
Application Report
SPNA098A–July 2006–Revised April 2007

TMS470 I 2C Protocol
Keith Engler and Harman Grewal .. TMS470 Applications

ABSTRACT
The TMS470 family of ARM7 microcontrollers has up to five I2C ports available,
depending on which device is selected. The TMS470 I2C engine is very flexible and
powerful. This document describes how to read and write I2C data and how to select
the I2C clock rate.

Contents
1 Introduction .. 2
2 TMS470 I2C C-Code Examples... 2
3 TMS470 I2C Setup Description ... 4
4 TMS470 I2C-Specific Read and Write Protocol... 5
5 TMS470 I2C Clock-Rate Selection ... 5
6 TMS470 I2C Repeated Start Sequence ... 8
7 Conclusion... 9
8 References .. 9

List of Figures

1 I2C Read (RX) C-Code... 2
2 I2C Write (TX) C-Code ... 3
3 I2C Read (RX) and I2C Write (TX) Setup Comparison... 4
4 TMS470-ADS1110-DAC8574 Test Setup ... 4
5 I2C Write Example .. 5
6 I2C Read Example.. 5
7 I2C Clocking ... 5
8 Repeated Start Code Example ... 9

List of Tables

1 Global Control Register (GCR) Bit Definitions .. 6
2 Peripheral Control Register (PCR) Bit Definitions.. 6

All trademarks are the property of their respective owners.

SPNA098A–July 2006–Revised April 2007 1TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

1 Introduction

2 TMS470 I2C C-Code Examples

2.1 Read I 2C Code Example Using the ADC1110 Analog-to-Digital Converter

Introduction

This document contains specific examples for initializing, reading, and writing I2C data using the TMS470.
This document is meant to supplement, but not replace, the TMS470 I2C Reference Guide.[1] See the
Philips I2C specification [4] for more detailed understanding of the I2C protocol. This document also
assumes the reader has a basic understanding of C-programming concepts.

This document has C-code examples for writing data to the DAC8574 (digital-to-analog converter) and
reading data from the ADC1110 (analog-to-digital converter) via the I2C bus. Both devices are from Texas
Instruments.

This document lists two C-code functions for reading and writing I2C data. Then each function is described
in terms of I2C setup, I2C clocking, I2C read, and I2C write.

Each I2C transmission in this document take places between a valid I2C Start and a valid I2C Stop.[4] The
TMS470 is capable of performing multiple reads and multiple writes following an I2C Start, but an example
for this case is not discussed in this document.

This section has C-code examples for writing digital data to the DAC8574 and reading digital data from the
ADC1110. These functions can be used directly with the IAR Embedded Workbench™.

This section has C-code examples for reading I2C data from the ADC1110 and the supporting variables to
the function.

unsigned char adcp1; // ADC variable for Most Significant Byte
unsigned char adcp2; // ADC variable for Least Significant Byte
unsigned char config; // ADC variable for Configuration Register

void ADS1110_ReadVoltage(void)
{
//I2C 1 Set up
I2C1PSC = 2; // Module clock frequency

// I2CCLK = ICLK / (PSC + 1)
// I2CCLK = 10 MHz

I2C1CKL = 45; // Low clock period
I2C1CKH = 45; // High clock period
I2C1OAR = 0x56; // Set TMS470's Own address to 0x56
I2C1IMR = 0x0; // Interrupts disabled
I2C1CNT = 3; // Number of byte transactions between I2C Start and Stop
I2C1SAR = 0x48; // Set address of ADC to 0x48
I2C1PFNC = 0; // Pins function as SDA and SCL pins
I2C1DIR = SDAFUNC+SCLFUNC; // Set I2C Pin direction
I2C1MDR |= MST; // Make TMS470 addr 0x56 the IIC the Master
I2C1MDR |= NIRS; // Clear Reset
I2C1MDR &= ~TRX; // Clear transmit to Read
I2C1MDR |= STT + STP; // Start, Stop and Transmit
while(!(I2C1SR & 0x0008)); // Verify I2CDRR has been read
adcp1 = (I2C1DRR); // Capture Most Significant Byte First
while(!(I2C1SR & 0x0008)); // Verify I2CDRR has been read
adcp2 = (I2C1DRR); // Capture Least Significant Byte Second
while(!(I2C1SR & 0x0008)); // Verify I2CDRR has been read
config = (I2C1DRR); // Capture Configuration Register Value third

}

Figure 1. I2C Read (RX) C-Code

2 SPNA098A–July 2006–Revised April 2007TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

2.2 Write I 2C Code Example Using the DAC8574 Digital-to-Analog Converter

TMS470 I2C C-Code Examples

This section has C-code examples for writing I2C data to the DAC8574 and the supporting variables to the
function.
const int sin_table[] = {
32500, 37584, 42543, 47255, 51603, 55481, 58793, 61458, 63409, 64600,
65000, 64600, 63409, 61458, 58793, 55481, 51603, 47255, 42543, 37584,
32500, 27416, 22457, 17745, 13397, 9519, 6207, 3542, 1591, 400,

0, 400, 1591, 3542, 6207, 9519, 13397, 17745, 22457, 27416,
0xffff
};
const int* ip; // Pointer to sin_table

void DAC8574_SetVoltage(void)
{
I2C1PSC = 2; // Module clock frequency

// I2CCLK = ICLK / (PSC + 1)
// I2CCLK = 10 MHz

I2C1CKL = 45; // Low clock period
I2C1CKH = 45; // High clock period
I2C1OAR = 0x56; // Set address 0x56
I2C1IMR = 0x0; // Interrupts disabled
I2C1CNT = 3; // Set count = 3 to write 3 samples
I2C1SAR = 0x4C; // Set address of DAC to 0x4C
I2C1PFNC = 0; // Pins function as SDA and SCL pins
I2C1DIR = SDAFUNC+SCLFUNC; // Set I2C Pin direction
I2C1MDR |= MST; // Master
I2C1MDR |= NIRS; // Clear Reset
I2C1MDR |= STT + STP + TRX; // Start, Stop and Transmit
if (*ip == 0xffff) // If the Last value of sin_table is encountered then

{
ip = sin_table; } // re-point ip back to the sin-table start
}
dacp = *ip; // load the sin_table value into the DAC
I2C1DXR = 0x10; // Byte1 is the DAC Control Byte (0x10)
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
I2C1DXR = (dacp & 0xFF00) >>8; // Send the Most Significant Byte first
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
I2C1DXR = (dacp & 0xFF); // Send the Least Significant Byte second
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
ip++; // Increment to the next value in the sin_table

}

Figure 2. I2C Write (TX) C-Code

SPNA098A–July 2006–Revised April 2007 3TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

3 TMS470 I2C Setup Description

I2C Write Setup

I2C1PSC = 2;

I2C1CKL = 45;

I2C1CKH = 4

I2C1OAR = 0x56;

I2C1IMR = 0x0;

I2C1CNT = 3;

I2C1PFNC = 0;

I2C1DIR = SDAFUNC + SCLFUNC;

I2C1MDR |= MST;

I2C1MDR |= NIRS;

I2C1MDR |= STT + STP;

I2C1SAR = 0x4C; //DAC

I2CIMDR |= TRX; //Write

I2C1PSC = 2;

I2C1CKL = 45;

I2C1CKH = 45;

I2C1OAR = 0x56;

I2C1IMR

I2C1CNT = 3;

I2C1PFNC = 0;

I2C1DIR = SDAFUNC + SCLFUNC;

I2C1MDR |= MST;

I2C1MDR |= NIRS;

I2C1MDR |= STT + STP;

= 0x0;

I2C1SAR = 0x48; //ADC

I2CIMDR &= ~TRX; //Read

Change

Change

I2C Read Setup

3.1 Hardware Description

TMS470 I2C Setup Description

The TMS470 I2C setup consists of setting the I2C transfer rates to either 100 kbps or 400 kbps, setting the
mode of the I2C pin to either GPIO or I2C, and setting the data direction as either a transmit or receive.
Figure 3 shows the difference between setup for an I2C read (RX) and an I2C write (TX).

Figure 3. I2C Read (RX) and I2C Write (TX) Setup Comparison

The examples in this application report were tested using the following hardware:

• TMS470R1B1M KickStart™ Development Kit from IAR [5]
• HPA-MCU Interface Board [6]
• ADS110 EVM [7]
• DAC8574 EVM [8]

The block diagram for the test setup is shown in Figure 4.

Figure 4. TMS470-ADS1110-DAC8574 Test Setup

This application is tested using the IAR Embedded Workbench, and the application code is provided in
this file: http://www-s.ti.com/sc/psheets/spna098/spna098.zip

4 SPNA098A–July 2006–Revised April 2007TMS470 I 2C Protocol
Submit Documentation Feedback

http://www-s.ti.com/sc/psheets/spna098/spna098.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

4 TMS470 I2C-Specific Read and Write Protocol

5 TMS470 I2C Clock-Rate Selection

TMS470 I2C-Specific Read and Write Protocol

The I2C read and I2C write is centrally focused on the I2C Status Register (I2CSR). During a write, the
status register is polled to verify that the data has been sent from the transmit register (I2CDXR). During a
read, the status register is polled to verify the data has been captured into the receive register (I2CDRR).
I2C1DXR = 0x10; // Send DAC Control Byte 1st
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1)
I2C1DXR = (dacp & 0xFF00) >>8; // Send the Least Significant Byte 2nd
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1)
I2C1DXR = (dacp & 0xFF); // Send the Most Significant Byte 3rd
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1)c

Figure 5. I2C Write Example

while(!(I2C1SR & 0x0008)); // Verify I2CDRR has been read
adcp1 = (I2C1DRR); // Capture Most Significant Byte 1st
while(!(I2C1SR & 0x0008)); // Verify I2CDRR has been read
adcp2 = (I2C1DRR); // Capture Least Significant Byte 2nd
while(!(I2C1SR & 0x0008)); // Verify I2CDRR has been read
config = (I2C1DRR); // Capture Configuration Register 3rd

Figure 6. I2C Read Example

The TMS470 supports I2C transfer rates of 100 kbps and 400 kbps. The I2C clock rate is derived from
ICLK, which is dependant on the crystal oscillator (FOSC). Figure 7 shows how the I2C clocks are derived.

Figure 7. I2C Clocking

The GCR is the Global Control Register. The example in Figure 7 sets the GCR to zero, which creates a
system clock that is eight times the FOSC. There are eight possible prescale values, as shown in Table 1.
See reference [2] for complete information.

SPNA098A–July 2006–Revised April 2007 5TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

TMS470 I2C Clock-Rate Selection

The PCR is the Peripheral Clock Register. The example in Figure 7 sets the PCR to divide the system
clock by two. There are 16 possible values, as shown in Table 2. The clock divider in the PCR determines
the ICLK value that is the input clock to the I2C module. See reference [3] for complete information.

The I2C master clock is the bit rate of the I2C clock and data lines. I2CCKL and I2CCLKH are low and high
times of the I2C clock. The example in Figure 1 uses a 50% duty cycle for the high and low times to
produce an exactly 100-kHz I2C clock. The 400-kHz master clock requires a non-uniform clock period.
See reference [1] for complete information.

Table 1. Global Control Register (GCR) Bit Definitions

NAME VALUE BITS DESCRIPTION

ZPLL_CLK_DIV_PRE_1 0x0000 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_2 0x0001 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_3 0x0002 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_4 0x0003 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_5 0x0004 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_6 0x0005 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_7 0x0006 2:0 ZPLL clock divider prescale

ZPLL_CLK_DIV_PRE_8 0x0007 2:0 ZPLL clock divider prescale (default)

ZPLL_MULT4 0x0008 3 Multiply by 4 or 8

FLCONFIG 0x0010 4 Flash configuration enable

RESERVED 13:5 Reserved

RTI_CTRL 0x4000 14 RTI control

RST_OSC_FAIL_EN 0x8000 15 Reset on oscillator failure enable

Table 2. Peripheral Control Register (PCR) Bit Definitions

NAME VALUE BITS DESCRIPTION

PENABLE 0x0 0 Peripheral enable

CLKDIV_1 0x00 << 1 4:1 ICLK = SYSCLK/1

CLKDIV_2 0x01 << 1 4:1 ICLK = SYSCLK/2

CLKDIV_3 0x02 << 1 4:1 ICLK = SYSCLK/3

CLKDIV_4 0x03 << 1 4:1 ICLK = SYSCLK/4

CLKDIV_5 0x04 << 1 4:1 ICLK = SYSCLK/5

CLKDIV_6 0x05 << 1 4:1 ICLK = SYSCLK/6

CLKDIV_7 0x06 << 1 4:1 ICLK = SYSCLK/7

CLKDIV_8 0x07 << 1 4:1 ICLK = SYSCLK/8

CLKDIV_9 0x08 << 1 4:1 ICLK = SYSCLK/9

CLKDIV_10 0x09 << 1 4:1 ICLK = SYSCLK/10

CLKDIV_11 0x0A << 1 4:1 ICLK = SYSCLK/11

CLKDIV_12 0x0B << 1 4:1 ICLK = SYSCLK/12

CLKDIV_13 0x0C << 1 4:1 ICLK = SYSCLK/13

CLKDIV_14 0x0D << 1 4:1 ICLK = SYSCLK/14

CLKDIV_15 0x0E << 1 4:1 ICLK = SYSCLK/15

CLKDIV_16 0x0F << 1 4:1 ICLK = SYSCLK/16

6 SPNA098A–July 2006–Revised April 2007TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

5.1 TMS470 I 2C Clock-Rate Selection Code Example

TMS470 I2C Clock-Rate Selection

The TMS470 has five registers that must be set to achieve the I2C transfer rates of 100 kbps and
400 kbps.

• GCR: Global Control Register
• PCR: Peripheral Clock Register
• I2C1PSC: I2C Pre-Scale Register is used to divide down the system clocks
• I2C1CKL: I2C Clock Divider Low Register sets the low time of the I2C clock
• I2C1CKH: I2C Clock Divider High Register sets the high time of the I2C clock

I2C Example for 100 kHz (With System Clock = 60 MHz)
PCR = CLKDIV_2; // ICLK = SYSCLK/2 = 30 MHz
GCR = ZPLL_CLK_DIV_PRE_1; // SYSCLK = 8 x fOSC = 8 X 7.5 MHz = 60 MHz
I2C1PSC = 2; // Module Clock Freq = ICLK / (PSC + 1) = 10 MHz
I2C1CKL = 45; // Low Clock Period = (I2CCKL + d) / Module Clock Freq =

// 5.0 usec
I2C1CKH = 45; // High clock period = (I2CCKH + d) / Module Clock Freq =

// 5.0 usec

NOTE: d = 5 for any I2CPSC > 1

I2C Example for 400 kHz (With System Clock = 60 MHz)
PCR = CLKDIV_2; // ICLK = SYSCLK/2 = 30 MHz
GCR = ZPLL_CLK_DIV_PRE_1; // SYSCLK = 8 x fOSC = 8 X 7.5 MHz = 60 MHz
I2C1PSC = 2; // Module Clock Freq = ICLK / (PSC + 1) = 10 MHz
I2C1CKL = 7; // Low Clock Period = (I2CCKL + d) / Module Clock Freq =

// 1.2 usec
I2C1CKH = 8; // High clock period = (I2CCKH + d) / Module Clock Freq =

// 1.3 usec

NOTE: d = 5 for any I2CPSC > 1

If I2CPSC is equal to 0, the value for d is 7. If I2CPSC is equal to 1, the value for d is 8. The value for d is
equal to 5 for all values of I2CPSC greater than 1.

SPNA098A–July 2006–Revised April 2007 7TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

6 TMS470 I2C Repeated Start Sequence

TMS470 I2C Repeated Start Sequence

The TMS470 supports I2C Repeated Start sequence. The key register for issuing the repeated Start is the
I2C1MDR.

To initialize this register for regular I2C mode, set the STP bit in the I2C1MDR register, as shown here:
I2C1MDR = 0x00; // Master
I2C1MDR |= MST; // Master
I2C1MDR |= NIRS; // Clear Reset
I2C1MDR |= STT + STP+ TRX; // Start, Stop and Transmit

To initialize this register for Repeated Start I2C mode, do not set the STP bit in the I2C1MDR register, as
shown here:
I2C1MDR = 0x00; // Master
I2C1MDR |= MST; // Master
I2C1MDR |= NIRS; // Clear Reset
I2C1MDR |= STT + TRX; // Start, No Stop and Transmit

To continue sending data, keep sending the start command:
I2C1MDR |= STT; // Repeated Start

The complete program is shown in Figure 8:
#include "SinTable_01.h"
unsigned int dacp; // DAC variable for mapping to sin_table
const int* ip; // Pointer to sin_table

void DAC8574_Init(void)
{
//I2C 3 is set to Force Pins A0 and A1 to zero for setting DAC8574 I2C Address
I2C3PFNC = 0x01; // I2C3 Pins function as GPIO pins
I2C3DIR = 0x01; // SCL pin is an Output SDA is an Input
I2C3DOUT = 0x00; // SCL Pin is Driven Low

//I2C 1 Set up
I2C1PSC = 2; // Module clock frequency

// I2CCLK = ICLK / (PSC + 1)
// I2CCLK = 10 MHz

I2C1CKL = 45; // Low clock period
I2C1CKH = 45; // High clock period
I2C1OAR = 0x56; // Set address 0x56
I2C1IMR = 0x0; // Interrupts disabled
I2C1CNT = 3; // Set count = 3 to write 3 samples
I2C1SAR = 0x4C; // Set address of DAC to 0x4C
I2C1PFNC = 0; // Pins function as SDA and SCL pins
I2C1DIR = SDAFUNC+SCLFUNC; // Set I2C Functions
I2C1MDR = 0x00; // Master
I2C1MDR |= MST; // Master
I2C1MDR |= NIRS; // Clear Reset
I2C1MDR |= STT + TRX; // Start, Repeated Start and Transmit

if (*ip == 0xffff) // If the Last value of sin_table is encountered then
{
ip = sin_table; // repoint ip back to the sin-table start

}
dacp = *ip; // load the sin_table value into the DAC
I2C1DXR = 0x10; // Byte1 is the DAC Control Byte (0x10)
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
I2C1DXR = (dacp & 0xFF00) >>8; // Send the Most Significant Byte first
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
I2C1DXR = (dacp & 0xFF); // Send the Least Significant Byte second
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
ip++; // Increment to the next value in the sin_table

}

8 SPNA098A–July 2006–Revised April 2007TMS470 I 2C Protocol
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

7 Conclusion

8 References

Conclusion

void DAC8574_Send(void)
{

if (*ip == 0xffff) // If the Last value of sin_table is encountered then
{
ip = sin_table; // repoint ip back to the sin-table start

}
I2C1MDR |= STT; // Repeated Start
dacp = *ip; // load the sin_table value into the DAC
I2C1DXR = 0x10; // Byte1 is the DAC Control Byte (0x10)
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
I2C1DXR = (dacp & 0xFF00) >>8; // Send the Most Significant Byte first
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
I2C1DXR = (dacp & 0xFF); // Send the Least Significant Byte second
while(!(I2C1SR & 0x0010)); // Verify I2CDXR is empty (TXRDY=1) before continuing
ip++; // Increment to the next value in the sin_table

}

void main(void)
{
__disable_interrupt(); // Disable interrupts.

PCR = CLKDIV_2; // ICLK = SYSCLK/2
PCR |= PENABLE; // Enable peripherals
GCR = ZPLL_CLK_DIV_PRE_1; // SYSCLK = 8 x fOSC

ip = sin_table; // Direct the IP Pointer to start of sin_table

DAC8574_Init(); // It is important to set and read the voltages

while (1) // Transfer Data infinitely
{
DAC8574_Send(); // Convert the sin-table to an Analog Voltage
for(int ii=0; ii<100000; ii++); // Short Delay to let DAC Voltages Stabilize

};
}

Figure 8. Repeated Start Code Example

This application report gives specific examples for initializing, reading, and writing I2C data using the
TMS470. This document is meant to supplement, not replace, the TMS470 I2C Reference Guide.[1] The
C-code examples in this document can be applied to any TMS470 device having the I2C peripheral.

It is important to note a potential problem within the code examples. If a hardware failure occurs in any
instance where there is a While loop writing to the DAC or reading from the ADC, the program could be
stuck in an infinite loop waiting for the I2C transaction to complete. This issue must be addressed by the
user during implementation.

1. TMS470R1x Inter-Integrated Circuit (I2C) Reference Guide, Texas Instruments (SPNU223)
2. TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock Module Reference Guide, Texas Instruments

(SPNU212)
3. TMS470R1x System Module Reference Guide, Texas Instruments (SPNU189)
4. The I2C-Bus Specification Version 2.1, January 2000, Phillips Semiconductors, document

9398 393 40011
5. TMS470R1B1M KickStart™ Development Kit from IAR, Texas Instruments,

http://focus.ti.com/docs/toolsw/folders/print/spnc010.html
6. HPA-MCU Interface Board, Texas Instruments (SLAU106)
7. ADS110 EVM User’s Guide, Texas Instruments (SBAU089)

SPNA098A–July 2006–Revised April 2007 9TMS470 I 2C Protocol
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPNU223
http://www-s.ti.com/sc/techlit/SPNU212
http://www-s.ti.com/sc/techlit/SPNU189
http://focus.ti.com/docs/toolsw/folders/print/spnc010.html
http://www-s.ti.com/sc/techlit/SLAU106
http://www-s.ti.com/sc/techlit/SBAU089
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

www.ti.com

References

8. DAC8574 EVM User’s Guide, Texas Instruments (SLAU109)

10 SPNA098A–July 2006–Revised April 2007TMS470 I 2C Protocol
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SLAU109
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA098A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power www.ti.com/lpw Telephony www.ti.com/telephony
Wireless

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti.com/lpw
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 TMS470 I2C C-Code Examples
	2.1 Read I 2C Code Example Using the ADC1110 Analog-to-Digital Converter
	2.2 Write I 2C Code Example Using the DAC8574 Digital-to-Analog Converter

	3 TMS470 I2C Setup Description
	3.1 Hardware Description

	4 TMS470 I2C-Specific Read and Write Protocol
	5 TMS470 I2C Clock-Rate Selection
	5.1 TMS470 I 2C Clock-Rate Selection Code Example

	6 TMS470 I2C Repeated Start Sequence
	7 Conclusion
	8 References

