Floating-Point Arithmetic
with the TMS32020

APPLICATION REPORT: SPRAO11

Author: Charles Crowell
Digital Signal Processor — Semiconductor Group

Digital Signal Processing Solutions
1989

‘9 TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’'s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Floating-Point Arithmetic with the
TMS32020

Abstract

This report presents algorithm and code implementing floating-
point addition, subtraction, multiplication, and division with the
TMS320. The support of floating-point operations by the Tl
processors has made possible some applications, such as
implementation of the CCITT Adaptive Differential Pulse Code
Modulation (ADPCM) algorithm and image/graphics operations.

Floating-Point Arithmetic with the TMS32020 5

*i’
SPRA011

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

6 Floating-Point Arithmetic with the TMS32020

INTRODUCTION

The TMS32020 Digital Signal Processor is a fixed-point
16/32-bit microprocessor. However, it can also perform
floating-point computations at a speed comparable to some
dedicated floating-point processors.

The purpose of this application report is to analyze an
implementation of floating-point addition, multiplication, and
division on the TMS32020. The floating-point single-
precision standard proposed by the IEEE will be examined.
Using this standard, the TMS32020 performs a floating-point
multiplication in 7.8 microseconds, a floating-point addition
in 15.4 microseconds, and a floating-point division in 22.8
microseconds.

To illustrate floating-point formats and the tradeoffs
involved in making a choice between different floating-point
formats, a review of floating-point arithmetic notation and
of addition, multiplication, and division algorithms is first
presented.

FLOATING-POINT NOTATION

The floating-point number f may be written in floating-
point format as

f = mxbe
where

m = mantissa

b = base

e = exponent

For example, 6,789,320 may be written as

0.6789320 x 107
In this case,
m = 0.6789320
b =10
e =17

The two floating-point numbers f; and f may be written as

f
f2

mj xbel
my x be2

Floating-point addition/subtraction, multiplication, and
division for f] and f are defined as follows:

fitfy = (mp+myxb €17 xbel if ey =ep (1)
or
= (mp xb~ €7Dy my) xbe2 if e] <ep
fyxf; = mpxmp x be1+€2) 1))
fi/ify = (m1/m2)xb(el_°2) 3

A cursory examination of these expressions reveals
some of the factors involved in the implementation of
floating-point arithmetic. For addition, it is necessary to shift
the mantissa of the floating-point number which has the
smaller exponent to the right by the difference in the
magnitude of the two exponents. This is shown in the
multiplication by the terms

b~ (€17€2) apd p—(c2—¢1)

This right shift can result in mantissa underflow. There
are also possibilities for mantissa overflow. Addition and
subtraction of exponents can lead to exponent underflow and
overflow. To alleviate underflow and overflow, it is
necessary to decide on some scheme for roundoff. For a
detailed description and analysis of underflow and overflow
conditions and rounding schemes, see reference 1.

It is desirable to have all numbers normalized, i.e., the
mantissas of f] and f have the most significant digit in the
leftmost position. This provides the representation with the
greatest accuracy possible for a fixed mantissa length. The
result of any floating-point operation must also be
normalized. The factors associated with normalization,
overflow, and other characteristics of floating-point
implementations are best illustrated with a few examples.

Consider the addition of two binary floating-point
numbers f; and f; where

0.10100 x 2011
0.11100 x 2001

f1
f2

Both of these numbers are normalized, i.e., the first
bit after the binary point is a 1. Addition requires equal
exponents, so the fractions are aligned by shifting right the
one with the smaller exponent and adjusting the smaller
exponent. This yields

f, = 0.00111x2011
Then,

0.10100 x 2011 +0,00111 x2011
0.11011 x2011=f3

fi+f

The sum may overflow the left end by one digit, thus
requiring a postaddition adjustment or renormalization step.
Since it is assumed that the register is only of a finite length,
this renormalization will result in the loss of the lowest order
bit.

Another example illustrates the overflow past the most
significant bit. With an assumed register length of five, let

0.11100 x 2011
0.10101 x 2001

f1
f

Then,
0.11100 x201l=f,
+ 0.0010101 x2011 =f,
1.0000101 x2011 =f3
The significance of the two digits underlined in the right
part of the mantissa is suspect, since it is assumed that the
corresponding bits of f] are zero. The left underlined digit
is the overflow past the most significant bit. To finish the

addition, fj3 is shifted to the right and the exponent adjusted
accordingly. Thus,

1.0000101 x 2011 =f3

The shift of the fraction and the adjustment of the exponent
yield

0.10000101 x 2100 =f3
The result may be rounded, giving
0.10001 x2100 =13
or truncated, giving
0.10000 x 2100 =3
FLOATING-POINT ALGORITHMS
Multiplication Algorithm
The algorithm for normalized floating-point
multiplication is illustrated in Figure 1. This algorithm is an
implementation of Equation 2 in the section on floating-point
notation. The floating-point numbers being multiplied are A
and B written as
A = mp xb®A and B = mp xb°B
The result is
C = mcxb®C
For the resulting mc, there are three special cases. The

mc may be zero, in which case there is a branch to Step
10 to set C=0. If mc %0, then the most significant bit will

ma mg
\ 4
MULTIPLY MANTISSAS

mc = mp x mp

A o

Y 4

ADD EXPONENTS
oCc =ep + o8

Y T——-'

3 I TEST FOR SPECIAL CASES OF m¢ l

N

—
ZERO LEADING NORMALIZED
ZERO
4| ec = zErO
Y
5 LEFT SHIFT mc ONE BIT
ec = oc !
+ :

DISPOSE OF EXTRA BITS:
ROUNDING OR TRUNCATION

1

7 [TEST FOR OVERFLOW OF mc I

NO OVERFLOW * OVERFLOW

RIGHT SHIFT m¢ 9NE BIT

8 -z
eC = eC

y 9 Y

9 [TEST FOR SPECIAL CASES OF ec

OVERFLOW IN RANGE
OR Y

UNDERFLOW

\ 4

10 l SET SPECIAL VALUES OF RESULﬂ

C=AxB

Figure 1. Floating-Point Multiplication

be in either the first or second leftmost bit. If the most
significant bit is in the second leftmost bit, then a left shift
of mc is necessary (see Step 5). Otherwise, C is already in
normalized form, and there is a branch to Step 6.

In Step 6, the desired rounding scheme is implemented.
After this rounding, it is possible that m¢ will overflow (see
Step 7). In this case, it is necessary to right-shift mc one
bit (see Step 8). Special cases of ec, are tested for in Step 9.

If there is an overflow or underflow of ec, it is corrected
in Step 10. Otherwise, the result is in range, and the
calculation is complete.

Addition Algorithm

The implementation of normalized floating-point
addition is more involved than for multiplication. This
addition algorithm, outlined in Figure 2, is an implementation
of Equation 1 in the section on floating-point notation.

In Step 1, ep and e are compared to determine ec.
For this illustration of the algorithm, it is assumed that
epasep. The right shift (d) required to align mp is
determined in Step 2. The procedure in Step 3 implements
the right shift of ma. In Step 4, the extra bits of mp are
discarded by using the desired rounding technique. The
mantissas of A and B are then added in Step 5.

A B

f t

1[COMPARE EXPONENTS AND SET a¢ (ASSUME o5 < og): o = o8 J

2I SUBTRACT EXPONENTS: d = ep - ea J

3 I ALIGN MANTISSAS: SHIFT mp RIGHT d BITS]
DISPOSE OF EXTRA BITS:
ROUNDING OR TRUNCATION
6 lADD MANTISSAS mc = mp + m.l

6 Lrssr FOR SPECIAL CASES OF mg
ZERO | OVERFLOW NORMALIZED
k LEADING ZEROS

[mam SHIFT mc ONE m'r] [LEFT SHIFT mc kems
—ec+ I

FORCE EXPONENT
9 oc =0

—

DISPOSE OF EXTRA BITS:
ROUNDING OR TRUNCATION

10

” I TEST FOR OVERFLOW OF m¢c |
OVERFLOW

NO OVERFLOW
RIGHT SHIFT mc ONE BIT
oc = oc + 1

13[TEST FOR SPECIAL CASES OF ec]

12

IN RANGE

OVERFLOW
UNDERFLOW

14 I SET SPECIAL VALUES OF RESULT I

C=A+8B

Figure 2. Floating-Point Addition

Now, the procedure becomes somewhat more involv-
ed. The mc may be zero, in which case there is a branch to
Step 9 which sets ec =0; a branch to Step 14 sets the special
value of the result. The mc may overflow, making a right
shift of one necessary (see Step 7). The mc may have k
leading zeroes; therefore, a left shift of k is required. This
normalization step is generally the most involved and time-
consuming step to perform. The procedures in Steps 10, 11,
and 12 round the mc, test for a possible overflow due to
the rounding, and adjust ec accordingly. The special case
of ec is determined in Step 13. Finally, after Step 14, the
sum C = A + B is formed.

Division Agorithm

Floating-point division is more sophisticated than
multiplication and addition since fixed-point processors such
as the TMS32020 are not inherently capable of performing
division. For example, 1/3 = 0.3333...; only an approx-
imation can be calculated since 1/3 must be represented in
a finite number of terms. Several algorithms can be im-
plemented to find good approximations of such numbers. The
algorithm implemented in this report is shown in Figure 3.

Step 1 shows the equivalent of A/B. In Step 2, the latter
term is expanded using a power series of 1/(1 + X), where
€ (BLO/BHI) is X (e simply denotes that the term is right-
shifted 16 bits forming the least significant bits of a 32-bit
number). The third term in the power series only affects the
LSB of a 32-bit result; therefore, this term and all the
following terms can be dropped, as shown in Step 3.

The equation in Step 3 can be implemented on the
TMS32020 in two steps. Assuming that the result is a 32-bit
number Q and that it is composed of a 16-bit QHI and a 16-bit
QLO, think of the equation in Step 3 in the following
manner: A/B = Q — eX. The first term is a fair approx-
imation of the result Q, and the second term is a correction
term to obtain a better approximation. With this in mind,
it can be shown that (AHI + ¢ALO)/BHI will give a 16-bit
quotient and a 16-bit remainder. Due to the architecture of
the TMS32020, the 16-bit quotient will be in the low word
of the accumulator and the remainder will be in the high word
of the accumulator after the division. Since it is desirable

A divided by 8

A = AHI + €ALO

B = BHI + €BLO

€= 1 LA
JWORDSIZE 216

‘where

s o o
+
1+E€ (sm)
BHI

AHI + €ALO 8LO BLO |2
§ : = — N 2
rer 2 SO (4 (o) 2 (B2

AH AHI
sTEP 3 . |+5AL0_E(£) (¢EAI.0)

BHI BHI BHI

Figure 3. Division Equation

to have a floating-point result, the remainder must be divid-
ed by BHI to obtain the low word of the quotient. Now QHI
and QLO have been calculated. When placing Q into the cor-
rection term (equation in Step 3), note that Q is equal to QHI
+ QLO. It can be shown that QLO will have no effect on
the result since the correction term is multiplied by e.
Therefore, to calculate A divided by B, simply implement
the following equation:

A A BLO

x QHI)
B BHI \BHI

where the division is fixed binary (left-shifts and subtracts).

Figure 4 shows the implementation of the division
algorithm that was outlined in Figure 3.

In Step 1, the dividend is right-shifted four times to
prevent an overflow. Note that the result is not shifted left
to compensate for this shift, because the normalization routine
automatically does this. The shift causes the dividend to be
limited to 27 significant bits instead of 31. In Step 2, a binary
divide (left-shifts and subtracts) is implemented on the
dividend by the high 16 bits of the divisor. The 32-bit result
contains a quotient in the low 16 bits of the accumulator,
and a remainder (R1) in the high 16 bits of the accumulator.
R1 is left-shifted fifteen places in Step 3. The new R1 is
divided by BHI in Step 4 to calculate the lower 16 bits of
the quotient.

The quotient has now been approximated. The 32-bit
result is composed of QHI and QLO, as shown in Figure 3.
To obtain a better approximation, one term in the power
series expansion must be added to the quotient. Therefore,
the procedure in Step 5 calculates a 16-bit correction term,
which is then added (or subtracted since it is the term
following the *‘1°’ in the power series) to the 32-bit quotient.

Testing for an overflow of the resulting mantissa is
necessary. Since the dividend was left-shifted four places,
the resulting quotient will not be negative if an overflow
occurred. To detect an overflow, bit 28 in the quotient must
be tested. If this bit is a 1, an overflow occurred; if it is a
0, no overflow occurred. If an overflow has occurred, the
exponent must be incremented. Finally, it is necessary to
normalize the quotient and output the results.

A DIVIDED BY B
31 16 15 0

WHERE =I AHI J L ALO I
==

SHIFT “A"" RIGHT FOUR TIMES TO
PROTECT FROM OVERFLOW.

1

A/BHI = 32-BIT RESULT.
2 | HIGH 16 BITS ARE REMAINDER #1 (R1).
LOW 16 BITS ARE HIGH QUOTIENT (QHI).

1

SHIFT R1 LEFT FIFTEEN TIMES.
EQUIVALENT TO R1 x 215,

1

R1/BHI = 32-BIT RESULT.
HIGH 16 BITS ARE REMAINDER #2 (R2).
LOW 16 BITS ARE LOW QUOTIENT (QLO).

1

MULTIPLY QHI BY BLO AND DiVIDE BY BHI.
{QHI x BLO)/BHI = CORRECTION TERM.

1

SUBTRACT 16-BIT CORRECTION TERM
6 FROM 32-BIT QUOTIENT.
(QHI | QLO) — (0 | CT) = RESULT.

-

w

»

o

} NO OVERFLOW

al Corp = Awxp - Boxp |

OVER#LOW +

7[cup=~xp‘soxp+1

NORMALIZE RESULT.

wl OUTPUT Cgign. Coxp- CHI. AND CLO. I

‘Figure 4. Floating-Point Division

IEEE FLOATING-POINT
SINGLE-PRECISION FORMAT

Of interest is a set of formats known as the IEEE
standard. This IEEE recommended format consists of a
variety of precision formats (single, double, single-extended,
and double-extended). The IEEE has also proposed several
techniques for handling special cases such as overflow,
underflow, + oo, and rounding. For complete details, the
reader is referred to the proposed IEEE standard.2

The single-precision format is a 32-bit format consisting
of a 1-bit sign field s, an 8-bit biased exponent e, and a 23-bit
fraction f (see Figure 5). The value of a binary floating-point
number X is determined as follows:

X = (-1 x 2127 x 1.f

£ e

Figure 5. IEEE Floating-Point Single-Precision Format

The advantage of this format is that it is structured in
such a way as to provide easy storage and straightforward
input/output operations on 8-, 16- and 32-bit processors. The
disadvantage with this format is that the large mantissa will
generally span several words of memory.

FLOATING-POINT IMPLEMENTATION

IEEE Implementation

The IEEE single-precision format is described here as
it applies to the addition, multiplication, and division
algorithms. In these floating-point routines written for the
TMS32020, all results are truncated to 31 bits to provide
more flexibility in the user’s development of a rounding
scheme suitable for his application. The representations of
+ oo are ignored so that the user can decide how to handle
these exceptions in a manner that is appropriate for his
particular application.

1/0 Considerations

The first consideration is the internal representation of
the binary floating-point number. If the number is read into
the TMS32020 as two 16-bit words, some processing is then
necessary to put the floating-point number into a
representation which is easier to process. The representation
used in the TMS32020 programs in the appendices is shown
in Figure 6. This internal representation may be arrived at
by a simple manipulation of the IEEE bit fields. For this
particular algorithm, it is assumed that the floating-point
number is input to the TMS32020 as the four 16-bit fields
shown in Figure 6. However, the user can easily supply his

own routine to arrive at this format from two 16-bit inputs
to the TMS32020 where the inputs contain the IEEE single-
precision format.

The format in Figure 6 was chosen to minimize the
execution time of the floating-point addition, multiplication,
and division routines. The format of the result is shown in
Figure 7. Notice that it is identical to the format in Figure
5 except for CLO. CLO has its 16 most significant bits valid
for both the addition, multiplication, and division routines.

Normalization

Since the floating-point routines require normalization,
a partial binary search algorithm is implemented in the
addition and division routines in the appendices. To begin
the normalization routine, note that all mantissas can be
considered to be positive with the format used for the result
shown in Figure 7. The binary search for the most significant
bit (the leftmost 1 since the mantissa is positive) is illustrated
in Figure 8.

The first move is to split the result into CHI and CLO.
If CHI # 0, the most significant bit (MSB) is the CHI;
otherwise, it is the CLO. For this example, it is in CLO.

151413121110 9 8 7 6 5 4 3 2 1 0

ASIGN

{0 IF POSITIVE,

OR — 1 IF NEGATIVE)
151413121110 9 8 7 6 5 4 3 2 1 0

AHI 0 1
(NORMALIZED)

f (most significant 14 bits)]

o

161413121110 9 8 7 6 6 4 3 2 1

ALO |0 1 (least significant 9 bits) 0o 0 0 0 0 Of

1514131211 10 9 8 7 6 6 4 3 2 1

L—J°

AEXP [.

Figure 6. Floating-Point Representation

15 14 13121110 9 8 7 6 6 4 3 2 1
CSIGN
0 OR -1)
16 1413121110 9 8 7 6 6 4 3 2 1

CHI
(NORMALIZED) F !

o

—J

L _lo

15 14 1312 11 70 9 8 7 6 5 4 3 2 1
cLo I

165 14 13121110 9 8 7 6 5 4 3 2 1

L_Jo

L—J°

CEXP I

Figure 7. Result Representation

31

[

00000000000D00000000O1010011000111

31 CHI 16

|

15 CcLo 0

00000000O00O0OOOOOODO

0001010011000 111

31 16

15 0

0001010011000 111

0000000O0OOOOOOODO

BLZ NOFLOW
RPT TTEEN
NORM

31

v

GOTO NOFLOW ON OVERFLOW.
TTEEN = 13, PERFORM 14 “NORM"’.

16*15 0

0101001100011 100

000000000O0OO0O0OO0OODO

Figure 8. Partial Binary Search

The next step is to form a 32-bit result with CLO in the most
significant word position. It is now possible for the MSB
to be in the highest bit location since CLO has been left-
shifted 16 times. If this is the case, an overflow has occurred,
and the result must be right-shifted once. The normalization
routine tests this by branching to NOFLOW if the result is
negative. If the number is not negative, the normalization
can continue.

The NORM instruction is used in the repeat mode to
complete the normalization. Note that this whole
normalization routine can be replaced by the following two
instructions: RPTK 29 and NORM. The RPTK instruction
causes the NORM instruction to be repeated 30 times, thus
normalizing a 32-bit number. This method is not
implemented here due to the timing. These two instructions
always take 31 cycles to normalize a 32-bit number. The
normalization routine here takes only 22 cycles (worst case)
for normalizing a 32-bit number. Therefore, if program space
is more important than timing efficiency, it is best to replace
the normalization routine with these two instructions.

Added Precision
As illustrated in Figure 7, the 16 most significant bits
of CLO are valid, i.e., C is valid for 31 places beyond the

binary point. Oftentimes the user is not as concerned with
the IEEE standard as in being certain that he has enough
accuracy for his particular application. Since the TMS32020
uses 16-bit words, the routines in the appendices implicitly
maintain a 30-bit mantissa. They also implicitly use a 16-bit
exponent. If the user desires this added accuracy and dynamic
range, then it is readily implementable with no additional
cost in execution time. The normalization for the addition,
as mentioned previously, operates over the entire 32-bit
accumulator. For the strict IEEE format, the user will only
want to normalize over the 25 most significant bits of the
accumulator. The structure of the normalization routine
inakes this modification simple.

The routines in the appendices make no provision for
the representation of + oo and exponent underflow and
overflow. The user of the routines should consider the degree
of significance of these results and the way they should be
handled for his particular application. Since these routines
are written to operate at maximum speed, truncation of results
is used. If the user desires to implement a rounding scheme,
then he will also need to check for the possibility of overflow
due to the rounding scheme. This step is shown in the
multiplication, addition, and division flowcharts (see Figures
1, 2, and 3).

SUMMARY

The TMS32020 may be used to perform floating-point
operations with great accuracy, wide dynamic range, and
high-speed execution. The design engineer has the
responsibility of deciding what type of floating-point format
is best for his application. To aid in understanding floating-
point operations, several examples have been given that
illustrate the manipulations necessary to implement floating-
point addition, multiplication, and division algorithms.
Flowcharts for these algorithms are also included. The
appendices contain the TMS32020 code for the IEEE
floating-point single-precision format used in addition,
multiplication, and division. The addition and multiplication
routines may also be used without modification to implement
a format with up to a 30-bit mantissa and a 16-bit exponent
without any increase in execution time.

ACKNOWLEDGEMENTS

Major portions of this application report were taken
from ‘‘Floating-Point Arithmetic with the TMS32010,”’ an
application report written by Ray Simar, Jr. The author
would also like to thank Gwyn Guidy for her assistance with
the floating-point division .algorithm.

REFERENCES

1. D.J. Kuck, The Structure of Computers and
Computations, Vol 1, John Wiley & Sons (1978).

2. J. Coonen et al, ‘“‘A Proposed Standard for Binary
Floating-Point Arithmetic,”” ACM Signum Newsletter,
4-12 (October 1979). ‘

3. Donald E. Knuth, Seminumerical Algorithms, Vol 2, 2nd
Edition, Addison-Wesley (1981).

APPENDIX A

FLTADD 32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86
PAGE 0001

0001 HERRERRBRRRRRRRERRRRRRRRRRBRRNRRRRRRRRERRRRRRRRRR RN RN

0002 . *
0003 THIS IS A FLOATING-POINT ADDITION ROUTINE WHICH *
0004 IMPLEMENTS THE [EEE PROPOSED FLOATING-POINT *
0005 FORMAT ON THE TMS32020. *
0006 *
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

*
*
*
*
RRRRRRRR AR RRR AR RRRAERARN R RRERRRR R RRRRRRRRRRRRRARRR RN RN
*
"
*
*
L]
*
-
»
”
L]
*
*
*
-
*
”
0024 .
L]
"
*
*
*
"
*
*
»
*
*
-
*
»
-
-
»
*
»
*
*

INITIAL FORMAT (ALL 16 BIT WORDS)

| ALLOOR I | ASIGN (0 OR -1)

HYHN 15 BITS | AHI (NORMALIZED)

10} 9 BITS {--0-{ ALO

H | AEXP (-127 TO 128)

0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047 RRRRERRRARARARRRER AR ARRARRRRRRRRRRRRRRR AR RRRARRRRRRRRRRR RN
0048 *

0049 10T * FLTADD’

0050 0000 AORG
0051 0000 ASIGN EQU

0052 0001 AEXP EQU

0053 0002 AHI EQU

0054 0003 ALO EQU

0055 0004 BSIGN EQU

0056 0005 BEXP EQU

0057 0006 BH! EQU

TO CORRESPOND WITH IEEE FORMAT,
INPUT 0.1F * 2 ** (E + 1)
INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E.

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT
EXCEPT THAT FOR CLO WE HAVE:

' 16 BITS H CLo

ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS
BEEN TRUNCATED.

FRERERRERRARRRRRARRRARRRRRRRRRRRRRRRRRRRRRRRRRRRRRRER RN
-

WORST CASE (EXCLUDING INITIALIZATION AND [/0): *
15.4 MICROSECONDS. *
THIS TIMING INCLUDES THE NORMALIZATION. *
WORDS OF PROGRAM MEMORY: 217 *
L]
*

OO hAE wN—0O

FLTADD

0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076

0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094

0095

0096
0097
0098
0099

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
0008
000C
000D
000E
000F
0010

0011
0012
0013
0014
0015
ocieé

0017
0018
0019
001A

ooiB
001C
0010
001E
001F
0020
0021
0022

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86

0007
0008
0009
000A
0008
000C
000D
000E
000F
0010
0011
0012

Cc804
CEOQ7
5589
D100
0200
cBo7
80A0
5588
cooo
CAO1
6000
CAlO
6010
CAO3
600F
CAOD
6012

2001
1005
F680
0043
F380
004D

Ce23
0010
F380
0028

600C
3CocC
4206
6806
6011
4207
CEl8
6807

BLO
CSIGN
CEXP
CHI
CLO

D

ONE
TEMP
THREE
SIXT
RESID
TTEEN

»
L]
L]

up

AGTB

EQU 7

EQU 8

EQu 9

EQU 10

EQU 11

EQU 12

EQu 13

EQu 14

EQU 15

EQu 16

EQU 17

EQU 18
INITIALIZATION
LDPK 4

SSXM

LARP 1

LRLK AR1,>200
RPTK 7

IN *+,PA0
LARP 0

LARK ARO,0
LACK 1

SACL ONE
LACK 16
SACL SIXT
LACK 3

SACL THREE
LACK 13
SACL TTEEN

PAGE 0002

BEGIN ON PAGE 4.
SET SIGN EXTENSION.

CLEAR EXPONENT REGISTER.

ONE = 1

BEGIN FLOATING POINT ADD

LAC
suB
BZ

BLZ

NEG
ADD
BLZ

SACL
LT
LACT
SACH
SACL
LACT
SFL
SACH

AEXP
BEXP
AEQB

ALTB

SIXT
Al

b}

D

BHI
BHI
RESID
BLO

BLO

FIND LARGEST NUMBER.
IF EXP ARE THE SAME, JUMP TO AEQB.

IF A 1S LESS THAN B, JUMP TO ALTB.

D = (16-D)
JUNP IF EXP DIFFERENCE IS > 16

EXPONENT DIFFERENCE < 16

BHI 1S SHIFTED RIGHT "D" TIMES.

RESIDUAL BITS MUST BE MAINTAINED.
BLO IS SHIFTED RIGHT "D" TIMES.
MSB (THE 0) IS SHIFTED AWAY.

*FLTADD °

0111
o112
0113
0114

0115
o1ié
0117
0118
0119

0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144

0145
0146
0147
0148
0149
0150
0151
0152
0153
0154

0155
0156
0157

0158
0159
0160
0161

0023
0024
0025
0026
0027

0028
0029
002A
0028
002C
0020
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038

0039
003A
0038
003C
0030
003E
003F
0040
0041
0042

0043
0044
0045
0046
0047
0048
0049
004A
0048
004C

004D
004E
004F
0050
0051
0052
0053

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86

2007
4011
6007
FF80
0031

0010
F380
0039
600C
3cocC
4206
6807
CA00
6006
2000
6008
2001
6009
2103
6003
FF80
0078

2002
600A
2103
6008
2000
6008
2001
6009
FF80
0006

2000
6008
2103
6003
2107
6007
2001
6009
FF80
0078

0010
F380
005D
600C
3cocC
4202
6802

A2

AEQB

ALTB

LAC
OR
SACL
B

BLO
RESID
BLO
A2

PAGE 0003

GET BITS THAT WERE SHIFTED FROM BHI.

EXPONENT DIFFERENCE >16

ADD
BLZ

SACL
LT
LACT
SACH
ZAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL
8

A> B

LAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL
B

LAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL

ADD
BLZ

SACL

LACT
SACA

SIXT
A3

D
D
BHI
BLO

BHI
ASIGN
CSIGN
AEXP
CEXP
ALO, 1
ALO
CHKSGN

RESULT = A

AHI
CHI
ALO, 1
CLo
ASIGN
CSIGN
AEXP
CEXP
AROUND

ASIGN
CSIGN
ALO, 1
ALO
BLO, 1
BLO
AEXP
CEXP
CHKSGN

SIXT
Bl

D
D
AHI
AHI

JUMP IF EXPONENT DIFF > 32

A IS LARGER THAN B.
THEREFORE, CSIGN = ASIGN.
ALIGN THE B MANTISSA.
GET RID OF EXTRA BIT.

DO BOTH NUMBERS HAVE THE SAME SIGN?

A 1S LARGER THAN B
THEREFORE CSIGN = ASIGN

IF SIGNS ARE THE SAME, CSIGN = ASIGN

ALIGN MANTISSAS.

SET C EXPONENT = A EXPONENT.

DO BOTH NUMBERS HAVE THE SAME SIGN?

D = (16-D)
JUMP IF EXP DIFF > 16

AHI GETS SHIFTED "D" TIMES.

FLTADD

0le62
ole3
0164
0165
0166
0167
0168
0169

0170
0171
0172
0173
0174

0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187

oiss
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

0200
0201
0202
0203

0204

0205
0206
0207
0208
0209

0210

0054
0055
0056
0057
0058
0059
005A
0058
005C

0050
005E
005F
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
0068
006C
006D

006E
006F
0070
0071
0072
0073
0074
0075
0076
0077

0078
0079
007A
0078
007C
007D
007€E
007F
0080
0081
0082
0083
0084
0085

32020 FAMILY MACRO ASSEMBLER

6011
4203
CEl8
6803
2003
4011
6003
FF80
0066

0010
F380
006E
600C
3coC
4202
6803
CA00
6002
2004
6008
2005
6009
2107
6007
FF80
0078

2006
600A
2107
6008
2004
6008
2005
6009
FF80
00D6

2000
1004
F680
00A9
F380
008C
4002
4903
4507
4406
F680
009A
F380
00A1l

* EXPONENENT

82

.83

CHKSGN

BISNEG

SACL
LACT
SFL
SACH
LAC
OR
SACL
8

ADD
BLZ

SACL
LT
LACT
SACH
ZAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL
B

8 >

LAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL

LAC
sus
BZ

B8LZ

ZALH
ADDS
SuBS
SUBH
BZ

BLZ

A

’

RESID
ALO

ALO
ALO
RESID
ALO
B2

PC 1.0 85.157

11:47:00 08-19-86
PAGE 0004

~ MAINTAIN EXTRA BITS.

ALO GETS SHIFTED "D"™ TIMES.
MSB (THE 0) IS SHIFTED AWAY.

GET RESIDUAL BITS.

DIFFERENCE > 16

SIXT
B3

D
D
AHI
ALO

AHI
BSIGN
CSIGN
BEXP
CEXP
BLO, 1
BLO
CHKSGN

RESULT

BHI
CHI
BLO, 1
CLo
BSIGN
CSIGN
BEXP
CEXP
AROUND

ASIGN
BSIGN
ADNOW

AISNEG

AH1
ALO
BLO
BHI
CZERO

CNEG

JUMP IF EXP DIFF > 32

B IS THE BIGGEST NUMBER.

THEREFORE, LET THE SIGN OF C=BSIGN.
SET C EXPONENT = B EXPONENT.

GET RID OF EXTRA BIT.

DO BOTH NUMBERS HAVE THE SAME SIGN?

"
@

B IS THE BIGGEST NUMBER
THEREFORE, LET THE SIGN OF C=BSIGN

SET C EXPONENT = B EXPONENT

CHECK THE SIGNS.

IF THEY ARE THE SAME, JUST ADD.

D0 (1A} - 1B}),
SINCE B < 0 AND A > O.

.

FLTADD

0211
0212
0213
0214
0215

0216
0217
0218
0219
0220

0221

0222
0223
0224
0225
0226

0227
0228
0229
0230
0231
0232
0233

0234
0235
0236
0237
0238

0239
0240

0241
0242
0243
0244
0245
0246
0247
0248

0249

0250
0251
0252
0253
0254

0255
0256
0257

0086
0087
0088
0089
008A
0088
008C
008D
008E
008F
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099

009A
0098
009C
009D
009E
009F
00A0Q

00A1
00A2
00A3
00A4
00AS
00A6
00A7
00A8

00A9
00AA
00AB
00AC
00AD
00AE
00AF
0080
0081
0082

0083
00B4
0085
00B6
0oB7
0088

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86
PAGE 0005
680A SACH CHI
6008 SACL CLO
CA00 zaC
6008 SACL CSIGN
FF80 B NORMAL GO AND NORMALIZE RESULT.
0083
4006 AISNEG ZALH BHI DO (IB! - IAl),
4907 ADDS BLO SINCE A ¢ 0 AND B > 0.
4503 SUBS ALO
4402 SUBH AHI
F680 Bz CZERO
009A
F380 BLZ CNEG
00Al
680A SACH CHI
6008 SACL CLO
CA00 zZaC
6008 SACL CSIGN
FF80 B NORMAL GO AND NORMALIZE RESULTS.
0083
*
CAO0 CZERO ZAC HERE, ONLY IF RESULT = 0.
6009 SACL CEXP
6008 SACL CSIGN
600A SACL CHI
6008 SACL CLO
FFB0 B AROUND OUTPUT A ZERO.
0006
*
CEIB CNEG ABS HERE, IF RESULT IS NEGATIVE.
680A SACH CHI
6008 SACL CLO
D001 LALK >FFFF
FFFF
6008 SACL CSIGN
FFBO B NORMAL GO NORMALIZE RESULT.
0083
4002 ADNOW ZALH AHI IF SIGNS ARE THE SAME, JUST ADD.
4903 ADDS ALO
4907 ADDS BLO
4806 ADDH BHI
680A SACH CHI
6008 SACL CLO
F080 Bv OVFLOW DID AN OVERFLOW OCCUR?
00C4
F680 BZ CZERO IS RESULT = 0 ?
009A
"
. NORMAL 1 ZE
*
200A NORMAL LAC CHI DOES CHI HAVE THE MSB?
F680 Bz Lot
008C
400A ZALH CHI IF YES, NORMALIZE RESULT.
4908 ADDS CLO
4812 RPT TTEEN WILL PERFORM 14 "NORMS"

FLTADD

0258
0259

0260
0261
0262

0263
0264
0265

0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280

0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303

0089
00BA
0088
008C
008D
00BE
00BF
00C0
00C1
oocz
00C3

00C4
00C5
00Ce
00C7
0ocs
00C9
00CA
oocs
0occ

00CD
00CE
00CF

0000
0001
0002
0003
0004
00D5

0006
0007
0008
00D9

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-]9-86

CEA2
FF80
0000
4008
colo
F380
00CD
4812
CEA2
FF80
0000

CEO6
CE19
680A
6008
2009
000D
6009
FF80
0006

5590
CE06
CE19

700E
680A
6008
2009
100E
6009

5589
4BOF
EQAO
CEIF

LO1

* % 2 x % * =%

OVFLOW

-
»
-

NOFLOW

* 2 % & %

*
OUTPUT

AROUND

NO ERRORS, NO WARNINGS

NORM
8

ZALH
LARK
BLZ

RPT
NORM
B

OUTPUT
CLo

ARO, 16
NOFLOW
TTEEN

OuTPUT

PAGE 0006

GO OUTPUT RESULTS.

HERE IF CLO HAS MSB.

OFFSET EXPONENT BY 16.

DID BIT SEARCH CAUSE OVERFLOW?
IF NOT, NORMALIZE RESULT.

GO OUTPUT RESULT.

FINISHED WITH NORMALIZATION

HERE ONLY IF OVERFLOW OCCURRED DURING ADDITION

RSXM
SFR
SACH
SACL
LAC
ADD
SACL
B

OVERLOW

MAR

RSXM
SFR

CHI
CLo
CEXP
ONE
CEXP
AROUND

RESET SIGN EXTENSION TO SHIFT RIGHT
SHIFT RIGHT.
STORE NORMALIZED MANTISSA.

DECREMENT EXPONENT.

GO OUTPUT RESULTS.

OCCURRED DURING BIT SEARCH

DECREMENT EXPONENT.
RSXM FOR LOGICAL RIGHT SHIFT.
PERFORM RIGHT SHIFT.

TAKE CARE OF EXPONENT & NORMALIZED MANTISSA,
THEN OUTPUT RESULTS.

SAR
SACH
SACL
LAC
sus
SACL

LARP
RPT
out
IDLE

ARO, TEMP
CHI

CLO

CEXP

.TEMP

CEXP

1
THREE
*+,PAO

HERE AFTER NORMALIZATION.
SAVE NORMALIZED MANTISSA.

ADJUST EXPONENT.

RESET POINTER.

WAIT FOR INTERRUPT.

: APPENDIX B

NO$IDT 32020 FAMILY MACRO ASSEMBLER PCO.7 24,348 15:24:53 03-27-895
##% PRERELEASE 333
FAGE 0001

0001 3363636 35 3 3645 30 30 3 3 30 30 36 30 3303 330 30 3 36 3035 3 3 30 30 36 236 36 36 30 30 3030 30 30 3 30 13033 3 3 MR HF
0002 * #*
000z * THIS IS A FLOATING-POINT MULTIPLICATION ROUTINE WHICH *
0004 * IMPLEMENTS THE IEEE PROFPOSED FLOATING-POINT FORMAT *
0005 * ON THE TMZ32020. #*
0004 * #*
0007 J 36 34 26420 36 36 36 36 36 2 36 36036 36 33036 38 3036 36 30 36 36 3636 36 303 36 363 30 303030 36303 30 303030 33 333 H 3
0003 *
0009 #* INITIAL FORMAT (ALL 14-BIT WORDS)
0010 *
0011 * { ALL O OR 1 H ASIGN (O IR -1)
0012 3*
0013 #*
0014 #*
0015 #* 101, 15 BITS ! AHI (NORMALIZED)
0016 *
0017 *
oole #*
0019 * 10V % BITS (--0-1 ALO
0020 *
0021 *
0022 #*
002z * H ! AEXF (—-127 TO 122
0024 #*
0025 #*
0026 #* T CORRESPOND WITH IEEE FORMAT,
0027 * INPUT O 1F # 2 #% (E + 1)
0028 #* INSTEAD OF 1.F # 2 ##E, AND SUBTRACT 127 FROM E.
Q029 #*
0030 * THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT

#* EXCEPT THAT FOR CLOJ WE HAVE:

*

F e e

#* | 14 BITE H cLo

#*

*

#* ALL 14 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS

#* BEEN TRUNCATEL.

#*
0040 PRI F e F TR ST PR Y Y A A e S i i
0041 #* #*
004z #* WORST CASE (EXCLUDING INITIALIZATION AND I/00: #*
Q043 3* 7.2 MICROSECONDS. . *
0044 #* THIS TIMING INCLUDES THE NORMALIZATION. #*
0045 #* WIRDS OF PROGRAM MEMORY: &0 #*
0044 * #
0047 I TN R R
D042 *
0047 0000 ADRG
DOS0 0000 ASIGN EQL 0

0001 AEXF EG! 1
0002 AHI Ecit 2

ALD ey]

BZIGN EQU 4

REXF e =

EHI 2]

o

NO$IDT

0057
0058
0059
0060
0061
00462
0063
0064
0065
00646
0047
0048
0069
0070
0071
0072
0073
0074
0075

0076
0077
0078
0079
0080

0031
0082
0083
0024
00es
0086
0087
0033
0089
0090
0091
0092
00932
0094
0095
0094
0097
0092
0099
0100
0101
0102
0102
0104
0105
0104
0107
0102
0109
0110

0000
0001
0002
0003
0004
0005
00064
0007
0008
0009
000A
000B

000C
000D
Q00E

[alslel
0010
0011
0012
0013

0014
0015

0014

0017

001a
0019
001A

O01R
001
oo1D

32020 FAMILY MACRO ASSEMBLER

###% PRERELEASE #3##

0007
0008
0009
000A
000B
000C
000D
000E
000F

c304
CEQ7
5589
D100
0200
CBO7
80A0
C000
5538
aleled}
FFFF
600D

2001
0005
£009

3C03
3304
CE14
&20C
600E

3C02
3807

420C
490F
680C

23204
CE14
4900

BLO
CSIGN
CEXP
CHI
CLO
THI
NEGONE
TLO
TEMP

*

E N I I 3

& & ok ok Ak

EQU 7

EQU a

EQU 4

EQU 10

EQU 11

EQU 12

EQU 13

EQU 14

ERU 15
INITIALIZATION
LDPK 4

SEXM

LARP 1

LRLE AR1,>200
RPTK 7

IN #+ FAO
LARK ARO, 0
LARP 0

LALK “FFFF
SACL NEGONE

PCO.7 84,348

15:24:53 03-27-85

PAGE 0002

BEGIN ON PAGE 4.
SET SIGN EXTENSION.

READ NUMBERS INTO BLOCK BO.

CLEAR EXPONENT REGISTER.

NEGONE = -1

BEGIN FLOATING-POINT MULTIFLICATION.

LALC
ADD
SACL

LT
MPY
PALC
SACH
SACL

LT
MFY

AFALC
AFAC

ADDH
ALD:S
SACH

MPY
FAC
ADDS

AEXP
BEXP
CEXP

ALD
BHI

THI
TLO

AHI
BLO

THI
TLO
THI
EHI

THI

ADD EXPONENTS,

FIRST PRODUCT (ALO * BHI)

SECOND PRODUCT (AHI # BLO)

HAZ EFFECT OF

(AHI * BHI)

(AHI # BLO + ALOD # BHI) # 2 ## —15.

NZSIDT

0111
0112
0113
0114

0115
0114
0117

0113
0119
0120
0121
0122
0123
0124
0125
0126
0127
0123
0129
0120
0131

0132
0133
0134

0135
0136
0137
0132
0139
0140
NI ERR

.

001E
001F

0020
0021
0022
00232
0024
0025

0026
0027
0028
0029
002A
00ZB
00zc
002D
002E

Q0ZF
0030
0031
0032
0033
0034
0035
Q026
0037
038
0029
002A
003B
003C
ORS,

32020 FAMILY MACRO ASSEMBLER FCO.7 24.3248 15:24:52 03-27-85

PRERELEASE 33

&90A
4£10B

F580
0024
CAOO
6009
FF30
002F

400A 0K
490B
CEAZ
LE0A
400B
700F
2009
100F
L009
*
4100 SETSIN
4C04
FS80
0037
CAOO
60023
FF30
0039
2000 NEG
L0082
5587 OUTPUT
CBRO3
EOAQ
CELF
NO WARNINGS

SACH
SACL

BNZ

ZAC
SACL
B

ZALH
ADDS
NORM
SACH
SACL
SAR
LAC
SUB
SACL

ZALS
XOR
EBNZ

ZAC
SACL
B

LAC
SACL
LARF
RPTEK
ouT
IDLE

PAGE 0003

CHI, 1 GET RID OF EXTRA SIGN BITS.
CLo, 1

ok 1% RESULT ZERO?Y

CEXF
SETSIN

CHI NORMALIZE AND WRAP LIF.
cLo

CHI

CLD

ARO, TEMP
CEXP
TEMP
CEXP

ASIGN WHAT I3 SIGN OF RESULT?
BSIGN
NEG

CSIGN
OUTFUT

NEGONE
CSIGN
1 QUTPUT RESULTS.

2

#+ PAC

NOSIOT

0001
0002
0003
0004
0005
0004
0007
0008
0009
0010
0011
0012
0013
0014
0015
00164
0017
0018
0012
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0024
0037
0032
0039
0040
0041
004z
0043
0044
0045
0044
0047
0048

0054
00

Q0OSéA

Q000

APPENDIX C

32020 FAMILY MACRO ASSEMBLER PCO.7 84.343 15:25:17 03-27-85
PRERELEASE ##3

0000
Q001
0002
0003
0004
0005
0004

PAGE 0001

336 36 35 35 38 36 35 36 330 30 30 36 36 36 36 36 330 303030 303 30 36 36 30 36 30 36 3 30360 3 30 3 30 3 3030 24 3 330 30 30 30 30 330 S 3

* #*
* THIZ IS A FLOATING-POINT DIVISION ROUTINE WHICH *
#* IMFLEMENTS THE IEEE PROPOSED FLOATING-FOINT FORMAT #
* DN THE TME322020. *
* *

36338 36 38 36 36 36 336 36 36 36 36 30 36 30 3630 36 30 3 3 36 36 36 36 36 36 36 30 303 336 330030 30 30 30 330 336 30 H I 63 I I

INITIAL FORMAT (ALL 146-BIT WORDS) ’
! ALL 0 OR 1 ! ASIGN (O OR -1)
100, 15 BITS H AHI (NDRMALIZED)
100 9 BITS 1--0-1 ALD

i H AEXF (-127 TO 12&)

TO CORRESPOND WITH IEEE FORMAT,
INPUT O.1F # 2 #% (E + 1)
INSTEAD OF 1.F # 2 ##E, AND SUBTRACT 127 FROM E.

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT
EXCEFT THAT FOR CLO WE HAVE:

i 14 BITS ! cLo

ALL 14 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS
BEEN TRUNCATEL.

A A ok Kk &k kA Ak ok A ok Ak ok &k ok dk ok dk ok ok X Kk Kk & & k x % & ¥ *k XK

FE 338 3 36 0 36 343 30 30 3 46 3 30 30 0 4336 3040 36 36 38 38 3 30 630336 3630 36 36 3633 3 30 0 0 30 303 3 30 E 0 30 3330 3¢

WORST CASE (EXCLUDING INITIALIZATION AND I/0):
2Z.2 MICROSECONDS.

THIS TIMING INCLUDES THE NORMALIZATION.

WORDS OF PROGRAM MEMORY: 92

I EREREE]
TN

F 36383 3 34 30 36 36 3 3030 20 343 T H I I I3 I IR
*

ADRG ¢
ASIGN EQU [}
AEXP EQU 1
AHI EiLl 2
ALOD EQ 3
BSIGN EQU 4
REXF i 5
EHI Ef &

NOSIDT

0057
005E
0059
0060
0041
QOL2
0063
0064
0065
0064
0047
0063
Q0L9
0070
0071
0072
0072
0074
0075
0074
0077
0072
0079
0080
0021
0082
0083
0034
00835

0026
0037
0032
0039
0090

0091
0092

0093,

0094
0095
0094
0097
009
0099
0100
0101
0102
0103
0104
0105
0104
0107
0102
0109

Q000
0001
0002
0002
0004
000s
000&
0007
0003
000?
000A
000B
000C
000D
Q00E
000F
0010
0011
0012
0013
0014
0015
0014
0017
001z
0019
001A
O0LR
001cC

32020 FAMILY MACRO ASSEMBLER

PRERELEASE ##3

0007
000
000%
Q00A
000R
[aTnls
000D
000E
QO0F
0010
0011
0012
0013
0014
0015
0014
0017
0012
0019

c804
CEO7
5589
D100
0200
CBO7
20A0
5585
CO00
Doo1
FFFF
£00C
DO01
1000
&014
CAO4
LO0E
CAOL
L015
CAOZ
L0114
CAOF
6017
CALE
L4018
CAOD
A019
CAOO
L0079

BLO
CEIGN
CEXF
CHI
cLo
NESOINE
TEMF
FOUR
GIM

=L

R1

RZ

cL
M1000
ONE
THREE
FITEEN
THIRTY
TTEEN
3

& & & K %

*

EQU 7

EQu B

EG 4

EQu 10

EQL 11

Ecit 12

EQU 13

EGU 14

EQU 15

EQU 14

EQL 17

(=2] 18

EQU 19

EQU 20

EQU 21

=] 22

EQU 23

EQU s

EQU peits]

INITIALIZATION

LDPE 4

33XM

LARP 1

LRLE AR1, 200

RPTK 7

IN #+ FAO

LARF Q

LARK ARD, 0

LALK >FFFF

SACL NEGONE

LALK >1000

SACL M1000

LACE 4

SACL FOLUR

LACE 1

SACL ONE

LACK]

SACL THREE

LACE 15
FITEEN
20
THIRTY
13
TTEEN
CEXP

PCO.7 24,343 15225217 03-€7-85

FAGE 0002

BEGIN 0ON PAGE 4.
SET SIGN EXTENSION.

READ NUUMBERS INTO BLOCK BO.

CLEAR EXPONENT REGISTER.

NEGONE = -1

M1QOO = 1000

FOUR = 4
ONE = 1
THREE = =
FITEEN = 15
THIRTY = 30
TTEEN = 13

CLEAR CEXF

NO$IDT <

0110
0111
0112
0113
0114
0115
0114

0117
0112
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
013z4
0135
0136
0137
0138
0139
0140
0141
0142
01432
0144
0145
0146
0147

014¢g
0147
0150
0151
0152
0152
0154
01585
0156
0157
0158
0159

0140
0161
0142

oo1n
001E
O01F
0020
0021
0022

0023
0024
0025
0024

0027
00z8
0027
002A
00ZE
00zC
Q0ZD
002ZE
00ZF

0030
0031
0032
0033
00324
0035
0034
0037
00za
0039
003A
003B
0030
Q03D
00ZE
003F
0040
0041
004z
00472
0044

0045
0044
0047
0048
004
004A

* 32020 FAMILY MACRO ASSEMBLER
###% FPRERELEASE 3#3%

2000
&008
1004
F&20
0022
200C

4002
4902
4B14
CE1?

4R17
4706
6211
LOOF
2F11
4B17
4704
6812
&010

480A
200A
4E14
F&80
0041
2015
£LO09
2001
1005
0007
6009

200A
F&30
004E
400A
470B
4B1%

%

#*
QK

NOOVF

* ok ok &

NORMAL

FCO.7 34.348 15:25:17 03-27-85

FAGE 0003

FINISHED WITH INITIALIZATION

LAC ASIGN
SACL CSIGN
SUB ESIGN
BZ 0K

LAC NEGONE
SACL CSIGN
ZALH AHI
ADDS ALD
RPT THREE
SFR

RPT FITEEN
SUBC BHI
SACH R1
SACL M

LAC R1,15
RPT FITEEN
SUBC BHI
SACH RZ
SACL oL

LT aM

MPY BLD
FALC

RPT FITEEN
SUBC BHI
SACL cL
ZALH aM
ADDE 6L

SUB L
SACL CLD
SACH CHI
LAC CHI
AND M1000
BZ NOOVF
LAC ONE
SACL CEXP
LAC AEXP
SUB EEXF
ADD CEXP
SACL CEXP
NORMAL I ZE

LAC CHI

BZ Lot
ZALH CHI
ADDS CLO
RPT TTEEN

CSIGN = ASIGN, IF ASIGN = BSIGN.

SHIFT DIVIDEND TO PROTECT FROM OVERFLOW.

@M = AHI!ALD / BHI, R1 = REMAINDER.
HIGH ACCUMULATOR RETAINS REMAINDER.

(R1 # 2##15) / BHI GIVES @L, AND RZ.
COMPUTES (R1 # 2#%15) / BHI.

HIGH ACCLUMULATOR RETAINS REMAINDER.
CORRECTION TERM = (@M % BLO) / BHI.
COMPUTES (GM # BLO).

COMPUTES (M # BLO) / BHI.

GMIBL - OICL = CHIICLO

DID AN QVERFLOW OCCUR?
IF NOT, GOTO NOOVF.
ELZE, INCREMENT CEXF.

COMFUTE RESULTING EXPONENT.

DOES CHI HAVE THE MSR?

IF YES, NORMALIZE RESULT.

WILL FERFORM 14 "NORMS",

NO$IDT |

0143 004B
01464 004C
Q040
01465 004E
01646 004F
0050
0147 0051
0163 0052
0169 0053
0054
0170
0171
0172
0173
0174
0175
0176 0055
0177 0056
0178
0179
0180
0181
0182
0183
0134 0057
0185 0058
0186 0059
0187 005A
0188 00SB
0189 005C
NO ERRORS,

32020 FAMILY MACRO ASSEMBLER
###% PRERELEASE ##3

CEA2
FF80
0057
400B L0O1
F330
0055
4B1%
CEAZ
FF80
0057

* & ok Kk ok kK

CEO4 NOFLOW
CE19

EEEEE

6£30A OUTPUT
600B
5589
4B16
EOAO
CEIF
NO WARNINGS

NORM
B

ZALH
BLZ

RPT
NORM
B

auUTPUT

CLO
NOFLOW

TTEEN

ouTPUT

PCO.7 84.348 15:25:17 03-27=g5 =~

PAGE 0004

G0 OUTPUT RESULTS.

HERE, IF CLO HAS MSB.
DID BIT SEARCH CAUSE OVERFLOW?

IF NOT, NORMALIZE RESULT.

G0 OUTPUT RESULT.

FINISHED WITH NORMALIZATION

OVERFLOW OCCURRED DURING BIT SEARCH

RSXM
SFR

RSXM FOR LOGICAL RIGHT SHIFT.
PERFORM RIGHT SHIFT.

TAKE CARE OF EXPONENT & NORMALIZED MANTISSA,
THEN OUTPUT RESULTS.

SACH
SACL
LARP
RPT
ouT
IDLE

CHI
cLo

1
THREE
#+ PAO

SAVE NORMALIZED MANTISSA.

RESET POINTER.
OUTPUT RESULTS, CSIGN, CEXP, CHI, AND CLO.

WAIT FOR INTERRUFT.

