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Wavelet Transforms in theTMS320C55x
Cesar Iovescu C5000 Applications

ABSTRACT

Wavelets have been developed to analyze the frequency components of a signal according
to a scale. They provide more information than the Fourier transform for signals which have
discontinuities or sharp spikes.

This application report briefly presents the history of the wavelet, starting with Fourier, and
describes the implementation of the wavelet transform using filter banks in the image
processing field. At the end of this report are some of the most common applications, such
as edge detection, noise removal, decomposition and reconstruction. They are illustrated
using the TMS320C55x  Imaging Library (C55x  IMGLIB), provided in the TI web site at
www.ti.com. The code is implemented on the TMS320C55x.
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1 Wavelets, an Introduction
Whether we like it or not we are living in a world of signals. Nature is talking to us with signals:
light, sounds… Men are talking to each other with signals: music, TV, phones…

The human body is equipped to survive in this world of signals with sensors such as eyes and
ears, which are able to receive and process these signals. Consider, for instance, our ears: they
can discriminate the volume and tone of a voice. Most of the information our ears process from a
signal is in the frequency content of the signal.

Scientists have developed mathematical methods to imitate the processing performed by our
body and extract the frequency information contained in a signal. These mathematical
algorithms are called transforms and the most popular among them is the Fourier Transform.

1.1 Fourier Transform

Jean Baptiste Joseph Fourier was a French scientist who lived in the early 1800’s. He studied
the principles of Heat Transfer and developed the Fourier Transform in order to solve the partial
differential equations involved in his research. The Fourier Transform can decompose any
periodic function into a linear combination of sines and cosines. The coefficients of the sines and
cosines are the frequency components of the signal. This concept provided the foundation for
Frequency Domain Analysis.

The Fourier transform gives us information about the behavior of a function in the frequency
domain. However, it does not provide us any information about how the function behaves in the
time domain. This means that although we might be able to determine all the frequencies
present in a signal, we do not know when they are present. This is an important problem for
signals whose behavior changes with time. These signals are called non-stationary signals.

Different algorithms have been developed to analyze non-stationary signals, and represent them
in the time and frequency domain at the same time. These algorithms use either the short time
Fourier transform or the wavelet transform method. The following sections discuss these
methods.

1.2 Short Time Fourier Transform

The first method is to cut the signal into slices in time and then examine the frequency content of
each of these slices. The short time Fourier transform (STFT) uses this concept. It is clear that
analyzing a signal this way gives more information about the when and where of different
frequency components, but it leads to a fundamental problem as well: how to cut the signal?

Heisenberg’s uncertainty principle was discovered in the quantum physics area. The principle
describes that you can not measure both the position and velocity of a particle exactly. The
same kind of phenomena was found in our signal processing area: it is impossible to know the
exact frequency and the exact time of occurrence of this frequency in a signal. In other words, a
signal can simply not be represented as a point in the time-frequency space. The uncertainty
principle shows that it is very important how one cuts the signal.

This example shows the uncertainty principle. The signal

f(t) � sin 2�v 1 t� sin 2�v 2 t� K���t�t1 � � ��t� t2 ��

consists of two sinusoids at frequencies of V1 = 500 Hz and V2 = 1000 Hz and two delta
functions occurring at t1 = 192 ms and t2 = 196 ms. Figure 1shows 2048 samples of the signal
containing the two deltas.
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Figure 1. Sinusoids With Two Deltas

We choose different sizes of cuts to do the Fourier transform. Figure 2 shows the result of the
series of transforms. Since the delta functions are separated by 32 samples, window sizes equal
to or greater than 32 samples are not narrow enough to resolve the delta functions. On the other
hand, a large window is effective to separate the two sinusoids with different frequencies. The
shortest window whose size is 16 has very good time localization and separates the two deltas
while losing resolution of the two sinusoids. The longest window with 128 points has high
frequency resolution and separates the two sinusoids very clearly, but causes blur of the two
deltas.

Figure 2. Fourier Transform of Signal in Figure 1 With Different Window Size
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1.3 Wavelet Transform

The second method to analyze non-stationary signals is to first filter different frequency bands,
cut these bands into slices in time, and then analyze them.

The wavelet transform uses this approach. The wavelet transform or wavelet analysis is
probably the most recent solution to overcome the shortcomings of the Fourier transform. In
wavelet analysis the use of a fully scalable modulated window solves the signal-cutting problem.
The window is shifted along the signal and for every position the spectrum is calculated. Then
this process is repeated many times with a slightly shorter (or longer) window for every new
cycle. In the end the result is a collection of time-frequency representations of the signal, all with
different resolutions. Because of this collection of representations, we can speak of a
multiresolution analysis. In the case of wavelets, we normally do not speak about time-frequency
representations but about time-scale representations.

Figure 3. Continuous Wavelet Transform of Signal Shown in Figure 1

2 Discrete Wavelet Transform

The discrete wavelet transform (DWT) was developed to apply the wavelet transform to the
digital world. Filter banks are used to approximate the behavior of the continuous wavelet
transform. The signal is decomposed with a high-pass filter and a low-pass filter. The
coefficients of these filters are computed using mathematical analysis and made available to
you. See Appendix B for more information about these computations.

LPd

HPd

S 2

2

L1

H1

2

2

LPr

HPr

S

Decomposition Reconstruction

Figure 4. Discrete Wavelet Transform
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Where

LPd: Low Pass Decomposition Filter

HPd: High Pass Decomposition Filter

LPr: Low Pass Reconstruction Filter

HPr: High Pass Reconstruction Filter

The wavelet literature presents the filter coefficients to you in tables. An example is the
Daubechies filters for wavelets. These filters depend on a parameter p called the vanishing
moment.

Table 1. Daubechies (p =2,3) Wavelet Coefficients

Vanishing Moment n _hp[n]

p = 2 0  0.48296291311445341

1  0.8365163037378079

2  0.2241438680420134

3 –0.1294095225512604

p = 3 0 0.332670552950

1  0.80691509311

2  0.459877502118

3 –0.135011020010

4 –0.085441273882

5  0.03522629291882

The hp[n] coefficients are used as the low-pass reconstruction filter (LPr).

The coefficients for the filters HPd, LPd and HPr are computed from the h[n] coefficients as
follows:

• High-pass decomposition filter (HPd) coefficients

g[n] = (–1)n h[L–n] (L: length of the filter)

• Low-pass reconstruction filter (LPr) coefficients

h[n] = h[L–n] (L: length of the filter)

• High-pass reconstruction filter (HPr) coefficients

g[n] = g[L–n] (L: length of the filter)

The Daubechies filters for Wavelets are provided in the C55x IMGLIB for 2 ≤ p ≤ 10.

Since there are several sets of filters, we may ask ourselves what are the advantages and
disadvantages to using one set or another.
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First we need to understand that we will have perfect reconstruction no matter what the filter
length is. However, longer filters provide smoother, smaller intermediate results. Thus, if
intermediate processing is required, we are less likely to lose information due to necessary
threshold or saturation. However, longer filters obviously involve more processing.

2.1 Wavelets and Perfect Reconstruction Filter Banks

Filter banks decompose the signal into high- and low-frequency components. The low-frequency
component usually contains most of the frequency of the signal. This is called the
approximation. The high-frequency component contains the details of the signal.

Wavelet decomposition can be implemented using a two-channel filter bank. Two-channel filter
banks are discussed in this section briefly. The main idea is that perfect reconstruction filter
banks implement series expansions of discrete-time signals.

LPd

HPd

L1 2

2

LL2

LH2

S

HPd 2

LPd 2

H1

Figure 5. A Two-Level Wavelet Decomposition

2

2

LPr

HPr

L1

2 HPr

2 LPr SLL2

LH2

H1

Figure 6. A Two-Level Wavelet Reconstruction

The input and the reconstruction are identical; this is called perfect reconstruction. Two popular
decomposition structures are pyramid and wavelet packet. The first one decomposes only the
approximation (low-frequency component) part while the second one decomposes both the
approximation and the detail (high-frequency component).
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S 2

2
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H1 HPd

LPd

2
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Figure 7. Pyramid Packet
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LPd

HPd

2

2

LPd 2

HHH3

LHH3

HLH3

LLH3

HPd 2

LPd 2

HL2

LL2

HPd 2

LPd 2

HH2

LH2

HPd 2

LPd 2

H1

L1

S

Figure 8. Wavelet Packet Decomposition

The C55x IMGLIB provides the following functions for one dimension pyramid and packet
decomposition and reconstruction. Complete information about these functions can be found in
the C55x IMGLIB.

• 1-D discrete wavelet transform

void IMG_wave_decom_one_dim(short *in_data, short *wksp, int *wavename, int length, 
int level);

• 1-D inverse discrete wavelet transform

void IMG_wave_recon_one_dim(short *in_data, short *wksp, int *wavename, int length, 
int level);

• 1-D discrete wavelet package transform

void IMG_wavep_decom_one_dim(short *in_data, short *wksp, int *wavename, int length, 
int level);

• 1-D inverse discrete wavelet package transform

void IMG_wavep_recon_one_dim(short *in_data, short *wksp, int *wavename, int length, 
int level);

2.2 Wavelet Filter Bank Implementation

When using the filter bank algorithm to do wavelet transform, the decomposed signal’s length is:

�Lengthsignal � Lengthfilter� 1��2
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After reconstruction, the reconstructed signal length is:

Lengthsignal � 2 * Lengthfilter� 2

So we need to cut off the head and tail, or use a circular buffer to make the reconstructed signal
exactly the same as the original signal. For thsi The following items are required

A signal with ten samples:

	S1 , S2 , S3 , 


 S9 , S10
�

A pair of filters with six elements each:

	g
_

0 , g
_

1 ,


g
_

5
� and 	h

_

0 , h
_

1 ,


 h
_

5
�

The reconstruction filters:

	g 0 , g 1 ,


g 5
� and 	h 0 , h 1 ,


 h 5

�

The decomposed signal should be:

	a
_

1 , a
_

2 ,


a
_

5
� and 	d

_

1 , d
_

2 ,


 d
_

5
�

To do the decomposition, we do the convolution:

a1 � S1 g
_

5 � S2 g
_

4 � S3 g
_

3 � S4 g
_

2 � S5 g
_

1 � S6 g
_

0

a2 � S3 g
_

5 � S4 g
_

4 � S5 g
_

3 � S6 g
_

2 � S7 g
_

1 � S8 g
_

0

Down-sampling is required after the convolution. This is avoided by picking every other output
as our output. So the convolution is shifted by 2 instead by 1, and the down-sampling is
unnecessary.

Figure 9 shows how the algorithm can be written in matrix format:
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Figure 9. Filter Bank Algorithm in Matrix Format
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The reconstruction of this example is shown in Figure 10.
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Figure 10. Reconstruction From Figure 9

Figure 11 shows the reconstruction written it in an elegant format:
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Figure 11. Altered Reconstruction From Figure 9

These calculations can be easily implement on a DSP with circular buffer management.

The reconstruction filters from the matrix in Figure 10 changed from:

	h0 h1 h2 h3 h4 h 5
� and 	g0 g1 g2 g3 g4 g5

�

to

	h1 g1 h3 g3 h5 h 5
� and 	h0 g0 h2 g2 h4 g4

�

This is done for the convenience of implementing wavelets on TMS320C55x.
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3 Wavelets Image Processing
Wavelets have found a large variety of applications in the image processing field. The JPEG
2000 standard uses wavelets for image compression. Other image processing applications such
as noise reduction, edge detection, and finger print analysis have also been investigated in the
literature.

3.1 Wavelet Decomposition of Images

In wavelet decomposing of an image, the decomposition is done row by row and then column by
column. For instance, here is the procedure for an N x M image. You filter each row and then
down-sample to obtain two N x (M/2) images. Then filter each column and subsample the filter
output to obtain four (N/2) x (M/2) images.

Of the four subimages obtained as seen in Figure 12, the one obtained by low-pass filtering the
rows and columns is referred to as the LL image. The one obtained by low-pass filtering the
rows and high-pass filtering the columns is referred to as the LH images. The one obtained by
high-pass filtering the rows and low-pass filtering the columns is called the HL image. The
subimage obtained by high-pass filtering the rows and columns is referred to as the HH image.
Each of the subimages obtained in this fashion can then be filtered and subsampled to obtain
four more subimages. This process can be continued until the desired subband structure is
obtained.

M/2

N/2 LL LH

HL HH

M

N

Figure 12. Original Image One-Level 2-D Decomposition

Three of the most popular ways to decompose an image are: pyramid, spacl, and wavelet
packet, as shown in Figure 13.

(a) (b) (c)

Figure 13. Three Popular Wavelet Decomposition Structures on Image:
(a) Pyramid, (b) Spacl, (c) Wavelet Packet
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• In the structure of pyramid decomposition, only the LL subimage is decomposed after each
decomposition into four more subimages.

• In the structure of wavelet packet decomposition, each subimage(LL, LH, HL, HH) is
decomposed after each decomposition.

• In the structure of spacl, after the first level of decomposition, each subimage is decomposed
into smaller subimages, and then only the LL subimage is decomposed.

Figure14 shows a three-level decomposition image of pyramid structure.

(a) (b)

Figure 14. (a) Original Image (b) Three-Level Pyramid Structure Decomposition

In the part I development stage, the JPEG 2000 standard supports the pyramid decomposition
structure. In the future all three structures will be supported.

For two dimensions, the C55x IMGLIB provides functions for pyramid and packet decomposition
and reconstruction. Complete information about these functions can be found in the C55x
IMGLIB.

• 2-D discrete wavelet transform

void IMG_wave_decom_two_dim(short **image, short * wksp, int width, int height, 
int *wavename, int level);

• 2-D inverse discrete wavelet transform

void IMG_wave_recon_two_dim(short **image, short * wksp, int width, int height, 
int *wavename, int level);

• 2-D discrete wavelet package transform

void IMG_wavep_decom_two_dim(short **image, short * wksp, int width, int height, 
int *wavename, int level);

• 2-D inverse discrete wavelet package transform

void IMG_wavep_recon_two_dim(short **image, short * wksp, int width, int height, 
int *wavename, int level);
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4 Wavelets Applications
TI provides several one dimension and two dimension wavelets applications, which illustrate
how to use the wavelets functions provided in the C55x IMGLIB.

4.1 One Dimension Wavelet Applications

The 1D_Demo.c file presents applications of the one-dimension wavelet. A 128-point sine wave
is used as input for all these applications as shown in Figure 15:

Figure 15. Input Signal

4.1.1 Discontinuity Detection Example

The first application shows how the wavelet transform can be used to detect a discontinuity. We
remove the point 64 from the sine wave to produce a discontinuity.

The discontinuity is shown in Figure 16. This code is used to produce the discontinuity:
// Initialization

//==================================================
freq1 = 2;
rate  = 64;
for( i = 0; i < (LENGTH>>1); i++ )

signal[i] = 255 * sin(2.0*3.1415*freq1*i/rate);
for( i = (LENGTH>>1); i < LENGTH; i++ )

signal[i] = 255 *sin(2.0*3.1415*freq1*(i+1)/rate);

Figure 16. Zoom of the Discontinuity of the Sinusoidal Input Signal
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We notice that the discontinuity is at point 64.

We are performing a one-level decomposition:

// Using Wavelet to find a discontinuity
//==================================================
IMG_wave_decom_one_dim( signal, temp_wksp, db4, LENGTH, 1 );
//––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 17. One-Level Decomposition of the Discontinue Signal

We notice that the high part of the signal (the part that contains the details) shows the
discontinuity of the original input signal. The discontinuity appears at point 32 of the high part
which is point 96 = 64 + 32 on the graph in Figure 17, which represents the high and low parts.

4.1.2 Noise Removal Example

The second application shows how the wavelets can be used to reduce the noise. The input
signal is the sine wave plus high frequency noise as seen in Figure 18:

Figure 18. Noisy Signal
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We are performing a one-level decomposition:

// Using Wavelet for Denosing
  //==================================================
  for( i = 0; i < LENGTH; i++ )
  signal[i] = backup[i] + noise[i];
  IMG_wave_decom_one_dim( signal, temp_wksp, db4, LENGTH, 1);
  for( i = (LENGTH>>1); i < LENGTH; i++ )
  {
  if(signal[i] > 3 ) signal[i] = 3;
  if(signal[i] < –3 ) signal[i] = –3;
  }
  IMG_wave_recon_one_dim( signal, temp_wksp, db4, LENGTH, 1 );

We notice that the low part has the shape of the signal (Figure 19) whereas the high part has the
spikes from the noise (Figure 20). A threshold [–3, +3] is applied to the high part and the signal
is reconstructed as in Figure 21.

Figure 19. One-Level
Decompostion of the Noisy Signal

Figure 20. Threshold Applied to the
High-Pass Channel

Figure 21. Reconstructed Signal
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4.1.3 1-D Perfect Decomposition and Reconstruction Example

The third application shows a three-level pyramid decomposition and reconstruction of the input
signal:

// Perfect Reconstruction of Pyramid, Level 3
  //==================================================
  for( i = 0; i < LENGTH; i++ )
  signal[i] = backup[i];
  IMG_wave_decom_one_dim( signal, temp_wksp, db4, LENGTH, 3 );
  IMG_wave_recon_one_dim( signal, temp_wksp, db4, LENGTH, 3 );
  for( i = 0; i < LENGTH; i++ )
  noise[i] = signal[i] – backup[i];
  //––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 22. Level 3 Pyramid Decompostion
of the Original Sine Wave Signal

Figure 23. LLL3 (left) and HLL3 (right) Components of Three-Level Decomposition
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The error signal shown in Figure 24 represents the difference between the original signal and
the reconstructed signal. This error signal is not zero because of the dynamic range of the 16-bit
fixed-point data.

Figure 24. Reconstructed Error

4.2 Two Dimension Wavelet Applications

The 2D_Demo.c file, provided in the C55x IMGLIB, presents applications of the two-dimension
wavelet. A 128x128 image is used as input for all these applications. In the first application we
are using the picture in Figure 25:

Figure 25. Image Used in the 2D Wavelet Application

4.2.1 2-D Perfect Decomposition and Reconstruction Example

In this application, the image is one-level decomposed and reconstructed. You notice no
difference between the original picture and the reconstructed picture as shown in Figure 26.
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One-Level Decomposed Image Reconstructed Image

Figure 26. One-Level Decomposed and Reconstructed Image

4.2.2 Edge Detection Example

In the second application, a 2-D edge detection is performed for the picture in Figure 27:

Figure 27. Picture Used in Edge Detection Application

The result of the one-level decomposition shows that the edges are detected as in Figure 28:

Figure 28. 2-D One-Level Decomposition Detects the Edges

The HH part of the picture has a vertical line. This happens because a row by row processing
was performed first and then a column by column.
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Appendix A Fourier Transform

A.1 Fourier Transforms

The Fourier transform’s utility lies in its ability to analyze a signal in the time domain for its
frequency content. The transform works by first translating a function in the time domain into a
function in the frequency domain. The signal can then be analyzed for its frequency content
because the Fourier coefficients of the transformed function represent the contribution of each
sine and cosine function at each frequency. An inverse Fourier transform translating the data
from the frequency domain into the time domain.

If ƒ has finite energy, the theory of Fourier integrals proves that the amplitude �
�
��� of each ejwt is

the Fourier transform of ƒ:

f
�

(�) � 
��

��

f(t)e�jwt dt

The inverse Fourier Transform is:

f(t) � 1
2�

���

��

f(�)e jwt d�

A.2 Window Fourier Transforms

In 1946, Gabor introduced window Fourier atoms to measure the frequency variation of sounds.
A real and symmetric window g(t) is translated by µ and modulated by the frequency ξ:

g
� �

(t) � ei� t g �t� ��

It is normalized ||g|| = 1 so that ||gµξ|| =1 for any (µ,ξ) ∈ℜ 2. The resulting windowed Fourier
transform of f∈ L2(ℜ ) is

Sf ��, �� � � f, g
��
�� 

��

��

f(t)g �t� ��e�i� t dt

This transform is also called the STFT (Short-Time-Fourier-Transform) or Gabor Transform
because the multiplication by g(t–µ) localizes the Fourier integral in the neighborhood of t = µ

The Heisenberg Uncertainty Principle shows that the temporal variance and the frequency
variance of ƒ∈ L2(ℜ ) satisfy

�
2

g
�

2

t
� 1

4

Thus, to have finer resolution in time, that is, reduce 2
t� , you end up with an increase in  2

5� , or

a lower resolution in the frequency domain.

(1)

(2)

(3)

(4)

(5)
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Appendix B Wavelet Transform

B.1 Continuous Wavelet Transforms
To analyze signal structures of very different sizes, it is necessary to use the time-frequency
atom method with different time supports. The wavelet transform decomposes signals over
dilated and translated wavelets. A wavelet is a function � ∈ L2(ℜ ) with a zero average:


��

��

�(t)dt � 0

It is normalized ||�|| = 1, and centered in the neighborhood of t = 0. A family of time-frequency
atoms is obtained by scaling

Dilating Ψ  by S and translating it by µ:

�
� , s(t) � 1

s�
��t� �

s �
These atoms remain normalized: ||��� || = 1. The wavelet transform of f∈ L2(ℜ ) at time µ and
scale S is determined with this equation:

WF��, s� � � f,�
� ,s �  f(t) 1

s�
� ·�t� �

s � dt

Wavelets equal to the second derivative of a Gaussian function are called Mexican hats. They
were first used in computer vision to detect multiscale edges. The normalized Mexican hat
wavelet is determined with this equation:

�(t) � 2
�1�4 3� �

� t2
�2

� 1� exp �� t2

2�2
�

For σ = 1, Figure 30 plots –Ψ  and its Fourier transform

�
�

(�) � � 8� �5�2�1�4

3�
�2 exp�� �2�2

2
�
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Figure B–1. Mexican Hat Wavelet and Its Fourier Transform

(6)

(7)

(8)

(9)

(10)
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If a real function � ∈ L2(ℜ ) satisfies the admissibility condition as determined by this equation:

C� � 
��

0

���(�)�2
�

d���

Then any ƒ∈ L2(ℜ ) satisfies the following equations:

f(t) � 1
C�


��

0


��

��

Wf ��, s� 1
s�
��t� �

s �d� ds
s2


�

��

�f(t)|2dt � 1
C�


��

0


��

��

�Wf ��, s�� 2d� ds
s2

The admissibility condition shows that:

���(�)� 2 � 0

which means the wavelets must have a band-pass like spectrum. This is a very important
observation, which is used later on to build an efficient wavelet transform.

B.2 Discrete Wavelets

The CWT is calculated by continuously shifting a continuously scalable function over a signal
and calculating the correlation between the two. It will be clear that these scaled functions will be
nowhere near an orthogonal basis and the obtained wavelet coefficients will therefore be highly
redundant. For most practical applications we would like to remove this redundancy.

To overcome this problem, discrete wavelets have been introduced. Discrete wavelets are not
continuously scalable and translatable but can only be scaled and translated in discrete steps.
This is achieved by modifying the wavelet representation to create this equation:

� j,k (t) � 1

S
j

0
�

����

�

�

t� k�0S
j

0

S
j

0

���

�

�

Although it is called a discrete wavelet, it is normally a continuous function. The j and k are
integers and s0 > 1 is a fixed dilation step. The translation factor 0 depends on the dilation step.
The effect of discretizing the wavelet is that the time-scale space is now sampled at discrete
intervals. So that the sampling of the frequency axis corresponds to dyadic sampling, s0 = 2 is
usually chosen. This is a very natural choice for computers, the human ear and music, for
instance. For the translation factor, τ0 = 1  is usually chosen so that we also have dyadic
sampling of the time axis.

(11)

(12)

(13)

(14)

(15)
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Figure B–2. Localization of the Discrete Wavelets in the Time-Scale Space on a Dyadic Grid

When discrete wavelets are used to transform a continuous signal, the result is a series of
wavelet coefficients, and it is referred to as the wavelet series decomposition. An important
issue in such a decomposition scheme is of course the question of reconstruction. It is all very
well to sample the time-scale joint representation on a dyadic grid, but if it will not be possible to
reconstruct the signal, it will not be of great use. As it turns out, it is indeed possible to
reconstruct a signal from its wavelet series decomposition.

B.2.1 Multiresolution Analysis and Scaling Function

After solving the redundant problem, a way needs to be found to design wavelets that will be
easy to use. Here are some concepts about multiresolution analysis and scaling function.

Let L2(ℜ ) denote the vector space of measurable, square-integrable one-dimensional functions
ƒ(x), then a multiresolution analysis of L2(ℜ ) consists of a ladder of spaces,




 � V2 � V1 � V0 � V�1 � V�2 




with ���������
����

����

����� �����	
 ���
����

���������������� ��	

which satisfy the following two conditions:

1. � ���� �� � �� �
�
� � ����

2. There exists φ∈ V0 such that {φ(t–n)}n ∈ Z constitutes an orthogonal basis of V0.

Since φ generates a multiresolution analysis, it is called a scaling function. The space Vj

can be considered as different approximation spaces: for a given ƒ, the successive projections
ProjVj  describe an approximations of ƒ with resolution 2j.
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If we define 	�	�������� �

��� �	���� �
��
�	 the family {φj,n}n∈ Z is an orthonormal basis of Vj  for all j ∈ Z.

The multiresolution causality property imposes that Vj ⊂  Vj–1. In particular,2–1/2 ϕ(t/2) ∈  Vj � V0 .
Since {φ(t–n)}n ∈ Z is an orthonormal basis in V0 , we can decompose this equation:

1
2�

	 � t
2
� � �

��

n���

h[n]	(t� n)

With this equation:

h[n] � �2�1�2
	�t�2�,	(t� n)�

This scaling equation relates a dilation of φ by 2 to its integer translations. The sequence h[n] will
be interpreted as a discrete filter.

The Fourier transform of both sides of (16) yields

	
�

(2�) � 2�1�2 h
�

(�)	
�

(�)

By substitution, we obtain

	
�

(�) ��
�
�
 

P

p�1

h
�
�2�p�2��

2�
�
�
�
	
��2�P�2��

If 	
�
���is continuous at ω = 0 then

	
�

(�) �  
�

p�1

h
�
�2�p��

2�
	
�

(0)

B.2.2 Orthogonal Wavelets Bases

Here are some conditions to construct orthogonal wavelet bases. For biorthogonal, please read
the texts in the reference list.

Condition 1

Let φ∈ L2(ℜ ) be an integrable scaling function. The Fourier series of h[n] = <2–1/2 φ(t/2), φ(t–n)>
satisfies the following equations:

for!�� �, | h
�

(�) |2� h
�

(�� �) |2 � 2

h
�

(0) � 2� or �
n

h(n) � 2�

Orthonormal wavelets carry the details necessary to increase the resolution of a signal
approximation. The approximations of ƒ at the scales 2j and 2j–1 are respectively equal to their
orthogonal projections on Vj  and Vj–1 . Let Wj  be the orthogonal complement of Vj  in Vj–1 :

Vj�1 � Vj"Wj

The orthogonal projection of ƒ on Vj–1  can be decomposed as the sum of orthogonal projections
on Vj  and Wj :

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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Orthonormal wavelets carry the details necessary to increase the resolution of a signal
approximation. The approximations of ƒ at the scales 2j and 2j–1 are respectively equal to their
orthogonal projections on Vj  and Vj–1 . Let Wj  be the orthogonal complement of Vj  in Vj–1 :

Pr ojVj�1 f � Pr ojVjf� Pr ojWjf

The complement PRojWjƒprovides the details of the ƒ that appear at the scale 2j–1 but which
disappear at the coarser scale 2j. The following condition proves that one can construct an
orthonormal basis of Wj  by scaling and translating a wavelet ψ.

Condition 2

Let φ be a scaling function and  the corresponding conjugate mirror filter. Let ψ be the function
whose Fourier transform is

�
�

(�) � 2�1�2g
����2�	

�
���2�

with

g
�

(�) � e�j� h
�

* (�� �)

Let us denote

�j,n(t) � 1
2j� ��2�j t� n�

For any scale 2j, {Ψj,n} n∈ z is an orthonormal basis of Wj . For all scales, {Ψj,n} n∈ Z is an
orthonormal basis of L2(ℜ ).

The family Znnj ∈}{ ,�  is an orthonormal basis of Wj  if and only if these equations are true:

for�� �, | g
�

(�)|2� | g
�

(�� �|2 � 2

g
�

(�) h
�

* (�)� g
�

(�� �) h
�

* (�� �) � 0

Then this results:

g[n] � #2�1
2 � � �t�2�,	(t� n)$ � (� 1)l�nh[l� n]

�
n

g[n] � 0

B.3 Wavelet and Perfect Reconstruction Filter Bank

Decomposition coefficients in a wavelet orthogonal basis are computed with a fast algorithm that
cascades discrete convolutions with h and g, and subsamples the output. We describe a fast
filter bank algorithm that computes the orthogonal wavelet coefficients of a signal measured at a
finite resolution. A fast wavelet transform decomposes successively each approximation ProVjƒ
into a coarser approximation ProbWj+1ƒplus the wavelet coefficients carried by ProjWj+1ƒ. In the
other direction, the reconstruction from wavelet coefficients recovers each PRojVj+1ƒ from
ProbVj+1ƒ and ProjWj+1ƒ. Let’s define h[n] = h[–n] and g[n] = g[–n].

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Figure B–3. A Two-Level Wavelet Decomposition and Reconstruction

Figure B–3 shows a fast wavelet transform is computed with a cascade of filters with h and g
followed by a factor 2 subsampling. A fast inverse wavelet transform reconstructs progressively
each aj  by inserting zeros between samplings of aj+1  and dj+1 , filtering and adding the output.

The input and the output are identical; this is called perfect reconstruction.
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Appendix C Wavelet Functions API
The following functions belong to the C55x image library (see Table C–1).

Table C–1. Wavelet Functions Written in C Code

Description Syntax

1-D discrete wavelet transform void IMG_wave_decom_one_dim(short *in_data, 
short *wksp, int *wavename, int length, int level);

1-D inverse discrete wavelet transform void IMG_wave_recon_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

1-D discrete wavelet package transform void IMG_wavep_decom_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

1-D inverse discrete wavelet package transform void IMG_wavep_recon_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

2-D discrete wavelet transform void IMG_wave_decom_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

2-D inverse discrete wavelet transform void IMG_wave_recon_two_dim(short **image, 
short * wksp, int width, int height, int *wavename,
int level);

2-D discrete wavelet package transform void IMG_wavep_decom_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

2-D inverse discrete wavelet package transform void IMG_wavep_recon_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

NOTE: Overflow Prevention in IMGLIB
There is no overflow prevention in these functions. However, if the input is in the range of
[0, 255], there should be no overflow up to at least five levels of decomposition for all wavelets
filters. The library has the following five families of wavlets: bior, coif, daub, rbio and sym.
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