

TMS320 DSP
DESIGNER’S NOTEBOOK

Random Number
Generation on a
TMS320C5x
APPLICATION BRIEF: SPRA239

 Eric Wilbur
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 July 1994

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... 7
Design Problem.. 8
Solution... 8

Examples
Example 1. Code Example .. 9

Random Number Generation on a TMS320C5x 7

Random Number Generation on a
TMS320C5x

Abstract

This document discusses how a random number can be generated
on a TMS320C5x. The goal of this application note is to provide a
fast, proven, useful random number generator that can be used in
various fixed-point applications. The theory is discussed and a code
example is provided.

8 SPRA239

Design Problem

How is a random number generated on a TMS320C5x?

Solution

The philosophy of the term “random” (i.e., how random is random?)
has been argued for centuries. I’m sure that there were probably
several duels held over the years as a result of disagreements on
this topic. Some argue that using a computer (a precise, logical,
predictable device) to produce random numbers is quite ironic (but
useful!). Purists would state that the only truly random event in
nature is the time delay between clicks of a Geiger counter placed
near a piece of radioactive material.

The goal of this application note is not to solve the ongoing debate
over the issue of randomness and somehow vindicate one side or
another, but to provide a fast, proven, useful random number
generator that can be used in various fixed-point applications.

Theory and Implementation

Many algorithms exist to generate random or pseudo-random
numbers. The design objectives of this algorithm were speed,
simplicity, “good” results, and the ease of integrating the code into
any application. Based on these criteria, a form of uniform deviate
called the linear congruential method (introduced by D. Lehmer in
1951) was used. The advantages of this method are speed,
simplicity to code, and ease of use. However, if care is not taken in
choosing the multiplier and increment values, the results can quickly
become degenerate. This algorithm produces 65,536 unique
numbers and the correlation is very good. Only the LSB exhibits a
repeatable pattern every 16 calls.

The linear congruential method has the following form:

Rndnum(n) = (Rndnum(n-l) * MULT) + INC (mod M)

Where: Rndnum(n) = current random number
Rndnum (n- 1) = previous random number
Rndnum(l) = SEED value (arbitrary constant)
MULT = multiplier (unique constant)
INC = increment (unique constant)
M = modulus (word width of ’C5x = 16 bits = 64K)

Much research has been done to identify the optimal choices for the
constants MULT and INC. The constants used in this
implementation are based on this research. If changes are made to
these numbers, extreme care must be taken to avoid degeneration.

Random Number Generation on a TMS320C5x 9

Following is a more detailed look at the algorithm and the numbers
used:

M: M is the modulus value and is typically defined by the word width
of the processor. This algorithm will return a random number
between 0 and 65,535 and is NOT internally bounded. If the user
requires a min/max limit, this must be coded externally to this
routine. The result is not actually divided by 65,536. The
accumulator is allowed to overflow, thus implementing the modulus.

SEED: The first random number in the sequence is called the seed
value. This is an arbitrary constant between 0 and 64K. Zero can be
used, but the first two results of the generator will be 0 and 1. This is
OK if the code is allowed 3 calls to “warm up” before the numbers
are taken seriously. The number 21,845 was used in this
implementation because it is 1 ⁄3 of the modulus (65,536).

MULT: Based on random number theory, this number should be
chosen such that the last three digits are even-2-1 (such as xx821,
x421, etc.). The number 31,821 was used in this implementation.
Caution: the generator is extremely sensitive to the choice of this
constant!

INC: In general, this constant can be any prime number related to M.
Two values were actually tested in this implementation: 1 and
13,849. Research shows that INC should be chosen based on the
following formula:

MINC ×










 ×−= 3

6

1

2

1
(Using M = 65,536 and INC = 13,849)

 NOTE:
This implementation can be modified to return a 32-bit or
8-bit random number if necessary. For the 32-bit number,
simply modify the code to execute a 32×32 multiply
instead of 16×16. Remember, your modulus is now 2^32.
If an 8-bit result is desired, the low or high byte of the 16-
bit result can be used. However, randomness is not
guaranteed—duplications will exist.

Example 1. Code Example

===
;; RANDOM NUMBER GENERATOR FOR THE TMS320C5x DSPs
;;
;; Title: Randl6.ASM
;; Author. Eric Wilbur
;; Date: October 1993
;; Application: Random Seeks for Hard Disk Drive
;; Target DSP: TMS320C51
;;

10 SPRA239

;; Usage: To Initialize: Call InitRandl6
;; To get the next random number: Call _Rand16
;;
;; Assumptions: SXM,OVM = don’t care
;; SPM = 0 (no shift)
;;
;; Input None
;; Output ACCL = 16-bit random number
;;===
;; MEMORY ALLOCATION
;;===
;;
Rndnum .usect “Variables”,1 ;allocate space for random
;; ;number result
;;
;;===
;;INITIALIZE CONSTANTS
;;===
SEED .set 21845 ;arbitrary seed value (65536/3)
MULT .set 31821 ;multiplier value (last 3

;digits are even-2-1)
INC .set 13849 ;1 and 13849 have been tested
;;
;;===
;; CODE START
;;===
;;

.text
;;
;;===
;; INITIALIZE RANDOM NUMBER GENERATOR - Load the SEED value
;;===
;;
_InitRandl6: LDP #Rndnum

LACC #SEED ;ACC = SEED value
SACL Rndnum ;Rndnum = SEED
RET ;return to caller

;;
;;===
;; GENERATE NEXT RANDOM NUMBER
;;===
;;
_Randl6: CLRC OVM ;clear overflow - implements

;MOD 64K
LDP #Rndnum ;set data page pointer
LT Rndnum ;TReg = Rndnum
MPY #MULT ;PReg = Rndnum * MULT
PAC ;ACC = Preg
ADD #INC ;ACC = Rndnum * MULT + INC
SACL Rndnum ;store new random number
RET ;return to caller

