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ABSTRACT
This document gives two examples of reprogramming the flash memory in-system on
the TMS470 devices. These examples are intended as a reference to enable users to
create their own in-system programming (ISP) methods. The reference design includes
TMS470 software for use with the IAR Embedded Workbench™ tool.

Note: The examples in this application report require the Flash API Modules
(SPRC236) within the "Tools & Software" folder.
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This application report introduces an understanding of in-system programming (ISP) of the TMS470
flash-memory devices. These examples use the IAR Embedded Workbench tool and have information for
code generation specific to the IAR tools. The examples use compiled TI flash-memory API modules that
are tested for flash-memory manipulation. It is recommended to use the IAR-compiled versions with the
IAR Embedded Workbench tool. When using a different compiler, the sequence of the API modules must
be verified. If a compiler optimizes an operation, it might not correctly perform the flash-memory operation
(compact, erase, or program).

Note: Do not overwrite the flash-memory protection keys and the memory security module (MSM)
keys. If the keys are rewritten and the data is not known, the part cannot be reprogrammed
or accessed in the case of the MSM.

HyperTerminal is a trademark of Hilgraeve, Incorporated.
IAR Embedded Workbench is a trademark of IAR Systems AB.
All other trademarks are the property of their respective owners.

SPNA093A–February 2006–Revised December 2007 In-System Programming With Catalog TMS470 Devices 1
Submit Documentation Feedback

http://focus.ti.com/docs/toolsw/folders/print/sprc236.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA093A


www.ti.com

1.1 Flash-Memory Programming Overview

1.1.1 Flash-Memory Erase Flow

Introduction

The TMS470 devices require a specific sequence to correctly erase and program the flash memory.
Incorrectly programming the flash memory may result in unreliable operation or, in the worst case, cause
flash-memory cell depletion. Texas Instruments provides the F05 TI flash-memory API modules that follow
the correct sequence and are tested and proven to be the correct method. The flash-memory API modules
simplify flash-memory operations and ensure correct operation.

The TI F05 flash-memory API routines are a library of routines that, when called with the proper
parameters in the proper sequence, erase, program, or verify flash memory on the TMS470 family of
Texas Instruments microcontrollers. These routines must be run in a privileged mode (mode other than
user) to allow access to the flash-memory control registers and to the interrupt disable bits. Most of the
routines enter flash-memory configuration mode and, therefore, the system clock should not exceed
24 MHz. The flash-memory API routines are described in the TMS470 Family – F05 Flash Module
Software Peripheral Driver User’s Specification (SPNU257).

The compiled routines were verified on the IAR 4.30a ARM C compiler.

Figure 1 describes the flow for erasing an arbitrary number of sectors on a device using the
Flash_Erase_B function. This flow is desirable from a throughput standpoint, because sectors that already
read as blank are processed much faster. The hallmark of the flow is the ability to disable preconditioning
in Flash_Erase_B using the first 32-bit value in the FLASH_STATUS_ST status structure as a key when
erasing sectors read as blank by Flash_Blank_B. Disabling preconditioning significantly speeds up erase
of blank sectors.

It is not advisable to skip erase altogether on sectors that read as blank, because these sectors may
require repair to marginally erased bits or depleted columns, and the repair is performed during execution
of Flash_Erase_B. Also note that Flash_Erase_B is the only function that enables erase that allows for the
collection of erase and compaction pulse counts.
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Figure 1. Flash-Memory Erase Flow Chart
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1.1.2 Flash-Memory Programming Flow
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Introduction

Figure 2 describes the flow for programming the sectors on a device. When programming the flash
memory, first erase all affected sectors using the previously described erase flow, managing the data
buffers being programmed to flash memory such that they do not cross boundaries between flash-memory
banks.

For example, for 1 KB of data to write, starting at the last 768 bytes of bank-0 on a device with more than
one bank, the data must be divided into a 768-byte chunk to be written to bank-0 with one call to
Flash_Prog_B, and the remaining 256 bytes are to be written to bank-1 with a second call to
Flash_Prog_B. Within the same bank, any amount of data may be programmed within the limits of the
available data buffer.

Figure 2. Programming Flow Chart
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1.2 Compiling New Source

2 Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory

2.1 Overview – RAM to Flash Memory

2.2 Modifications to the Linker and ISP Module Files

Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory and Run From RAM

The TMS470 devices offer flexibility of the memory map. Be careful to ensure the compiling and linking of
new code functions properly with respect to the memory map and the existing code. The flash-memory
API routines allow writing and erasing all memory locations within the flash memory. The MSM and
flash-memory protection key areas are managed by the user to prevent accidental modification.

and Run From RAM
This example uses the flash-memory API modules. These modules are compiled into a user-defined
segment, the API_SEGMENT. This segment allows the API routines to run from flash memory or RAM,
depending on the application. The linker command file allocates the flash memory and RAM space. The
main_B1M_program_flash_01.c program is an example for reference purposes that demonstrates the
flash-memory APIs running out of RAM to reprogram the flash memory.

This example is compiled on the IAR Embedded Workbench 4.30a tool. The JTAG debugger is used to
load the program into flash memory. When executed, the main program copies the API routines from the
flash-memory segment to the RAM segment and reprograms the fifth sector of flash memory with new
values.

Using the modified tms470r1b1m_lnk_ram.xcl linker command file, the cstartup.r79 file and the
tms470r1b1m_low_level_init_flash.c file, together these map the flash memory at 0x0000 0000, the RAM
at 0x0040 0000, and the HET RAM at 0x0080 0000. The linker command file defines the API_SEGMENT
as the RAM segment and the API_SEGMENT_D as the flash-memory segment.

Details on the TI flash-memory API routines are in the TMS470R1x F05 Flash Reference Guide
(SPNU213). The API routines provide status results on the flash-memory programming. The data from the
status registers within the API routines is transmitted via the UART2 on the B1M EVM (TMDS
FET470R1B1M) to a terminal software such as the HyperTerminal™ program running on a PC for
diagnostic purposes. These results are removed by commenting the TEST #define statement. The code is
significantly smaller when used in the final version using only the necessary code to compact, erase, and
program the flash memory.

This example compacts, erases, programs, verifies, calculates the parallel signature analysis (PSA),
verifies the PSA, and gets the version number to demonstrate the use of the components of the API
routines. The final version created by the user does not need all these steps for ISP.

Invoking the ISP calls the routines in RAM and reprograms the flash memory with new data or code. The
primary functions of the ISP program are compacting, erasing, programing, and verifying the flash
memory. Additionally, it demonstrates calculating the PSA, verifying the PSA and retrieving the
flash-memory API version designator. Status is transmitted to the UART throughout the programming
cycle.

The flash-memory API modules are compiled with the object files linked into the user-defined segment
called API_SEGMENT. The linker file of the ISP modules requires the following declarations to create the
API_SEGMENT in RAM and the API_SEGMENT_D in flash memory. The RAM segment is loaded or
copied at run time from the flash-memory segment. The linker creates a link to the ISP files in RAM. The
–Q linker designator automatically sets up the copy initialization of segments. This causes the linker to
generate a new segment (initializer_segment) into which it places all data content of the segment. The
application at runtime copies the contents of initializer_segment in flash memory to the segment in RAM.
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2.2.1 Linker Modification Run From RAM

2.2.2 Main Routine Segment Initialization

2.2.3 Implementing the #pragma location="API_SEGMENT"

2.3 Creating the Flash-Memory Programming Example

Programming Example Using the TI Flash-Memory APIs Loaded Into Flash Memory and Run From RAM

//************************************************
// FLASH API RAM and FLASH Segments
// Load from FLASH run in RAM
//************************************************

-Z(DATA)API_SEGMENT=RAMSTART-RAMEND
-Z(CONST)API_SEGMENT_D=ROMSTART-(KEYSTART-1),(KEYEND+1)-ROMEND
-QAPI_SEGMENT=API_SEGMENT_D

void main(void)
{
copy_to_ram(void) // Copies the API modules from FLASH to RAM

}

//------------------------------------------------------------------------------
// This module copies the API modules from FLASH to RAM
//------------------------------------------------------------------------------
#pragma segment="API_SEGMENT"
#pragma segment="API_SEGMENT_D"
void copy_to_ram(void)
{
int *i, *j;
for(i = (int*)__segment_begin("API_SEGMENT"),

j = (int*)__segment_begin("API_SEGMENT_D");
i < (int*)__segment_end("API_SEGMENT");

*i++ = *j++);
}

The user places ISP modules in RAM in a similar way. Placing the "#pragma location='API_SEGMENT'"
statement before the user’s ISP routines causes the linker to make a copy of the ISP in flash memory and
reserves the space in RAM for the code to be copied into at run time.

#pragma location="API_SEGMENT"
void Your_ISP_Routine_01 (void)
{
...
...
...

}

#pragma location="API_SEGMENT"
void Your_ISP_Routine_02 (void)
{
...
...
...

}

To create the program in the example, the following files are added to the project and compiled:
• Main program: main_B1M_program_flash_01.c
• Startup program: cstartup.s79
• Mapping file: tms470r1b1m_low_level_init_flash.c
• Flash-memory API files: blank.r79, compact.r79, erase.r79, fver.r79, feed_dog.r79, init_state.r79,

match_key_B.r79, prog.r79, psa.r79, psa_calc.r79, sector_select.r79, track_pulses.r79, verify.r79,
verify_psa.r79

• Linker command file: tms470r1b1m_lnk_flash_ram_to_flash.xcl
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3 Programming Example Using the TI Flash-Memory APIs Loaded and Run From

3.1 Overview – Bank-0 to Bank-1

Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1

Figure 3. Diagram Showing the API Routines in Flash Memory and Copied to RAM

Figure 4. Files for Example Program

Bank-0 and Reprogramming Bank-1
This example uses the flash-memory API modules. These modules are compiled into a user-defined
segment, the API_SEGMENT. This segment allows the API routines to run from flash memory or RAM,
depending on the application. The linker command file allocates the flash memory and RAM space. The
main_B1M_program_flash_02.c program is an example for reference purposes that demonstrates the
flash-memory APIs running out of flash-memory bank-0 to reprogram the flash memory in bank-1.

This example is compiled on the IAR Embedded Workbench 4.30a tool. The JTAG debugger loads the
program into flash memory. When run, the main program executes the flash-memory APIs running out of
flash-memory bank-0 to reprogram the flash memory in bank-1 at address 0x0008 0000 with new values.

Using the modified tms470r1b1m_lnk_ram_B0_to_B1.xcl linker command file, the cstartup.r79 file, and the
tms470r1b1m_low_level_init_flash.c file, together these map the flash memory at 0x0000 0000, the RAM
at 0x0040 0000, and the HET RAM at 0x0080 0000. The linker command file defines the API_SEGMENT
as the flash-memory segment.
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3.2 Modifications to the Lnker and ISP Module Files

3.2.1 Linker Modification Run From Flash Memory

3.2.2 Implementing the #pragma location="API_SEGMENT"

Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1

Details on the TI flash-memory API routines are in the TMS470R1x F05 Flash Reference Guide
(SPNU213). The API routines provide status results on the flash-memory programming. The data from the
status registers within the API routines is transmitted via the UART2 on the B1M EVM (TMDS
FET470R1B1M) to terminal software such as the HyperTerminal program running on a PC for diagnostic
purposes. These results are removed by commenting the TEST #define statement. The code is
significantly smaller when used in the final version, with only the code necessary to compact, erase, and
program the flash memory.

This example compacts, erases, programs, verifies, calculates the Parallel Signature Analysis (PSA),
verifies the PSA, and gets the version number to demonstrate the use of the components of the API
routines. The final version created by the user does not need all these steps for ISP.

Invoking the ISP calls the routines in RAM and reprograms the flash memory with new data or code. The
primary functions of the ISP program are compacting, erasing, programming, and verifying the flash
memory. Additionally, the ISP calculates the PSA, verifies the PSA, and retrieves the flash-memory API
version designator. Status is transmitted to the UART throughout the programming cycle.

The flash-memory API modules are compiled with the object files linked into the user-defined segment
called API_SEGMENT. The linker command file of the ISP modules requires the following declarations to
create the API_SEGMENT in flash memory.

//************************************************
// FLASH API RAM and FLASH Segments
// Run from FLASH Bank 0
// Program Bank 1
//************************************************
-DBank0_START=0x00000000
-DBank0_END=0x0007FFFF
-DBank1_START=0x00080000
-DBank1_END=0x000FFFFF
-Z(DATA)API_SEGMENT=ROMSTART-(KEYSTART-1),(KEYEND+1)-Bank0_END

The user places ISP modules in flash memory in a similar way. Placing the #pragma
location="API_SEGMENT" statement before the user ISP routines causes the linker to put the routines in
the specified location in flash memory. This is the case to place reprogramming algorithms in one bank
while modifying the other flash-memory bank.
#pragma location="API_SEGMENT"
void Your_ISP_Routine_01 (void)
{
...
...
...

}

#pragma location="API_SEGMENT"
void Your_ISP_Routine_02 (void)
{
...
...
...

}
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3.3 Creating the Flash-Memory Programming Example

B0103-02

cstartup.s79

Main_B1M_program_flash_02.c

API Routines r79 tms470r1b1m_low_level_init_flash.c

Programming Example Using the TI Flash-Memory APIs Loaded and Run From Bank-0 and Reprogramming Bank-1

To create the program in the example, the following files are added to the project and compiled:
• Main program: main_B1M_program_flash_02.c
• Startup program: cstartup.s79
• Mapping file: tms470r1b1m_low_level_init_flash.c
• Flash-memory API files: blank.r79, compact.r79, erase.r79, fver.r79, feed_dog.r79, init_state.r79,

match_key_B.r79, prog.r79, psa.r79, psa_calc.r79, sector_select.r79, track_pulses.r79, verify.r79,
verify_psa.r79

• Linker command file: tms470r1b1m_lnk_flash_b0_to_b1.xcl

Figure 5. Files for Example Program
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