAR-compiled versions with the
IAR Embedded Workbench tool. When using a different compiler, the sequence of the API modules must
be verified. If a compiler optimizes an operation, it might not correctly perform the flash-memory operation
(compact, erase, or program).

Note: Do not overwrite the flash-memory protection keys and the memory security module (MSM)
keys. If the keys are rewritten and the data is not known, the part cannot be reprogrammed
or accessed in the case of the MSM.

HyperTerminal is a trademark of Hilgraeve, Incorporated.
IAR Embedded Workbench is a trademark of IAR Systems AB.
All other trademarks are the property of their respective owners.

SPNA093A–February 2006–Revised December 2007 In-System Programming With Catalog TMS470 Devices 1
Submit Documentation Feedback

http://focus.ti.com/docs/toolsw/folders/print/sprc236.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

1.1 Flash-Memory Programming Overview

1.1.1 Flash-Memory Erase Flow

Introduction

The TMS470 devices require a specific sequence to correctly erase and program the flash memory.
Incorrectly programming the flash memory may result in unreliable operation or, in the worst case, cause
flash-memory cell depletion. Texas Instruments provides the F05 TI flash-memory API modules that follow
the correct sequence and are tested and proven to be the correct method. The flash-memory API modules
simplify flash-memory operations and ensure correct operation.

The TI F05 flash-memory API routines are a library of routines that, when called with the proper
parameters in the proper sequence, erase, program, or verify flash memory on the TMS470 family of
Texas Instruments microcontrollers. These routines must be run in a privileged mode (mode other than
user) to allow access to the flash-memory control registers and to the interrupt disable bits. Most of the
routines enter flash-memory configuration mode and, therefore, the system clock should not exceed
24 MHz. The flash-memory API routines are described in the TMS470 Family – F05 Flash Module
Software Peripheral Driver User’s Specification (SPNU257).

The compiled routines were verified on the IAR 4.30a ARM C compiler.

Figure 1 describes the flow for erasing an arbitrary number of sectors on a device using the
Flash_Erase_B function. This flow is desirable from a throughput standpoint, because sectors that already
read as blank are processed much faster. The hallmark of the flow is the ability to disable preconditioning
in Flash_Erase_B using the first 32-bit value in the FLASH_STATUS_ST status structure as a key when
erasing sectors read as blank by Flash_Blank_B. Disabling preconditioning significantly speeds up erase
of blank sectors.

It is not advisable to skip erase altogether on sectors that read as blank, because these sectors may
require repair to marginally erased bits or depleted columns, and the repair is performed during execution
of Flash_Erase_B. Also note that Flash_Erase_B is the only function that enables erase that allows for the
collection of erase and compaction pulse counts.

2 In-System Programming With Catalog TMS470 Devices SPNA093A–February 2006–Revised December 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPNU257
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

F0013-01

No

Yes

Does
Flash_Compact_B
on target sector
return TRUE ?

Device Fails
Compaction

Increment target sector
to next sector on device

Is target sector
the last sector on

the device?

No

Yes

Set target sector to first sector in list of sectors to erase on device

Yes

Collect Pulse data (if desired) from
FLASH_STATUS_ST *status structure

Increment target sector to
next in list of sectors to

erase on device

Is target sector
last sector to

erase?

No

No

No

Yes

Yes

Start

Set target sector to first sector on device

Set status.Stat1_U32=0x12345678
(disables preconditioning)

Does
Flash_Blank_B
on target sector
return TRUE?

Set status.Stat1_U32=0x00000000
(preconditioning enabled)

Does
Flash_Erase_B
on target sector
return TRUE?

Device Fails
Erase

(Status register in
status.Stat2_U32)

Done

Introduction

Figure 1. Flash-Memory Erase Flow Chart

SPNA093A–February 2006–Revised December 2007 In-System Programming With Catalog TMS470 Devices 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

1.1.2 Flash-Memory Programming Flow

Yes

No

Start

Last data buffer?

No

Flash_Prog_B()==TRUE?
Device Fails

Programming

Yes

Done

Erase all target sectors using recommended erase flow (see section 1.1.1)

Set start to new offset in
Flash, buffer to new buffer

location, length to new
buffer length, cntl to new

control base offset (if
applicable) and core to new

core select (if applicable)

Set start to first offset in Flash, buffer to first buffer location, length to first buffer
length, cntl to first control base offset, and core to first core select

Collect Pulse data (if desired) from
FLASH_STATUS_ST *status structure

Yes

No

Last data buffer?

No

Flash_Verify_B() or
Flash_PSA_Verify_B()

==TRUE?

Device Fails
Verify

Yes

Set start to new offset in
Flash, buffer to new buffer

location, length to new
buffer length, cntl to new

control base offset (if
applicable) and core to new

core select (if applicable)

Reset start to first offset in Flash, buffer to first buffer location, length to first buffer
length, cntl to first control base offset, and core to first core select

Introduction

Figure 2 describes the flow for programming the sectors on a device. When programming the flash
memory, first erase all affected sectors using the previously described erase flow, managing the data
buffers being programmed to flash memory such that they do not cross boundaries between flash-memory
banks.

For example, for 1 KB of data to write, starting at the last 768 bytes of bank-0 on a device with more than
one bank, the data must be divided into a 768-byte chunk to be written to bank-0 with one call to
Flash_Prog_B, and the remaining 256 bytes are to be written to bank-1 with a second call to
Flash_Prog_B. Within the same bank, any amount of data may be programmed within the limits of the
available data buffer.

Figure 2. Programming Flow Chart

In-System Programming With Catalog TMS470 Devices4 SPNA093A–February 2006–Revised December 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

1.2 Compiling New Source

2 Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory

2.1 Overview – RAM to Flash Memory

2.2 Modifications to the Linker and ISP Module Files

Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory and Run From RAM

The TMS470 devices offer flexibility of the memory map. Be careful to ensure the compiling and linking of
new code functions properly with respect to the memory map and the existing code. The flash-memory
API routines allow writing and erasing all memory locations within the flash memory. The MSM and
flash-memory protection key areas are managed by the user to prevent accidental modification.

and Run From RAM
This example uses the flash-memory API modules. These modules are compiled into a user-defined
segment, the API_SEGMENT. This segment allows the API routines to run from flash memory or RAM,
depending on the application. The linker command file allocates the flash memory and RAM space. The
main_B1M_program_flash_01.c program is an example for reference purposes that demonstrates the
flash-memory APIs running out of RAM to reprogram the flash memory.

This example is compiled on the IAR Embedded Workbench 4.30a tool. The JTAG debugger is used to
load the program into flash memory. When executed, the main program copies the API routines from the
flash-memory segment to the RAM segment and reprograms the fifth sector of flash memory with new
values.

Using the modified tms470r1b1m_lnk_ram.xcl linker command file, the cstartup.r79 file and the
tms470r1b1m_low_level_init_flash.c file, together these map the flash memory at 0x0000 0000, the RAM
at 0x0040 0000, and the HET RAM at 0x0080 0000. The linker command file defines the API_SEGMENT
as the RAM segment and the API_SEGMENT_D as the flash-memory segment.

Details on the TI flash-memory API routines are in the TMS470R1x F05 Flash Reference Guide
(SPNU213). The API routines provide status results on the flash-memory programming. The data from the
status registers within the API routines is transmitted via the UART2 on the B1M EVM (TMDS
FET470R1B1M) to a terminal software such as the HyperTerminal™ program running on a PC for
diagnostic purposes. These results are removed by commenting the TEST #define statement. The code is
significantly smaller when used in the final version using only the necessary code to compact, erase, and
program the flash memory.

This example compacts, erases, programs, verifies, calculates the parallel signature analysis (PSA),
verifies the PSA, and gets the version number to demonstrate the use of the components of the API
routines. The final version created by the user does not need all these steps for ISP.

Invoking the ISP calls the routines in RAM and reprograms the flash memory with new data or code. The
primary functions of the ISP program are compacting, erasing, programing, and verifying the flash
memory. Additionally, it demonstrates calculating the PSA, verifying the PSA and retrieving the
flash-memory API version designator. Status is transmitted to the UART throughout the programming
cycle.

The flash-memory API modules are compiled with the object files linked into the user-defined segment
called API_SEGMENT. The linker file of the ISP modules requires the following declarations to create the
API_SEGMENT in RAM and the API_SEGMENT_D in flash memory. The RAM segment is loaded or
copied at run time from the flash-memory segment. The linker creates a link to the ISP files in RAM. The
–Q linker designator automatically sets up the copy initialization of segments. This causes the linker to
generate a new segment (initializer_segment) into which it places all data content of the segment. The
application at runtime copies the contents of initializer_segment in flash memory to the segment in RAM.

SPNA093A–February 2006–Revised December 2007 In-System Programming With Catalog TMS470 Devices 5
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPNU213
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

2.2.1 Linker Modification Run From RAM

2.2.2 Main Routine Segment Initialization

2.2.3 Implementing the #pragma location="API_SEGMENT"

2.3 Creating the Flash-Memory Programming Example

Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory and Run From RAM

//**
// FLASH API RAM and FLASH Segments
// Load from FLASH run in RAM
//**

-Z(DATA)API_SEGMENT=RAMSTART-RAMEND
-Z(CONST)API_SEGMENT_D=ROMSTART-(KEYSTART-1),(KEYEND+1)-ROMEND
-QAPI_SEGMENT=API_SEGMENT_D

void main(void)
{
copy_to_ram(void) // Copies the API modules from FLASH to RAM

}

//--
// This module copies the API modules from FLASH to RAM
//--
#pragma segment="API_SEGMENT"
#pragma segment="API_SEGMENT_D"
void copy_to_ram(void)
{
int *i, *j;
for(i = (int*)__segment_begin("API_SEGMENT"),

j = (int*)__segment_begin("API_SEGMENT_D");
i < (int*)__segment_end("API_SEGMENT");

*i++ = *j++);
}

The user places ISP modules in RAM in a similar way. Placing the "#pragma location='API_SEGMENT'"
statement before the user’s ISP routines causes the linker to make a copy of the ISP in flash memory and
reserves the space in RAM for the code to be copied into at run time.

#pragma location="API_SEGMENT"
void Your_ISP_Routine_01 (void)
{
...
...
...

}

#pragma location="API_SEGMENT"
void Your_ISP_Routine_02 (void)
{
...
...
...

}

To create the program in the example, the following files are added to the project and compiled:
• Main program: main_B1M_program_flash_01.c
• Startup program: cstartup.s79
• Mapping file: tms470r1b1m_low_level_init_flash.c
• Flash-memory API files: blank.r79, compact.r79, erase.r79, fver.r79, feed_dog.r79, init_state.r79,

match_key_B.r79, prog.r79, psa.r79, psa_calc.r79, sector_select.r79, track_pulses.r79, verify.r79,
verify_psa.r79

• Linker command file: tms470r1b1m_lnk_flash_ram_to_flash.xcl

6 In-System Programming With Catalog TMS470 Devices SPNA093A–February 2006–Revised December 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

M0080-01

FLASH

RAM

0x00000000

0x000FFFFF

0x00400000

0x0040FFFF

API Routines

FLASH

RAM

0x00000000

0x000FFFFF

0x00400000

0x0040FFFF

API Routines

API Routines

B0103-01

cstartup.s79

Main_B1M_program_flash_01.c

API Routines r79 tms470r1b1m_low_level_init_flash.c

3 Programming Example Using the TI Flash-Memory APIs Loaded and Run From

3.1 Overview – Bank-0 to Bank-1

Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1

Figure 3. Diagram Showing the API Routines in Flash Memory and Copied to RAM

Figure 4. Files for Example Program

Bank-0 and Reprogramming Bank-1
This example uses the flash-memory API modules. These modules are compiled into a user-defined
segment, the API_SEGMENT. This segment allows the API routines to run from flash memory or RAM,
depending on the application. The linker command file allocates the flash memory and RAM space. The
main_B1M_program_flash_02.c program is an example for reference purposes that demonstrates the
flash-memory APIs running out of flash-memory bank-0 to reprogram the flash memory in bank-1.

This example is compiled on the IAR Embedded Workbench 4.30a tool. The JTAG debugger loads the
program into flash memory. When run, the main program executes the flash-memory APIs running out of
flash-memory bank-0 to reprogram the flash memory in bank-1 at address 0x0008 0000 with new values.

Using the modified tms470r1b1m_lnk_ram_B0_to_B1.xcl linker command file, the cstartup.r79 file, and the
tms470r1b1m_low_level_init_flash.c file, together these map the flash memory at 0x0000 0000, the RAM
at 0x0040 0000, and the HET RAM at 0x0080 0000. The linker command file defines the API_SEGMENT
as the flash-memory segment.

SPNA093A–February 2006–Revised December 2007 In-System Programming With Catalog TMS470 Devices 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

3.2 Modifications to the Lnker and ISP Module Files

3.2.1 Linker Modification Run From Flash Memory

3.2.2 Implementing the #pragma location="API_SEGMENT"

Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1

Details on the TI flash-memory API routines are in the TMS470R1x F05 Flash Reference Guide
(SPNU213). The API routines provide status results on the flash-memory programming. The data from the
status registers within the API routines is transmitted via the UART2 on the B1M EVM (TMDS
FET470R1B1M) to terminal software such as the HyperTerminal program running on a PC for diagnostic
purposes. These results are removed by commenting the TEST #define statement. The code is
significantly smaller when used in the final version, with only the code necessary to compact, erase, and
program the flash memory.

This example compacts, erases, programs, verifies, calculates the Parallel Signature Analysis (PSA),
verifies the PSA, and gets the version number to demonstrate the use of the components of the API
routines. The final version created by the user does not need all these steps for ISP.

Invoking the ISP calls the routines in RAM and reprograms the flash memory with new data or code. The
primary functions of the ISP program are compacting, erasing, programming, and verifying the flash
memory. Additionally, the ISP calculates the PSA, verifies the PSA, and retrieves the flash-memory API
version designator. Status is transmitted to the UART throughout the programming cycle.

The flash-memory API modules are compiled with the object files linked into the user-defined segment
called API_SEGMENT. The linker command file of the ISP modules requires the following declarations to
create the API_SEGMENT in flash memory.

//**
// FLASH API RAM and FLASH Segments
// Run from FLASH Bank 0
// Program Bank 1
//**
-DBank0_START=0x00000000
-DBank0_END=0x0007FFFF
-DBank1_START=0x00080000
-DBank1_END=0x000FFFFF
-Z(DATA)API_SEGMENT=ROMSTART-(KEYSTART-1),(KEYEND+1)-Bank0_END

The user places ISP modules in flash memory in a similar way. Placing the #pragma
location="API_SEGMENT" statement before the user ISP routines causes the linker to put the routines in
the specified location in flash memory. This is the case to place reprogramming algorithms in one bank
while modifying the other flash-memory bank.
#pragma location="API_SEGMENT"
void Your_ISP_Routine_01 (void)
{
...
...
...

}

#pragma location="API_SEGMENT"
void Your_ISP_Routine_02 (void)
{
...
...
...

}

In-System Programming With Catalog TMS470 Devices8 SPNA093A–February 2006–Revised December 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPNU213
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

www.ti.com

3.3 Creating the Flash-Memory Programming Example

B0103-02

cstartup.s79

Main_B1M_program_flash_02.c

API Routines r79 tms470r1b1m_low_level_init_flash.c

Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1

To create the program in the example, the following files are added to the project and compiled:
• Main program: main_B1M_program_flash_02.c
• Startup program: cstartup.s79
• Mapping file: tms470r1b1m_low_level_init_flash.c
• Flash-memory API files: blank.r79, compact.r79, erase.r79, fver.r79, feed_dog.r79, init_state.r79,

match_key_B.r79, prog.r79, psa.r79, psa_calc.r79, sector_select.r79, track_pulses.r79, verify.r79,
verify_psa.r79

• Linker command file: tms470r1b1m_lnk_flash_b0_to_b1.xcl

Figure 5. Files for Example Program

SPNA093A–February 2006–Revised December 2007 In-System Programming With Catalog TMS470 Devices 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	1.1 Flash-Memory Programming Overview
	1.1.1 Flash-Memory Erase Flow
	1.1.2 Flash-Memory Programming Flow

	1.2 Compiling New Source

	2 Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory and Run From RAM
	2.1 Overview – RAM to Flash Memory
	2.2 Modifications to the Linker and ISP Module Files
	2.2.1 Linker Modification Run From RAM
	2.2.2 Main Routine Segment Initialization
	2.2.3 Implementing the #pragma location="API_SEGMENT"

	2.3 Creating the Flash-Memory Programming Example

	3 Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1
	3.1 Overview – Bank-0 to Bank-1
	3.2 Modifications to the Lnker and ISP Module Files
	3.2.1 Linker Modification Run From Flash Memory
	3.2.2 Implementing the #pragma location="API_SEGMENT"

	3.3 Creating the Flash-Memory Programming Example

